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A B S T R A C T   

Background: The coronavirus disease 2019 (COVID-19) and community-acquired pneumonia (CAP) present a 
high degree of similarity in chest computed tomography (CT) images. Therefore, a procedure for accurately and 
automatically distinguishing between them is crucial. 
Methods: A deep learning method for distinguishing COVID-19 from CAP is developed using maximum intensity 
projection (MIP) images from CT scans. LinkNet is employed for lung segmentation of chest CT images. MIP 
images are produced by superposing the maximum gray of intrapulmonary CT values. The MIP images are input 
into a capsule network for patient-level pred iction and diagnosis of COVID-19. The network is trained using 333 
CT scans (168 COVID-19/165 CAP) and validated on three external datasets containing 3581 CT scans (2110 
COVID-19/1471 CAP). 
Results: LinkNet achieves the highest Dice coefficient of 0.983 for lung segmentation. For the classification of 
COVID-19 and CAP, the capsule network with the DenseNet-121 feature extractor outperforms ResNet-50 and 
Inception-V3, achieving an accuracy of 0.970 on the training dataset. Without MIP or the capsule network, the 
accuracy decreases to 0.857 and 0.818, respectively. Accuracy scores of 0.961, 0.997, and 0.949 are achieved on 
the external validation datasets. The proposed method has higher or comparable sensitivity compared with ten 
state-of-the-art methods. 
Conclusions: The proposed method illustrates the feasibility of applying MIP images from CT scans to distinguish 
COVID-19 from CAP using capsule networks. MIP images provide conspicuous benefits when exploiting deep 
learning to detect COVID-19 lesions from CT scans and the capsule network improves COVID-19 diagnosis.   
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1. Introduction 

Coronavirus disease 2019 (COVID-19) was first observed in humans 
in late 2019 and has since spread across the globe [1,2]. The real-time 
polymerase chain reaction (RT-PCR) test is the gold standard for diag
nosing COVID-19 through the detection of the novel coronavirus nucleic 
acid [3]. The PCR results of patients affected by detoxification concen
tration always show a false negative, with multiple nucleic-acid tests 
required to confirm the diagnosis [4,5]. Computed tomography (CT) 
images are used to detect and diagnose chest lesions, such as 
ground-glass opacities and crazy-paving [6–8]. However, in CT images, 
community-acquired pneumonia (CAP) and COVID-19 appear similar, 
and it is challenging to distinguish them, even for experienced 
radiologists. 

Deep learning methods, especially convolutional neural networks 
(CNNs), have significant feature representation abilities and provide 
effective tools in diagnosing COVID-19 and distinguishing COVID-19 
from CAP through computer-aided systems via chest X-rays and CT 
images. Rahaman et al. [1] investigated 15 different state-of-the-art 
pre-trained CNN models, including VGG, ResNet, InceptionNets, Den
seNets, MobileNet, and Xception, for recognizing COVID-19 from chest 
X-rays. Moreover, a combination of DarkNet and AlexNet [9] and a 
pretrained DenseNet-121 model [10] have been used to diagnose 
COVID-19 patients using chest X-rays. In contrast to chest X-rays, CT 
images allow more details to be obtained with no overlapping tissues 
and provide an effective tool for distinguishing COVID-19 from CAP. 
Three-dimensional (3D) volume analysis and two-dimensional (2D) slice 
analysis have been combined to provide CT images for the classification 
of COVID-19 and CAP [11]. Qi et al. [12] proposed a multiple-instance 
learning method to distinguish COVID-19 from CAP, while Qi and his 
colleagues [13] developed a fully automatic deep-learning pipeline that 
can accurately distinguish COVID-19 from CAP using CT images by 
mimicking the diagnostic process of radiologists. On the basis of the 
above methods, more robust and advanced deep-learning models should 
be developed to improve the diagnosis of COVID-19. 

Although deep learning using CT images and chest X-rays achieves 
high-accuracy diagnosis and classification of COVID-19 from CAP, few 
studies take the routine workflow of radiologists into account. A more 
effective and explainable procedure is required given the high degree of 
similarity between chest CT images of COVID-19 and CAP. Initially, 
radiologists in clinical practice quickly scan maximum intensity pro
jection (MIP) images to identify lesion candidates (high-CT-value re
gion) for additional testing on particular slices. Inspired by this 
procedure, we propose a novel CNN-based method that uses MIP images 
from CT scans and a capsule network. The purpose of this study is to 
explore whether MIP images generated from CT scans could help capsule 
networks to improve performance in terms of distinguishing COVID-19 
from CAP and enhance the efficiency of COVID-19 diagnosis. 

Histological studies have demonstrated that the pulmonary vascu
lature is affected by pneumonia, and that a high prevalence of throm
boembolic disease is a hallmark of severe COVID-19 infection [14]. 
Existing studies have focused on the lung parenchymal involvement of 
CT imaging features, with few studies exploring the role of the pulmo
nary vascular system in COVID-19 [15]. A previous study indicates that 
the pulmonary vascular system in COVID-19 is redistributed from 
smaller to larger vessels [16]. 

MIP [17] is a widely used postprocessing technique for CT images, 
such as in the detection of lung nodules, for which it enhances the 
visualization [18]. An MIP image is a two-dimensional representation 
acquired using the fluoroscopic method, which means that it is obtained 
by calculating the maximum density of pixels that pass over each ray of 
the object. In CT imaging, when X-rays pass through a section of raw 
tissue, the pixel value with the highest density along this camera di
rection is retained and projected onto a two-dimensional plane to obtain 
a reconstructed MIP image, as shown in Fig. 1. Therefore, the MIP 
technique provides an excellent response for representing the vascular 

morphology. MIP images can show even small density changes, accu
rately reflect the condition of blood vessels, and can distinguish the 
calcification of vessel walls. In our method, MIP is used to identify 
changes in the vascular morphology and determine the presence of le
sions in CT images. Some examples of CT scans in COVID-19 and CAP 
patients using the MIP method are shown in Fig. 2. 

In this paper, we describe a DenseNet-121-based capsule network for 
distinguishing COVID-19 from CAP using MIP images generated from CT 
scans. Excellent performance is achieved on multi-center datasets. The 
main contributions of this work are as follows. (1) We annotate lung 
masks of COVID-19 cases and train LinkNet to segment these masks. (2) 
MIP images are produced by superposing the maximum gray of intra
pulmonary CT values to represent the morphological changes in vessels 
and lesions of COVID-19. (3) We propose an MIP-based framework for 
distinguishing COVID-19 from CAP. (4) We demonstrate the feasibility 
of combining the clinical screening method and capsule network to 
improve the performance of distinguishing COVID-19 from CAP and 
enhance the diagnosis of COVID-19. 

The remainder of this paper is organized as follows. Section 2 in
troduces multiple CT image datasets, and gives an overview of the 
proposed method, lung segmentation, MIP image acquisition, and the 
capsule network. An ablation study and details of the training and 
evaluation of models are also described in Section 2. Section 3 presents 
the ablation experiment results, discusses the performance of the pro
posed method on multiple datasets, and compares the proposed method 
with state-of-the-art COVID-19 classification methods. Section 4 dis
cusses the challenges of lung segmentation in COVID-19 cases, and 
outlines the advantages of the proposed method, its limitations, and 
future work. Finally, Section 5 summarizes the proposed model and 
suggests ideas for future research. 

2. Related work 

2.1. Deep learning in COVID-19 diagnosis 

With the rise of deep learning methods in medical image processing, 
techniques have also been developed for COVID-19, normal, and CAP 
cases using X-rays and CT images [19,20]. Nwosu and his colleagues 
[21] proposed a two-channel residual neural network with a 
semi-supervised learning strategy to classify normal, pneumonia, and 
COVID-19 images via chest X-rays. Waheed et al. [22] developed a 
variant generative adversarial network (GAN), CovidGAN, to generate 
synthetic X-ray images for the classification of normal and COVID-19 
cases. Ouyang et al. [23] integrated online attention with 3D 
ResNet-34 in developing a dual-sampling attention network for dis
tinguishing COVID-19 from CAP. Nagi and his colleagues [20] utilized a 

5

Fig. 1. Schematic overview of MIP rendering. The maximum intensities along 
rays originating in the viewpoint are projected. 
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custom deep learning model, namely a modified version of 
MobileNet-v2, and an extended Xception model for the classification of 
COVID-19, lung opacity, and normal X-ray images. The above methods 
employed conventional X-ray images, which do not provide a significant 
amount of detail in the lungs. 

CT images provide a more detailed view of the lungs, soft tissue, and 
blood vessels [24]. Mohammed et al. [25] proposed an integrated 
method for selecting the optimal deep learning model based on a novel 
crow swarm optimization algorithm for COVID-19 diagnosis using CT 
images. Saeed et al. [26] proposed a method based on complex fuzzy 
hyper-soft sets, which is a formulation of complex fuzzy (CF) and 
hyper-soft sets for the classification of COVID-19 and non-COVID-19. 
Mahmoudi et al. [27] proposed a CNN-based method for detecting and 
quantifying COVID-19 using CT images, while another study utilized a 
modified U-Net for COVID-19 lung infection segmentation [28]. Ibrahim 
et al. [29] investigated hybrid deep learning methods that can quickly 
and accurately identify COVID-19 from non-COVID-19 using lung CT 
images. They developed a diagnosis system starting with the segmen
tation of lung CT scan images and ending with disease prediction, giving 
a reliable COVID-19 prediction method. 

2.2. Capsule network in medical image classification 

Capsule networks provide a novel approach to creating synthetic 
neurons. Several studies have demonstrated how widely capsule net
works are used in several sectors [30], including image classification. 
Capsule networks have achieved state-of-the-art performance on data
sets such as CIFAR-10 [31,32], Fashion MNIST [33], MNIST [34], and 
SVHN [35]. Different feature extractors can be employed with capsule 
networks, including DenseNet [36], ResNet [37], Res2Net and SE-Block 
[38], and ResNet-v2 [39]. Recently, capsule networks have been 
exploited for COVID-19 diagnosis [40,41]. Gupta et al. [42] proposed 
the COVID-WideNet for detecting COVID-19 from non-COVID-19 cases 
based on a capsule network with two convolutional layers and three 
capsule layers with less-trainable parameters. Li and his colleagues [43] 
proposed a novel capsule network with a non-iterative and parameter
ized multi-head attention routing algorithm to replace the traditional 
iterative dynamic routing process. This method extracts more general
ized representation features from X-ray images, thus improving the 
classification of COVID-19, pneumonia, and normal cases. 

3. Materials and methods 

3.1. Dataset 

Data were acquired from different hospitals and publicly available 
datasets. Table 1 summarizes these datasets. The details are as follows.  

● The lab dataset contains 168 CT scans from 56 patients with COVID- 
19 and 165 scans from 100 patients with CAP. These images were 
taken between December 2019 and March 2020 at the General 
Hospital of the Yangtze River Shipping and Affiliated Hospital of 
Guizhou Medical University. RT-PCR tests were used to diagnose the 
COVID-19 patients.  

● The China Consortium of Chest CT Image Investigation (CC–CCII) 
dataset consists of 2716 CT scans (or patients), in which 1245 CT 
scans (or patients) were diagnosed with COVID-19 and 1471 CT 
scans (or patients) were diagnosed with CAP [44].  

● The Cancer Imaging Archive (TCIA) dataset compromises 629 CT 
scans from 538 patients with COVID-19 [45].  

● The Dongguan dataset consists of 236 CT scans from 158 patients 
with COVID-19. The dataset was obtained from Wanjiang People’s 
Hospital. The patients were scanned by GE Medical Systems CT and 
Philips HOST-100196 CT. 

3.2. Overview of the study procedure 

Fig. 3 represents the overall workflow of the proposed method for 
distinguishing COVID-19 from CAP using MIP images generated by CT 
scans and a capsule network. First, 2D slices are extracted from CT scans 
for segmenting the lung mask. Segmentation methods including Link
Net, U-Net, Recurrent Residual CNN-based U-Net (R2U-Net), Attention 
U-Net, U-Net++, and CE-Net are applied to the 2D CT images. Second, 
MIP images are produced from the superposition of maximum gray in 
intrapulmonary CT values. Finally, the MIP images are input into the 
capsule network for patient-level prediction of the final COVID-19 
diagnosis. The feature extractors of the capsule network consist of 
ResNet-50, Inception-V3, and DenseNet-121. Details of each step of the 
proposed method are described in the following sections. 

3.3. Lung segmentation 

As the CT scans were acquired from different CT scanners and hos
pitals, a fixed window (window level = − 300 HU, window width = 1400 
HU) was set and the CT images were normalized to the range [0, 1]. The 
lung masks for 161 CT scans of COVID-19 were annotated in a semi- 
automatic way. First, the Pulmonary Toolkit (https://github.com/tom 
doel/pulmonarytoolkit) was employed to initially segment the mask of 
the lung field. The mask was then manually modified by radiologists. 
The preprocessed CT images and annotations of the lung mask were fed 
into the segmentation model for training and evaluation. LinkNet [46] 
was used to segment the lung parenchyma. The network architecture is 
depicted in Fig. 4. Similar to U-Net [47], LinkNet is composed of an 
encoder and a decoder, which are interconnected by an addition oper
ation. In the encoder part, LinkNet uses ResNet-34 [48] pretrained on 
the ImageNet dataset [49], with the fully connected layer and the global 
average pooling layer removed. The decoder has five blocks, each con
sisting of a 2 × 2 up-sampling layer followed by two sets of layers, each 

Fig. 2. Some examples of MIP images of COVID-19 and CAP.  

Table 1 
Summary of CT scans of COVID-19 and CAP in the datasets.  

Dataset Category Total 

COVID-19 CAP 

Lab dataset 161/35 165/31 326 
CC-CCII 1245 1471 2716 
TCIA 629 – 629 
Dongguan dataset 236 – 236  
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containing a convolution layer, batch normalization layer, and rectified 
linear unit (ReLU) activation layer. In the first four blocks of the 
decoder, feature maps are generated from the corresponding part in the 
encoder and added to the feature map after up-sampling. Finally, a 3 × 3 
convolution layer followed by sigmoid activation is applied to output 
the binary masks of the lung field. 

The binary cross-entropy (BCE) was applied as the loss function in 
the segmentation network. This function is expressed as follows: 

LossBCE = −
1
n

Σ(ynln xn + (1 − yn)(1 − ln xn))# (1)

where xn represents the prediction of the network and yn represents the 
ground-truth (annotated lung mask). 

The morphological filling method, namely the “Find Contours” 
function in the OpenCV library, was applied to enhance the performance 
of lung mask segmentation. Five existing segmentation networks, i.e., U- 
Net [47], R2U-Net [50], Attention U-Net [51], U-Net++ [52,53], and 
CE-Net, were compared with our lung segmentation model. 

3.4. Acquisition of MIP images 

In clinical practice, radiologists usually examine axial sections of 

Fig. 3. Workflow of the proposed method for distinguishing COVID-19 and CAP.  

Fig. 4. Architecture of LinkNet for lung segmentation.  
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patients’ CT images to differentiate between COVID-19 lesions and CAP. 
Moreover, MIP images are routinely used by radiologists to improve the 
detection of COVID-19. In our method, MIP images are acquired through 
the superposition of maximum CT values at each coordinate from a stack 
of consecutive slices. 

3.5. MIP-based capsule network for prediction of COVID-19 and CAP 

As shown in Fig. 5, using an MIP image as input, the capsule network 
was trained for the patient-level prediction of COVID-19 and CAP. The 
capsule network consists of a feature extraction module (DenseNet-121 
backbone) and a capsule module including a primary capsule, con
volutional capsules A and B, and a dense capsule. 

The input image measures 512 × 512 pixels. The first three stages of 
the pretrained DenseNet-121 [48] are used as a feature extraction block. 
As shown in Fig. 6, the feature extraction block is comprised of a con
volutional layer with 7 × 7 filters, a max pooling layer, four dense 
blocks, three transition layers, and a global average pooling layer. The 
dense block consists of different numbers of conv_block units, which 
perform batch normalization, ReLU activation, and convolution with 1 
× 1 and 3 × 3 filters. A transition layer is placed between adjacent dense 
blocks. Finally, 1024 features are output from the DenseNet-121 block 
and transmitted to the primary capsule layer. 

Each capsule module consists of a primary capsule layer and two 
convolution capsule layers. The primary capsule layer is preceded by a 
convolutional layer (512 kernels of size 1 × 1), which processes the 
output features of DenseNet-121. Dynamic routing is followed by the 
primary capsule layer, which is used to reshape the output of the former 
convolutional block. 

The probability of two categories is obtained by the dense capsule 
layer. The norm of the two capsules (i.e., the output of the capsule 
network) is input into a SoftMax operation to produce the final 
prediction. 

A spread loss function reduces the sensitivity of training to the model 
initialization and super-parameters. The following spread loss function 
was used to train the network: 

LossSpread = Σt∕=i max(0,m − (at − ai))
2
#(2)

where at and ai represent the activation values of the target and the i-th 
position from the target, respectively. 

Fig. 5. Architecture of the capsule network for the prediction of COVID-19 and CAP.  

Fig. 6. Architecture of DenseNet-121 in the capsule network.  

Y. Wu et al.                                                                                                                                                                                                                                      



Computers in Biology and Medicine 154 (2023) 106567

6

3.6. Ablation experiments 

Three comparative experiments were conducted. The first attempted 
to determine whether the segmentation of the lung field improves the 
performance of distinguishing COVID-19 from CAP. For this, the MIP 
images generated by the original CT images without lung segmentation 
and the intrapulmonary CT images were input to the capsule network for 
prediction. 

The second experiment attempted to determine whether the MIP 
images are useful. Following our previous study [13], all intra
pulmonary slices were directly fed into the capsule network and the 
slice-level predictions were output. Majority voting was then utilized to 
produce the final patient predictions. 

The third experiment examined whether the capsule network affects 
the classification performance of COVID-19 and CAP. In this experiment, 
the capsule modules were replaced by the vanilla DenseNet-121 blocks. 

3.7. Experimental setup 

During the experiments on the lung segmentation network, we 
marked the lung fields on 161 CT scans, including 10,280 image slices of 
COVID-19. The dataset was divided into training, validation, and testing 
sets at a ratio of 7:1:2. To train the capsule network on our lab dataset, 
333 MIP images generated from 333 CT scans were divided into training, 
validation, and testing sets at a ratio of 8:1:1. The CC-CCII, TCIA, and 
Dongguan datasets were used as external independent datasets for 
testing. Data augmentation was implemented in the training stage via 
scaling and random rotation in the horizontal and vertical directions. 
Early stopping was adopted to alleviate the problem of overfitting when 
the validation accuracy did not increase over five epochs. 

For the segmentation task, the batch size was set to 8, the initial 
learning rate was 1 × 10− 4, the Adam optimizer was used, and the 
number of epochs was fixed to 50. For the classification task, the batch 
size was set to 16, the number of epochs was 25, the initial learning rate 
was 1 × 10− 4, the Adam optimizer was used, and the number of dynamic 
routing iterations of the capsule network was set to 3. The experiments 
were implemented using PyTorch as a deep learning framework. The 
models were trained on a workstation with an Intel Core I7-9700 3.00 
GHz CPU and four NVIDIA GeForce RTX 2080 Ti GPUs. 

3.8. Evaluation metrics 

The intersection over union (IoU) and Dice coefficient were used to 
evaluate the lung segmentation performance. The accuracy, precision, 
sensitivity, specificity, and area under the curve (AUC) were used to 
evaluate the classification models. 

IoU =
TP

TP + FN + FP
#(3)

Dice =
2TP

2TP + FN + FP
#(4)

Accuracy =
TP + TN

TP + TN + FP + FN
#(5)

Precision =
TP

TP + FP
#(6)

Sensitivity =
TP

TP + FN
#(7)

Specificity =
TN

FP + TN
#(8)

For the IoU and Dice metrics, TP is the number of true positives and 
FN is the number of false negatives. In the classification metrics, TP 
indicates the number of COVID-19 patients correctly classified as 

COVID-19 patients by the proposed model, FP (false positive) denotes 
the number of CAP patients falsely classified as COVID-19 patients, FN 
denotes the number of COVID-19 patients falsely classified as CAP pa
tients, and TN (true negative) indicates the number of CAP patients 
correctly classified as CAP patients. 

4. Results 

4.1. Lung segmentation 

The lung segmentation performance using the six different models is 
summarized in Table 2. LinkNet achieves the best performance, with IoU 
and Dice coefficient scores of 0.967 and 0.983. This confirms that 
LinkNet is beneficial for lung segmentation. Conversely, R2U-Net gives 
the minimum IoU (0.928) and Dice coefficient (0.962). 

Some examples of the lung segmentation results extracted from 
COVID-19 CT images are depicted in Fig. 7. Under-segmented regions 
can be observed in the results given by U-Net, R2U-Net, Attention U-Net, 
U-Net++, and CE-Net. Overall, parts of the CT scanner bed are incor
rectly detected and segmented as lung field regions. 

4.2. Prediction of capsule network using three different backbones on lab 
dataset 

Fig. 8 shows the confusion matrix of the capsule network on the lab 
dataset with different feature extraction modules (ResNet-50, Inception- 
V3, and DenseNet-121). This shows which CNN feature extractor ach
ieves the best classification accuracy. The testing dataset contains 66 
MIP images, 35 for COVID-19 and 31 for CAP. The ResNet-50, Inception- 
V3, and DenseNet-121 modules correctly identified 27, 28, and 34 
COVID-19 patients and 29, 29, and 30 CAP patients, respectively. 

The number of parameters, accuracy, precision, sensitivity, and 
specificity scores using the ResNet-50, Inception-V3, and DenseNet-121 
modules are reported in Table 3. The capsule network using DenseNet- 
121 achieves the best performance in classifying COVID-19 and CAP 
with the fewest training parameters (accuracy of 97.0%, precision of 
0.971, sensitivity of 0.971, specificity of 0.968, and AUC of 0.986; see 
Fig. 9). In second place, Inception-V3 uses the most training parameters 
to achieve 86.4% accuracy and 0.883 AUC. The ResNet-50 backbone 
gives the minimum accuracy (84.9%), precision (0.931), sensitivity 
(0.771), and specificity (0.935). We can see that the capsule network 
with the DenseNet-121 backbone produces the best overall performance 
on the COVID-19 and CAP categories. 

4.3. Predictions for other datasets 

Fig. 10 and Table 4 summarize the performance of the capsule 
network on the CC-CCII, TCIA, and Dongguan datasets. The experiments 
confirm the capsule network is beneficial and robust for COVID-19 
diagnosis. The CC-CCII dataset consists of COVID-19 and CAP cases. 
As shown in Fig. 9(a), for the COVID-19 category, 187 of 201 items are 
correctly predicted, while for the CAP category, the proposed method 
correctly classifies 261 of 265 items. Moreover, the accuracy, precision, 
sensitivity, specificity, and AUC in terms of distinguishing the two cat
egories are 0.961, 0.979, 0.930, 0.985, and 0.971, respectively. The 

Table 2 
Performance of the six lung segmentation networks.  

Model IoU Dice 

U-Net [54] 0.962 0.980 
LinkNet 0.967 0.983 
R2U-Net [50] 0.928 0.962 
Attention U-Net 0.951 0.974 
U-Netþþ [52,53] 0.936 0.966 
CE-Net 0.964 0.981 

* Bold font indicates the network with the best performance. 
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TCIA and Dongguan datasets only consist of COVID-19 patients. As 
shown in Fig. 10(b) and (c), the number of correctly predicted COVID-19 
cases is 627 out of 629 and 224 out of 236 cases. The accuracy of COVID- 
19 diagnosis with the TCIA and Dongguan datasets is 99.7% and 94.9%, 
respectively. In this case, we conclude that the proposed method is 
beneficial and robust for the diagnosis of COVID-19 on multiple 
datasets. 

4.4. Results of the ablation experiment 

Ablation experiments were conducted to analyze the proposed 
method’s key components. As shown in Table 5, the main components 

are the lung segmentation, MIP image generation, and capsule network. 
Without applying lung segmentation before the acquisition of MIP im
ages, the accuracy decreases to 63.5%. In this situation, the MIP images 
are directly generated by the CT scan and may include redundant in
formation, such as the patient table and bone information. If we use the 
raw CT images rather than the MIP images (i.e., the patient-level pre
diction is produced by majority voting on the predictions of the capsule 
network via each slice of the CT images), the accuracy is only 85.7%, 
approximately 11.3% lower than when using the MIP images. Removing 
the capsule network and only using the DenseNet-121 network for 
classification reduces the accuracy to 81.8%. Thus, we conclude that 
lung segmentation, MIP images, and the capsule network are all 

Fig. 7. Examples of lung segmentation using different networks.  

Fig. 8. Confusion matrix for the classification of COVID-19 and CAP using three different feature extraction modules. (a) ResNet-50; (b) Inception-V3; (c) Dense
Net-121. 

Table 3 
Performance comparison of different feature extraction modules using capsule network.  

Model Params. (M) Accuracy Precision Sensitivity Specificity AUC 

ResNet-50 9.63 0.849 0.931 0.771 0.935 0.910 
Inception-V3 9.92 0.864 0.933 0.800 0.935 0.883 
DenseNet-121 8.04 0.970 0.971 0.971 0.968 0.986 

* Bold font indicates the best value among the three models. 
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beneficial to distinguishing COVID-19 from CAP using CT images. The 
three components of the proposed method help boost the classification 
performance. 

4.5. Comparison of our method with current state-of-the-art techniques 

We investigated other state-of-the-art methods for classifying 
COVID-19 and compared them with our proposed method. The results in 
Table 6 show that our proposed method achieves an accuracy of 0.970, 
outperforming all state-of-the-art methods except for our previous 
approach. The sensitivity of our method is higher than or comparable to 
that of the pipeline mimicking radiologist [13], a combination of CNN 
and SVM [55], multi-instance learning and a long short-term memory 
(LSTM) network [56], weakly supervised multi-scale learning [4], 
MResNet− 50− MIL [12], a 2D CNN [57], a semi-supervised learning strategy 
with multi-view fusion [58], the BigBiGAN framework [59], the pre
trained EfficientNet-b7 [60], and 3D ResNet-34 with attention modules 
[23]. 

4.6. Interpretation of our method using t-SNE 

As described in Fig. 11, the full complexity of distinguishing COVID- 
19 from CAP can be illustrated by visualizing the parameter space of 

patients with COVID-19 and CAP from our lab testing data using the t- 
distributed stochastic neighbor embedding (t-SNE) method [62]. 
Although COVID-19 and CAP produce highly similar CT images, the 
predictions of our proposed capsule network using three different 
backbones have a significant non-overlap. The medoid of the COVID-19 
group lies farther away from that of the CAP group in Fig. 10(c) than in 
Fig. 10(a) and (b). As expected, this demonstrates that our proposed 
method with the DenseNet-121 backbone has an extremely high 
discriminative power between COVID-19 and CAP. 

5. Discussion 

5.1. Challenges in lung segmentation and distinguishing COVID-19 from 
CAP using CT images 

Lung segmentation is a crucial preprocessing step for the classifica
tion network. It reduces the impact of tissues outside the lung field and 
enables the capsule network to focus on the lesions within the lung field. 
Moreover, the intrapulmonary parenchyma is the prerequisite for the 
generation of MIP images. However, segmenting the lung field in 
COVID-19 and CAP patients is challenging due to the impact of lesions in 
CT images. Six off-the-shelf CNN models (U-Net, LinkNet, R2U-Net, 
Attention U-Net, U-Net++, and CE-Net) were employed for lung seg
mentation. LinkNet outperformed the other five networks, achieving a 
Dice coefficient of 0.983 and an IoU of 0.967. These scores are greater 
than or comparable to previous results obtained using DenseNet-161 U- 
Net [63], Lung Seg-Net [64], and three-stage segmentation [65]. 

CT is one of the most widely used imaging methods in clinical 
practice [66–69] and plays an important role in the diagnosis of CAP and 
epidemiological studies [70]. Ground-glass opacities, consolidation, and 
peripheral and bilateral involvement have been observed in CT images 
of COVID-19 [71]. However, in CT images, COVID-19 exhibits many 

Fig. 9. ROC curve of the capsule network with DenseNet-121.  

Fig. 10. Confusion matrix on other datasets. (a) CC-CCII dataset; (b) TCIA dataset; (c) Dongguan dataset.  

Table 4 
Performance comparison on different datasets.  

Dataset Accuracy Precision Sensitivity Specificity AUC 

CC-CCII 0.961 0.979 0.930 0.985 0.971 
TCIA 0.997 – – – – 
Dongguan 0.949 – – – –  

Table 5 
Performance comparison with different pretraining blocks.  

Ablation experiment Accuracy 

Lung segmentation (− ) 63.5% 
MIP (− ) 85.7% 
Capsule networks (− ) 81.8% 
Our method 97.0%  
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similarities to CAP, i.e., high similarity to pneumonia of different types 
(especially in the early stage) and large variations in different stages of 
the same type [72,73]. Hence, it is vital to develop an automatic deep 
learning-based diagnosis algorithm specific to COVID-19. In our previ
ous studies [12,13], the automatic pipeline mimicking radiologist and 
multiple-instance learning (MIL) methods were developed for dis
tinguishing COVID-19 from CAP. These methods achieved accuracy 
scores of 97% and 95% and AUC scores of 0.992 and 0.955, respectively. 

Our proposed method outperformed the MIL method and produced 
comparable results to the automatic pipeline [13]. This is also evident 
from our t-SNE analysis and visualization of the distribution of 
COVID-19 and CAP cases in Fig. 10, which illustrate the complexity of 
the parameter space. 

Table 6 
Performance of our method against state-of-the-art methods.  

Ref Dataset Method Performance 

Acc. Sen. Spe. AUC 

Our proposed method 156 patients (56 COVID-19 and 100 CAP)  - Lung segmentation  
- MIP 

0.970 0.971 0.968 0.986 

HU et al., 2022 [4] 450 patient scans (150 of COVID-19, CAP and NP)  - Lung segmentation  
- Weakly supervised multi-scale learning 

0.891 0.870 0.862 0.906 

Qi et al., 2022 [13] 157 patients (57 COVID-19 and 100 CAP)  - Lung segmentation  
- Selection of slices with lesions  
- Slice-level prediction  
- Patient-level prediction 

0.971 0.959 0.981 0.992 

Ibrahim et al., 2022 
[29] 

2984 patients (COVID-19: 1396; non-COVID-19: 1588)  - VGGNet  
- Convolutional deep belief network  
- High-resolution network 

0.95 0.95 0.96  

Erdal et al., 2022 [55] 2496 CT scans (1428 COVID-19 and 1068 CAP)  - Deep CNN for feature extraction  
- SVM classification 

0.932 0.858 0.993 0.984 

Xu et al., 2022 [56] 515 patients (204 COVID-19 and 311 CAP)  - Multi-instance learning  
- LSTM 

– 0.862 0.980 0.956 

Li et al., 2022 [61] 4352 CT scans (1292 COVID-19, 1735 CAP, and 1325 non- 
pneumonia)  

- Lung segmentation  
- 2D local and 3D global representative 

features 

– 0.885 0.940 0.955 

Zhu et al., 2022 [58] 2522 patients (1495 COVID-19 and 1027 CAP)  - Semi-supervised strategy  
- Multi-view fusion method  
- Pairwise constraint regularization 

0.920 0.931 0.904 0.963 

Qi et al., 2021 [12] 241 patients (COVID-19: 141; CAP: 100)  - Multi-instance learning  
- Deep features extracted by ResNet-50 

0.959 0.972 0.941 0.955 

Javaheri et al., 2021 
[57] 

335 CT scans (111 COVID-19, 115 CAP, 109 Normal)  - Training a subset of the control dataset 
model  

- Feeding all the datasets into the trained 
model 

0.933 0.909 1.00 0.940 

Basset et al., 2021 [60] 305 CT scans (169 COVID-19; 60 CA; 76 Normal)  - Lung segmentation  
- EfficientNet-b7 for features  
- Attention modules learn multi-scale 

features 

0.968 – – 0.988 

Ouyang et al., 2020 
[23] 

- 3645 CT images (COVID-19: 2565; CAP: 1080)  - Lung segmentation  
- 3D ResNet-34  
- Attention module and ensemble learning 

0.875 0.869 0.901 0.944 

Song et al., 2020 [59] 201 CT images (COVID-19: 98; non-COVID-19: 103)  - BigBiGAN framework  
- Linear classifier 

– 0.920 0.910 0.972  

Fig. 11. Visualization of COVID-19/CAP parameter space with the t-SNE method using a capsule network with different backbones. Each dot represents a patient and 
its color represents the group. Red dots represent patients with COVID-19 and green dots represent patients with CAP. (a) ResNet-50; (b) Inception-V3; (c) Den
seNet-121. 
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5.2. Advantages of MIP images 

In this work, the MIP method was developed to consider the routine 
workflow of radiologists. In clinical practice, radiologists quickly scan 
the MIP images to determine the pneumonia candidates for additional 
investigations on specific slices. Postprocessing through MIP [17] 
transfers 3D voxels to the plane of projection at their highest intensity. 
As this improves the visibility of nodules in comparison to the presence 
of bronchi and vasculature, it is frequently utilized for the identification 
of lung nodules [74]. Inspired by this initial procedure, we proposed an 
MIP-based capsule network approach. The results presented herein 
demonstrate that the combination of MIP and CNN improves the accu
racy and efficiency of COVID-19 classification. 

5.3. Limitations and further studies 

The proposed approach still has certain limitations. First, the size of 
the dataset is small, and so a more diverse population from more centers 
is required to verify the performance of the proposed method. Second, 
gathering more subjects exhibiting other pneumonia subtypes, lung 
diseases, and even healthy individuals would help improve the diagnosis 
ability. Third, building a larger dataset with linked CT and clinical data, 
especially data on underlying disorders, would allow for further 
research of the diagnosis system and the development of further func
tionality, including assessments of the severity of the disease. Fourth, 
the current method only focuses on the analysis of the lung parenchyma 
in CT images. Some segmentation methods of lung airways and vessels 
have been established using deep learning-based methods. The analysis 
of airways and vessels in COVID-19 patients using CT images could be 
considered. Finally, more advanced methods, such as GANs [75] and 
ensemble learning [76], could improve the diagnosis performance of 
COVID-19. 

6. Conclusion 

This work proposed a novel method of distinguishing COVID-19 from 
CAP using MIP images from CT scans and a capsule network. The per
formance of the method demonstrates the significance and effectiveness 
of MIP images for COVID-19 detection in CT scans. This study has 
demonstrated that MIP images provide conspicuous benefits when 
exploiting CNNs to detect COVID-19 lesions. 

To the best of our knowledge, there is a high degree of similarity 
between COVID-19 and CAP in chest CT images. This increases the need 
for a diagnosis system that distinguishes COVID-19 from CAP in CT 
images. The proposed method combines the advantages of MIP images 
and capsule networks to address this issue. This system could reduce 
radiologists’ workloads by significantly decreasing the number of scans 
that need to be manually evaluated. This work provides a new direction 
for the usage of CT scans in COVID-19 diagnosis. 

The main limitation of the present study is the small set of training 
data. Although data were obtained from multiple centers, the overall 
size of the data is relatively small. Gathering more subjects exhibiting 
other pneumonia subtypes would help improve the range of diagnosis. 
Moreover, assessments of the severity of COVID-19 should be included 
in further research on the diagnosis system. The proposed diagnosis 
system can be extended to other diseases and other modalities, such as 
the transfer learning of the approach for lung cancer classification. 
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