Table 3.
Model | Training set | Test set | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
AUC (95%CI) | SEN | SPE | ACC | PPV | NPV | AUC (95%CI) | SEN | SPE | ACC | PPV | NPV | |
Model 1 | 0.811(0.741–0.881) | 0.784 | 0.772 | 0.780 | 0.667 | 0.860 | 0.691(0.564–0.817) | 0.577 | 0.659 | 0.629 | 0.500 | 0.725 |
Model 2 | 0.960(0.934–0.987) | 0.951 | 0.877 | 0.925 | 0.909 | 0.933 | 0.930(0.871–0.989) | 0.885 | 0.773 | 0.814 | 0.697 | 0.919 |
Model 3 | 0.812(0.742–0.882) | 0.784 | 0.772 | 0.780 | 0.667 | 0.860 | 0.693(0.567–0.819) | 0.577 | 0.659 | 0.629 | 0.500 | 0.725 |
Model 4 | 0.961(0.934–0.988) | 0.951 | 0.877 | 0.925 | 0.909 | 0.933 | 0.929(0.869–0.989) | 0.885 | 0.773 | 0.814 | 0.697 | 0.919 |
AUC area under curve, 95%CI 95% confidence interval, SEN sensitivity, SPE specificity, ACC accuracy, PPV positive predictive value, NPV negative predictive value
Model 1 clinical factors model
Model 2 clinical factors and imaging indexes model
Model 3 clinical factors and Radscore model
Model 4 combined model