Skip to main content
. 2023 Jan 19;88:104438. doi: 10.1016/j.ebiom.2023.104438

Table 3.

Prediction performance of different models for fungal keratitis.

Author Type of study Sample size (case number) Type of IK Diagnostic model Sensitivity (95% CI) Specificity (95% CI) Accuracy (95% CI) AUC (95% CI)
Current study Retrospective & prospective 1916 (1916) FK, BK, VK, AK Binary logistic regression 90.7 (77.4, 100.0) 89.9 (75.0, 100.0) 90.5 (80.5, 100.0) 90.3 (80.8, 99.8)
Saini et al.14 Retrospective 63 (63) FK, BK Artifical neural network 76.5 100.0 76.5
Hung et al.15 Retrospective 1330 (580) FK, BK DenseNet161 65.8 (41.5, 65.8) 87.3 (86.0, 95.3) 65.8 85.0
Kuo et al.16 Retrospective 288 (288) FK, BK, VK, AK DenseNet 71.1 (62.1, 78.6) 68.4 (61.1, 74.9) 69.4 65.0
Wang et al.17 Retrospective 1923 (1923) FK, BK, VK InceptionV3 77.3a 93.5
Ghosh et al.18 Retrospective 2167 (194) FK, BK DeepKeratitis 77.0 (81.0, 83.0) 90.4
Koyama et al.19 Retrospective 4306 (362) FK, BK, VK, AK ResNet50 83.0 85.6
a

Means the data not obtained directly but could calculate based on the sufficient data provided in the paper; IK: infectious keratitis; AUC: the area under the receiver operating characteristic curve.