Skip to main content
. 2023 Jan 23;22:14. doi: 10.1186/s12933-023-01748-0

Table 3.

Recognition ability of all models for patients with CAD

Model Training set Test set
AUC (95%CI) SEN SPE ACC PPV NPV AUC (95%CI) SEN SPE ACC PPV NPV
Model 1 0.811(0.741–0.881) 0.784 0.772 0.780 0.667 0.860 0.691(0.564–0.817) 0.577 0.659 0.629 0.500 0.725
Model 2 0.960(0.934–0.987) 0.951 0.877 0.925 0.909 0.933 0.930(0.871–0.989) 0.885 0.773 0.814 0.697 0.919
Model 3 0.812(0.742–0.882) 0.784 0.772 0.780 0.667 0.860 0.693(0.567–0.819) 0.577 0.659 0.629 0.500 0.725
Model 4 0.961(0.934–0.988) 0.951 0.877 0.925 0.909 0.933 0.929(0.869–0.989) 0.885 0.773 0.814 0.697 0.919

AUC area under curve, 95%CI 95% confidence interval, SEN sensitivity, SPE specificity, ACC accuracy, PPV positive predictive value, NPV negative predictive value

Model 1 clinical factors model

Model 2 clinical factors and imaging indexes model

Model 3 clinical factors and Radscore model

Model 4 combined model