Our proposed method |
156 patients (56 COVID-19 and 100 CAP) |
|
0.970 |
0.971 |
0.968 |
0.986 |
HU et al., 2022 [4] |
450 patient scans (150 of COVID-19, CAP and NP) |
|
0.891 |
0.870 |
0.862 |
0.906 |
Qi et al., 2022 [13] |
157 patients (57 COVID-19 and 100 CAP) |
|
0.971 |
0.959 |
0.981 |
0.992 |
Ibrahim et al., 2022 [29] |
2984 patients (COVID-19: 1396; non-COVID-19: 1588) |
|
0.95 |
0.95 |
0.96 |
|
Erdal et al., 2022 [55] |
2496 CT scans (1428 COVID‐19 and 1068 CAP) |
|
0.932 |
0.858 |
0.993 |
0.984 |
Xu et al., 2022 [56] |
515 patients (204 COVID-19 and 311 CAP) |
-
-
Multi-instance learning
-
-
LSTM
|
– |
0.862 |
0.980 |
0.956 |
Li et al., 2022 [61] |
4352 CT scans (1292 COVID-19, 1735 CAP, and 1325 non-pneumonia) |
|
– |
0.885 |
0.940 |
0.955 |
Zhu et al., 2022 [58] |
2522 patients (1495 COVID-19 and 1027 CAP) |
|
0.920 |
0.931 |
0.904 |
0.963 |
Qi et al., 2021 [12] |
241 patients (COVID-19: 141; CAP: 100) |
|
0.959 |
0.972 |
0.941 |
0.955 |
Javaheri et al., 2021 [57] |
335 CT scans (111 COVID-19, 115 CAP, 109 Normal) |
|
0.933 |
0.909 |
1.00 |
0.940 |
Basset et al., 2021 [60] |
305 CT scans (169 COVID-19; 60 CA; 76 Normal) |
|
0.968 |
– |
– |
0.988 |
Ouyang et al., 2020 [23] |
- 3645 CT images (COVID-19: 2565; CAP: 1080) |
|
0.875 |
0.869 |
0.901 |
0.944 |
Song et al., 2020 [59] |
201 CT images (COVID-19: 98; non-COVID-19: 103) |
-
-
BigBiGAN framework
-
-
Linear classifier
|
– |
0.920 |
0.910 |
0.972 |