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Abstract

Motivation: The increasing amount of data produced by omics technologies has enabled researchers to study phe-
nomena across multiple omics layers. Besides data-driven analysis strategies, interactive visualization tools have
been developed for a more transparent analysis. However, most state-of-the-art tools do not reconstruct the impact
of a single omics layer on the integration result.

Results: We developed a data classification scheme focusing on different aspects of multi-omics datasets for a sys-
temic understanding. Based on this classification, we developed the Omics Trend-comparing Interactive Data
Explorer (OmicsTIDE), an interactive visualization tool for the comparison of gene-based quantitative omics data.
The tool consists of a computational part that clusters omics datasets to determine trends and an interactive
visualization. The trends are visualized as profile plots and are connected by a Sankey diagram that allows for an
interactive pairwise trend comparison to discover concordant and discordant trends. Moreover, large-scale omics
datasets are broken down into small subsets that can be analyzed functionally using Gene Ontology enrichment
within few analysis steps. We demonstrate the interactive analysis using OmicsTIDE with two case studies focusing
on different experimental designs.

Availability and implementation: OmicsTIDE is a web tool available via http://omicstide-tuevis.cs.uni-tuebingen.de/.
Contact: kay.nieselt@uni-tuebingen.de

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

than two conditions are observed. This requires the application of
clustering methods to obtain representative frends for sets of genes.
Here, we define a trend in omics abundance data as a set of omics-
entities that follow a distinct trajectory across at least two conditions.

To provide a tool that overcomes the current limitations in the
omics visualization field, we first devised a general classification sys-
tem for omics data that categorizes the data to be analyzed and com-
pared with respect to their data type as well as experimental design.
A detailed categorization preceding an integrated omics analysis will
help to choose a suitable analysis approach. This classification
builds the framework for the Omics Trend-comparing Interactive
Data Explorer (OmicsTIDE), a tool that creates a connection be-
tween the single genes and the trends derived from gene-based quan-
titative multi-omics datasets including, for example, transcriptomic
and proteomic data.

The comparison of trends found in two omics layers is the cen-

1 Introduction

With the advent of high-throughput technologies, it has become af-
fordable to comprehensively study all entities in one omics layer of a
sample, e.g. all genes, transcripts, proteins or metabolites. While
studying single omics layers already requires sophisticated method,
analyzing multiple omics layers across several experimental condi-
tions adds a whole new level of complexity. Therefore, the demand
for methods that integrate and visualize multiple omics datasets has
been steadily increasing over the past decades.

While a data-driven integration can derive interesting relations
between different omics layers, it often is perceived as a black box.
For instance, the impact of single genes or groups of genes on the in-
tegration is not always evident. To overcome this limitation of pure-
ly data-driven methods, different approaches have been developed
(Hernandez-de Diego et al., 2018; Kuo et al., 2013). Many of these
approaches reduce the complexity of the datasets by classifying sin-

gle genes into different categories based on their ‘behavior’. For ex-
ample, in a dataset that deals with two conditions, a gene could be
classified as being up-regulated in one condition with respect to the
other condition. The situation becomes more complex when more
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tral concept of OmicsTIDE, which visualizes trends as profile plots,
also known as parallel coordinate plots (Inselberg, 1985), and com-
pares trends between two datasets using a Sankey diagram (Lex
et al., 2012). OmicsTIDE aims to identify the same trends in both
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datasets, therefore, genes are further grouped into whether they fol-
low concordant (i.e. the same) or discordant (i.e. different) trends.
Moreover, the tool breaks down large-scale datasets into small sub-
sets within a few steps based on selecting groups of genes in the
Sankey diagram. These subsets can be functionally analyzed using
Gene Ontology enrichment analysis. By allowing several pairwise
comparisons within a single analysis, OmicsTIDE combines insights
from different pairwise comparisons into one large analysis. We
demonstrate the effectiveness of OmicsTIDE in two case studies
with different experimental designs.

2 Related work

For this article, we define a multi-omics tool as a tool that integrates
and visualizes data of two or more omics layers concurrently. In this
related work section, we therefore focus on tools that analyze differ-
ent omics data in a combined instead of a separated or sequential
manner.

The most straightforward way of visualizing multi-omics data is
mapping them directly to a genome sequence or a pathway. Any
kind of omics data that can be mapped to a genome sequence can be
represented in genome coordinate-based visualizations such as gen-
ome browsers (Nusrat et al., 2019). With tracks stacked upon each
other, various omics layers can be displayed simultaneously.
Similarly, omics data can be mapped to a pathway ID in a node-link
diagram, where genes, proteins and metabolites can be shown simul-
taneously (Luo and Brouwer, 2013). While genome browsers and
pathway maps intuitively visualize multi-omics data, they usually
show only a small window of the genome or a single pathway of
interest and are limited to a small number of conditions that can be
displayed simultaneously.

Moreover, various computational methods have been developed
for the integration of multi-omics data, as reviewed by Bersanelli
et al. (2016) and Huang et al. (2017). Often omics data are clustered
using advanced clustering approaches (Rappoport and Shamir,
2018; Tini et al., 2019), which can be divided into early integration
and late integration approaches. While early integration approaches
first concatenate the data of different omics layers and then cluster
the merged data, late integration methods find patterns in the fea-
tures of each layer separately, which can be combined as input for a
regression or classification (Sharifi-Noghabi et al., 2019). For early
integration, data can either be concatenated by omics-features
(rows) or conditions (columns). OmicsTIDE applies an early inte-
gration approach by concatenating two omics datasets by condition
and clustering the concatenated matrix.

Commonly, the results of the integration methods are visualized
in node-link diagrams or in trend visualizations, such as heatmaps
and profile plots. The tool 30mics clusters up to three different
omics layers, e.g. transcriptomics, proteomics and metabolomics
data hierarchically and visualizes the results as a clustered heatmap
(Kuo et al., 2013). Alternatively, it creates correlation networks as
node-link diagrams. A similar heatmap visualization has been imple-
mented in the tool multiSLIDE, which combines two heatmaps
side-by-side comparing transcriptomics and proteomics data
(Ghosh, 2020). While heatmaps represent one of the most common-
ly used approaches for visualizing abundance data, they can become
huge when analyzing a large number of genes. Due to their size and
because of the usage of the color encoding, trends may become diffi-
cult to determine (Gehlenborg and Wong, 2012).

Paintomics follows an alternative integration approach for
multiple omics layers by associating the omics-features, such as
genes, proteins and metabolites with their respective KEGG pathways
and conducting pathway enrichment (Hernandez-de Diego et al.,
2018). Each pathway can be analyzed in detail where the major
trends of the associated features in different omics layers are dis-
played. However, it does not show to what degree the single omics-
features contribute to the final trend and trends cannot directly be
compared between pathways.

For trend comparison different strategies have been developed.
For instance, an approach to visualize and compare trends was dem-
onstrated in a study on the comparison of the transcriptomes of

Arabidopsis thaliana and Zea mays (Vercruysse et al., 2020), where
trends in orthologous genes in leaf development were determined
and compared. For the visualization of trends, the authors use pro-
file plots, which are compared between the organisms using a table
showing the orthologous genes overlapping between the trends. This
approach provides a good overview of the trends in the two datasets.
However, for the hierarchical clustering for categorization into dis-
crete trends, clusters have to be separated manually. Moreover, as
clustering was done independently for each dataset, there is no in-
herent concept for trends having the same or different trajectories in
the datasets. Thus, genes cannot be classified as following the same
or different behaviors.

Despite the fact that many tools have been developed to integrate
multi-omics data, approaches integrating the data computationally,
while keeping the integration process transparent using an explora-
tory visualization are rare. Overcoming this limitation was the main
motivation for the development of OmicsTIDE.

3 Classification of omics data

To identify the requirements for a novel multi-omics visualization
tool and to create an abstract representation of the data, we devel-
oped a classification scheme. This classification builds the require-
ment framework for OmicsTIDE. First, omics data can be classified
by the attribute type, which can either be categorical, such as the dif-
ferent bases of SNPs in genomics research, or quantitative, such as
expression levels of genes, proteins or metabolites (Fig. 1a).

Secondly, comparative omics experiments can be classified by
experimental design, which depends on the research goals (Fig. 1b).
Experiments are often performed within an omics layer (intra-
omics) and between different conditions (inter-condition).
Alternatively, omics experiments can include multiple omics layers
(inter-omics) studying the same biological condition (intra-condi-
tion). In the case studies section, we show a use case with an inter-
omics and intra-omics experimental design. The design is applied to
find differences in the transcriptomes of two strains under the effect
of phosphate depletion (intra-omics, inter-condition), and to study
how these differences are reflected in the proteome (inter-omics,
intra-condition) (Sulheim et al., 2020).

When the inter-omics approach is chosen as experimental design,
the connection between datasets can be created based on common
keys with which the datasets can be combined or compared

(a) Attribute type (c) Connection type

categorical quantitative common key
A —
—'2'— /\/\/ Key Alt1[t2[t3 Key A[t1]t2|t3
—_ 1 T

different key

(b) Experimental design

Omics layer ’ A

X-omics  Y-omics

Key A|t1|t2|t3 Key Bt1|t2[t3

Conditions  |Condition 1 |Condition 2

(d) Integration type

Intra-omics, inter-condition

O vs.O or AVS.A

pairwise O VS.A
Inter-omics, intra-condition

OVS.A or OVS.A OVS.AVS.D

Fig. 1. Omics data can be classified in different ways. (a) The attributes of omics fea-
tures are either of categorical (e.g. mutations) or quantitative (e.g. transcript/protein
levels) type. (b) Omics data analysis can also be classified by the experimental de-
sign. The analysis typically includes either the comparison of different conditions in
the same omics layers (inter-condition and intra-omics) or the comparison of data
from different omics layers within the same condition (intra-condition and inter-
omics). (c) The combined analysis of omics datasets can be classified by whether the
datasets can be joined by a common key attribute or not. (d) The integration of dif-
ferent omics layers can either be done in a pairwise fashion or by directly comparing
multiple layers at once

multiple
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(Fig. 1c). If the datasets do not share keys, a direct comparison can-
not be conducted.

For inter-omics experimental designs, the decision on the number
of omics layers determines the subsequent downstream analysis
steps (Fig. 1d). To study a given biological question, it might be suf-
ficient to compare two omics layers. More complex questions might
require more than two omics studies (multi-omics) for a more
powerful analysis to find specific patterns in the integrated datasets.

4 Methods

Based on the classification scheme and our survey of related work,
we developed four goals for the development of OmicsTIDE:

1. Interpretability: Provide a balance between sophisticated inte-
gration and interpretability for users.

2. Applicability: Focus on data that is widely available. Proteomics
and Transcriptomics data are some of the most commonly pro-
duced data types.

3. Owerview-Detail: Provide an overview of the integration, while
also allowing detailed analysis of small subsets of the data or
even single omics-features.

4. Functional analysis: Summarize subsets of omics features func-
tionally to gain insights about the underlying biological context.

OmicsTIDE employs pairwise integration of two omics layers
(inter-omics, intra-condition) and the comparison of two datasets
within an omics layer (intra-omics, inter-condition) using a simple
concept of clustering the data into trends of omics features following
the same trajectory (Goal 1). OmicsTIDE only requires data from
one or two omics layers to produce meaningful results (Goal 2). The
tools offer a detailed analysis of omics-features of interest identified
in the overview visualization (Goal 3). Groups of omics-features can
be analyzed functionally using GO-term enrichment (Goal 4).

OmicsTIDE computes and visualizes trends for two-dimensional
experimental designs. The first dimension is represented by the data-
sets that are compared, which can be from one or two different
omics layers. The second dimension is represented by conditions
that need to be consistent across datasets, such as time points or en-
vironmental conditions.

The central idea of the visualization approach is to compare
trends occurring in two omics datasets using a Sankey diagram,
which is a graphical representation of flows between sets. The trends
of the different datasets are visualized adjacent to the nodes of the
Sankey diagram. The height of the nodes encodes for the number of
genes found in the trends, while the thickness of the bands (/inks) be-
tween the nodes encodes for the number of genes that either show
the same trends (concordant trends) or different trends (discordant
trends) in the two datasets.

Datasets are compared in three major steps referred to as com-
parison selection, first-level analysis and second-level analysis
(Fig. 2). The separation of the analysis is reflected in the dynamic
tab-based design of OmicsTIDE, with which new tabs correspond-
ing to the respective analysis steps can be added. With this design,
choices made in any tab can be reviewed, refined or removed.

During all steps of the analysis intermediate results can be
exported in CSV format for downstream analysis with other tools.
For easy sharing of the visualizations, they can be exported in PNG
or PDF format.

4.1 Data loading and comparison selection

OmicsTIDE offers two distinct data input options in form of abun-
dance files or a custom clustering file (Fig. 2a). Users can load mul-
tiple abundance files that are compared in a pairwise fashion and
clustered by OmicsTIDE to obtain trends. Each abundance file con-
taines genes (rows), conditions (columns) and normalized abun-
dance (cells). After choosing abundance files, users can choose to
restrict the analysis to variant genes by removing genes based on the
percentile range of their variances across different conditions. This

reduces the formation of trends that are influenced by low-variance
genes. Moreover, if more than two datasets are to be analyzed, the
pairwise comparisons of interest can be selected. For fast explor-
ation of the data OmicsTIDE uses k-means. For this, the number of
trends to be derived from the data has to be chosen in a range be-
tween 2 and 10. To make all datasets comparable, OmicsTIDE
applies z-score normalization to each dataset prior to clustering. To
guarantee flexibility in the choice of clustering algorithms, users can
upload their own clustering results for a pairwise trend comparison.

For each pairwise combination, OmicsTIDE conducts two sep-
arate trend comparisons: One for the genes found in both datasets
(intersecting genes) and one for the genes found only in one of the
two datasets (non-intersecting genes). While non-intersecting genes
are clustered separately for each dataset, for the intersecting genes,
OmicsTIDE makes use of an early integration approach by first
combining the two datasets using the shared conditions and then
clustering the combined matrix with k-means++ (Arthur and
Vassilvitskii, 2006). Therefore, each gene is associated with two
clusters, one for each dataset. With this approach, the genes can eas-
ily be classified as following concordant or discordant trends, which
represents an intuitive concept for users.

An overview visualization helps users choose a comparison for
the trend exploration in the first-level analysis (Fig. 2b). The com-
parisons are visualized using stacked bar charts showing concord-
ant, discordant, intersecting and non-intersecting genes and are thus
providing a useful rationale to select a comparison of interest.

4.2 First-level analysis: trend exploration

The first-level analysis tab provides a detailed visualization of the
selected trend comparison of intersecting genes in a Sankey diagram
together with profile plots (Fig. 2c, Supplementary Fig. S1), as well
as a sidebar containing controls for interactive features
(Supplementary Fig. S1). The Sankey diagrams shows the size of the
gene sets corresponding to the trends (nodes) and how many genes
are contained in the trend intersections, i.e. shared between the
trends of the two datasets (links). The trends, nodes and links are
colored using a set of categorical colors. A color-gradient is used for
the bands transitioning between the colors of the connected nodes.
The gradient is inverted and shows the color of the left node on the
right side and vice versa to simplify the identification of trends in
one dataset connected to a single trend in the other dataset by look-
ing at the corresponding node. A summary of the comparison is dis-
played at the top of the visualization, showing the number and
percentage of concordant and discordant genes.

By default, the trends are visualized using centroid profile plots,
which provide an overview by showing the centroid line as well as
the standard deviation of the trend as a band. Alternatively, using
the controls sidebar users can choose profile plots, where each gene
is plotted as a line for a more detailed view on the composition of
each trend (Fig. 2d). This visualization is more suitable for a low
number of genes since the visualization of a large number of gene
profiles may result in overplotting. As a third option, the user can
study the abundance variation per condition within a trend in more
detail using box plots. In addition to the analysis of intersecting
genes, the trend visualizations are used for analyzing non-
intersecting genes. Since non-intersecting genes do not share identi-
fiers, they are not connected with a Sankey diagram but only show
trend visualizations and horizontal bar charts to show sizes of the
gene sets corresponding to the trends (Supplementary Fig. S2).

The nodes and links in the Sankey diagram can be hovered to
study the single trends between the two datasets in more detail.
When a node is hovered, all connected links are highlighted by
reducing the opacity of other elements (focus-on-hover strategy).
Hovering over elements in the visualization updates the detail dia-
grams accordingly. This update is facilitated via an animated transi-
tion to visually link the hovering and the data update. Moreover, all
concordant or discordant intersections can be highlighted by hover-
ing over the concordance/discordance summary.

Users can check their own hypotheses about gene sets of interest,
such as genes from specific pathways, and analyze their behavior
across trends and datasets by highlighting genes of interest by their
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Fig. 2. Basic workflow using OmicsTIDE. (a) Either multiple abundance files or a single custom trend-comparison file can be uploaded. (b) An overview of all conducted pair-
wise trend comparisons is shown as horizontal stacked bar chart showing the count of genes either being found in both compared files (intersecting) or only in one of the two
files (non-intersecting). The number of intersecting genes in the bar chart is further categorized by either following a concordant or discordant trend in the two compared files.
(c) After selecting a pairwise comparison in the overview visualization the data can be analyzed in the first-level analysis, consisting of a Sankey diagram comparing trends in
both abundance files. (d) Users can switch between different trend diagrams, (e) highlight genes using gene IDs and filter data by abundance and variance. (f) For a more
detailed analysis subsets of genes can be analyzed in the second-level analysis in detailed profile plots showing the expression of single genes (y-axis) across conditions (x-axis).
Moreover, second-level analysis includes (g) viewing the NCBI entries of single genes and GO term enrichment analysis in a bar chart. The x-axis corresponds to the —log;o
(FDR) (false discovery rate) values and the y-axis corresponds to the significantly enriched GO-tems (FDR < 0.05). The color of the bars encodes for the term being overrepre-

sented or underrepresented

gene IDs (Fig. 2e). Users can directly type in one or more gene IDs
into a text field or upload a text file with gene IDs. The profiles of
the genes in the diagram corresponding to the given IDs in the query
are marked in black.

To study the effects of the variance or abundance levels of genes
on the trends, OmicsTIDE can dynamically filter data by the per-
centile ranges of the variance or the median abundance of the genes
during first-level analysis. The variance and the median abundance
and their respective percentiles are calculated prior to z-score nor-
malization. The variance filtering in the first-level analysis can be
applied as an alternative or in addition of the variance filtering pro-
vided when loading the data. In contrast to the variance filtering be-
fore loading the data, which is considered a pre-processing step, the
filtering in the first-level analysis allows users to explore different
ranges of variances quickly. In addition, users can filter intersections
by size to remove small intersections from the visualization and to
thus reduce visual clutter.

4.3 Second-level analysis: detailed trend analysis

Sets of genes corresponding to trends or the intersection of trends can
be analyzed in detail to find, for example, enriched functions, thus
implementing our fourth goal. OmicsTIDE allows users to select ei-
ther links or nodes in the visualization to extract subsets of genes. A
table placed in the controls side bar shows the source node and the
target node of each selected link as well as the number and percentage

of the corresponding genes (Fig. 2¢, bottom). Thereby, users can com-
pare the actual numbers of genes corresponding to a link.

Selected genes can then be analyzed in detail in the second-level
analysis (Fig. 2f). Users can study gene sets on the single-gene level
by hovering the single-gene profiles and accessing information of an
individual gene by clicking and being redirected to the correspond-
ing NCBI entry. Furthermore, the gene subsets can be analyzed in a
gene ontology (GO) context (Fig. 2g). Thereby, users can find GO
terms that are enriched in in the selected subset and form hypotheses
about the regulatory processes causing the patterns. The
PantherDB API is used to perform GO enrichment for the three
main GO categories molecular function, biological process and cel-
lular component using Fisher’s exact test and a multiple test correc-
tion with false discovery rate (FDR) (Mi et al., 2021). Users can
either choose to use the whole genome as a background for the en-
richment, or only the genes contained in the current first-level ana-
lysis, as certain classes of proteins can, for example, be
underrepresented in proteomics data. The results are visualized as
horizontal bar charts where length encodes for the negative loga-
rithm of the FDR and color encodes for the term being overrepre-
sented or underrepresented to allow users to quickly identify the
most significant results. Hovering the single bars will show a tool tip
with more detailed information on the corresponding GO term.
Clicking on the bar will open a tab with further information about
the GO term on Amigo (http://amigo.geneontology.org/).
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4.4 Implementation

OmicsTIDE is a web-based client-server application that uses
Python for complex computations, such as the trend determination
via clustering in the back-end and Flask for communication with
the front-end (Grinberg, 2018). The libraries React (https:/react;js.
org/) and Mobx (https://mobx.js.org/) are used for the application
structure of the front-end and state-management. The JavaScript
library D3 .Js is used for creating the visualizations and animation
(Bostock et al., 2011). The application styles are created using
Material-ui (https://mui.com/). The source code of OmicsTIDE
is available at https:/github.com/Integrative-Transcriptomics/
OmicsTIDE2.0.

5 Case studies

To demonstrate the applicability of the pairwise trend comparison
approach in OmicsTIDE, we conducted two case studies. In the first
case study, we show how the combined analysis of transcriptomics
and proteomics data can be used to extract biologically relevant con-
cordant as well as discordant trends with few clicks only. The se-
cond case study combines two pairwise trend comparisons to
extract information from both, different experimental conditions
and different omics layers to demonstrate the synergy that can be
achieved by OmicsTIDE.

5.1 Blood cell differentiation in bone marrow

Neutrophils are an essential part of the human immune system.
They are differentiated in the bone marrow and released to the
bloodstream. The regulation of the neutrophil differentiation is sub-
ject of the first case study, examining granulopoiesis in vivo
(Hoogendijk et al., 2019). The experimental design uses both tran-
scriptome and proteome data from the five differentiation stages
(pro)myelocytes (PMs), metamyelocytes (MMs), immature neutro-
phils with band-shaped nucleus (BN), mature neutrophils with seg-
mented nucleus (SNs) and the actual peripheral mature neutrophils
(PMNs). Here, we show how OmicsTIDE can be used to efficiently
reproduce the findings made by Hoogendijk ez al. (2019) by explor-
ing the trends between the two omics layers. The data was taken
from the supplementary material that contained quantified tran-
scripts and proteins in the form of Fragments Per Kilobase Million
(FPKM) and imputed log, Label Free Quantification (LFQ) meas-
ures, respectively. The data included four replicates for transcripts
and three replicates for proteins for each of the five conditions. The
analysis was performed on the mean values of all biological repli-
cates for each condition.

To explore the trends shown by the transcriptome and the prote-
ome of different blood cell types, the selection of k = 4 initial clus-
ters resulted in clearly distinguishable trends that are shown as
centroid profile diagrams for either dataset resulting in 16 trend
intersections (the maximum possible for k = 4) (Fig 3). Similarly,
Hoogendijk ez al. (2019) extracted 12 modules from the data, which
represent combinations of trends in the transcriptome and prote-
ome. The authors combined the modules based on their main trajec-
tories, such as concordant increasing, concordant decreasing and
increasing in the transcriptome while decreasing in the proteome.
They classified the combined modules based on GO enrichment and
the enrichment of specific database entries.

We visually identified four combined modules using OmicsTIDE
by hovering the single links in the Sankey diagram (Fig. 3). As a next
step we applied GO-enrichment analysis using OmicsTIDE to con-
firm the classifications. Fitting GO-terms were found for ‘RNA-
binding protein’ (GO:0003723, RNA-binding Fig. 3a) and ‘Granule
Development’ (GO:0042581, specific granule, Fig. 3b). For ‘biosyn-
thesis and metabolism’ (Fig. 3¢) we found a number of terms that
are involved in these processes (e.g. GO:1901566, GO:0009205,
GO:0006754) rather than finding a single fitting term. A reason for
this could be that ‘biosynthesis and metabolism’ is a very broad cat-
egory involving a lot of GO-terms.

The annotation ‘ROS machinery’ could not be solely reproduced
using the GO-enrichment of OmicsTIDE (Fig. 3d), since the authors

used a combination of GO enrichment and manual enrichment using
other databases specialized on the annotation of human proteins. To
confirm that the underlying gene sets are similar we compared them
manually. Since the authors grouped the modules into broader cate-
gories the sets of concordant genes stemming from both decreasing
trends were merged for OmicsTIDE as well. Overall, OmicsTIDE
produced 617 increasing concordant genes, while 621 were found in
the blood cell study with an overlap of 486 genes (Supplementary
Table S1). This indicates that OmicsTIDE includes a trend intersec-
tion containing a gene set similar to the one annotated with ‘ROS
machinery’. Similarly, of the 1320 decreasing concordant genes,
1131 could be found in similar patterns in OmicsTIDE (yellow and
green trend, total of 1439 genes). The other modules compared were
much smaller and we found more genes in OmicsTIDE. Yet, we
could find more than 70% of the genes of each module.

5.2 Transcriptome and proteome time series data set of

Streptomyces coelicolor

To demonstrate how inter-omics as well as intra-omics analysis can
be combined using OmicsTIDE, we re-analyzed the datasets of a
study exploring two Streptomyces coelicolor strains with respect to
changes in their metabolisms under phosphate-starving growth con-
ditions in a time-course experiment (Sulheim ef al., 2020). The
Streptomyces coelicolor strains M145 and M1152 were used to
study the role of biosynthetic gene clusters (BGCs) for the produc-
tion of antibiotics. M1152 is a genetically engineered derivate of the
M145 wild-type strain that was subject to the deletion of different
BGCs (Gomez-Escribano and Bibb, 2011). For both strains samples
were collected at eight timepoints. Phosphate was depleted between
timepoint 3 and timepoint 4. For each of the time points, three bio-
logical replicates were generated for each omics layer. Both, tran-
scriptome and proteome data was first quantified and log,-
transformed. Next, the data was normalized by an intra-strain and
intra-omics quantile-normalization across all replicates. Finally, the
mean of the three replicates was calculated.

In OmicsTIDE the four datasets (M1435 transcriptome, M1152
transcriptome, M145 proteome, M1152 proteome) were loaded
resulting in six pairwise trend comparisons. For the k-Means cluster-
ing k = 4 was chosen since it produced the most clearly distinguish-
able trends. We first focused on the comparison of two different
strains across a single omics layer (M1152 transcriptome versus
M145 transcriptome) to find differences on the transcript level. The
insights from this first pairwise comparison were then used to study
whether these insights are reflected in the proteome of the mutant
strain. In particular this inter-omics comparison had not been sub-
ject to the study of Sulheim et al. (2020).

5.2.1 Intra-omics: M1152 transcriptome versus M145
transcriptome

The intra-omics comparison of the M1152 transcriptome and the
M145 transcriptome revealed a total of 7904 genes that appear in
both datasets, whereof around 55% follow concordant trends (data
not shown). After applying the abundance filtering to focus on genes
with a high median abundance of above the 80th percentile in both
datasets the shape of the trends becomes clearly visible (Fig. 4a).
Interestingly, the centroid profile plots show that the green trend
and the orange one show the exact inverse trend in the M1152 tran-
scriptome. The same can be observed for the blue trend and the red
trend. The inverse behavior of the trends is also partly reflected in
the M145 transcriptome. However, about 64% of the genes show
discordant expression trends, indicating that the effect of phosphate
depletion on gene expression differs between the two strains.

These findings were investigated in more detail by combining the
trend comparison with information on genes involved in the meta-
bolic switch to nitrate respiration under phosphate depletion
(Martin et al., 2017). The corresponding gene IDs were highlighted
in the profile diagrams (Fig. 4a). Intriguingly, all but one highlighted
gene follow the same trend in the M145 transcriptome and are
downregulated until timepoint four (red trend), followed by an up-
regulation. In the M1152 transcriptome the genes are distributed
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(a) Trend: “RNA-binding proteins”

43% (1490) Discordant genes: 57% (1870)  Prateome

(c) Trend: “Biosynthesis and metabolism”

Transcriplorme Cancordant genes: 43% (1490) Discordant genes: 57% (1970)

(b) Trend: “Granule Development”
Transcriptome Concordant genes: 43% (1480) Discardant genes: 57% (1970)

=5

(d) Trend: “ROS Machinery”
Transcriptome

Concordant genes: 43% (1490) Discordant genes: 57% (1870}

Fig. 3. First-level analysis: Interactively studying the trend comparison between the transcriptome and proteome during blood cell differentation (Hoogendijk et al., 2019) by
hovering reveals several concordant and discordant trends. (a-d) Four trends found by OmicsTIDE were associated with functionally annotated modules found in the study.

The tooltip displays the number of contained genes

(a) Intra-omics comparison
ra _M1152 Ct : 36% (482]

. M145

(b) Inter-omics comparison

Transcriptome_M1152 Concordant genes: 28% (357) Discordant genes: 72% (824)

Fig. 4. Combination of intra-omics and inter-omics analysis for Streptomyces coelicolor. (a) First-level analysis of the transcriptomes of the strains M1152 and M145 after
focusing on genes with a median abundance above the 80th percentile. A custom list containing genes involved in the metabolic switch to nitrate respiration under phosphate
starvation has been highlighted (black lines). The green and orange trend show exactly inverse patterns. (b) First-level analysis of M1152 transcriptome (left) versus M1152
proteome (right) trend in the transcriptome. Only a small fraction of genes follows the same trend in the proteome. Three trends in the proteome have a peak at a later time-

point than the peak of the orange trend in the transcriptome

across three trends, most strikingly the green and orange trend
where the highlighted genes show a peak at time point 4, but go
back to the expression level observed before the depletion.

5.2.2 Inter-omics: M1152 transcriptome versus M1152 proteome

We investigated how the patterns of trends co-occurring with phos-
phate depletion in the M1152 transcriptome are reflected in the cor-
responding proteome (Fig. 4b, Supplementary Fig. S3). The peaks in
the blue and orange trends of the transcriptome appear shortly after
phosphate depletion and the trends show low concordance with
trends in the proteome. In contrast, the green and red trends show
constantly increasing and decreasing behaviors with high concord-
ance in the proteome. Therefore, we can conclude that the transcrip-
tomic trends with peaks associated with phosphate depletion are not
directly evident in the proteome, while the constant trends are more
concordant in their behavior across the two omics layers. However,
when hovering over the orange trend, we detected that the

remaining three trends in the proteome all share a small peak at a
later time point (Fig. 4b). Since this small peak appears at a later
time point than the peak in the orange trend of the M1152 transcrip-
tome, it could be further investigated whether this suggests a time-
delayed translation of the protein cognates.

6 Discussion

In this article, we present OmicsTIDE, an easy to use analysis and
visualization tool for the concurrent exploration of multi-omics data
implementing our goal of interpretability (Goal 1).

In the context of developing OmicsTIDE we also devised a clas-
sification system for multi-omics data, which offers an underlying
framework for our tool, but may also serve useful for future devel-
opments in this field. The interactive trend comparison in
OmicsTIDE using the concept of concordance and discordance
emphasizes the similarities and differences between two omics
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datasets. With this, it marks an innovation compared to other tools
that mainly aim to integrate a large number of omics datasets to de-
rive a combined pattern. It should be noted that the pairwise ana-
lysis and the multi-omics integration are not mutually exclusive
ways of analysis, but rather complement each other.

OmicsTIDE uses a Sankey diagram to compare trends across
datasets. With this visualization, concordance and discordance be-
tween trends can be intuitively explored. The trends are either
visualized using centroid profile plots, profile plots or boxplots.
While centroid profile plots visualize an overview of the profile,
detailed profile plots show every gene separately. With this detailed
visualization it is easier to track the behaviour of single genes.
Profile plots are especially useful if the order of conditions is inher-
ent, such as time series (Gehlenborg and Wong, 2012). In contrast,
boxplots do not assume that the conditions are ordered and are,
therefore, better suited for categorical data. Moreover, they focus
on visualizing the distribution of values at each condition. This is es-
pecially useful to identify outliers or for assessing consistency across
replicates.

To compute trends from multi-omics data, OmicsTIDE uses an
early integration approach by first concatenating and then clustering
the data. Currently, for the clustering k-Means++ is applied in
OmicsTIDE. In addition, OmicsTIDE can use any early integration
clustering uploaded manually by the user. While we were able to
show that applying k-means extracts the main trends which can
clearly be distinguished, we plan to implement more sophisticated
clustering algorithms, such as dbscan (Ester er al., 1996) or
iCluster (Shen et al., 2009) in a future version. Such approaches
might prevent biased trends, especially if the number of genes in one
of the compared datasets is very high compared to the other dataset.
To counteract this bias, we analyze intersecting and non-intersecting
genes separately, which guarantees an equal number of genes for
both datasets in the intersecting analysis.

The ability of OmicsTIDE to extract and compare trends was
demonstrated in two case studies using different experimental
designs. In the first case study, the integrated analysis of transcrip-
tome and proteome data shows that OmicsTIDE can derive the
most important information in few steps leading to findings similar
to the ones in the original study. These findings were further consoli-
dated by a manual comparison of the genes extracted from the inter-
sections of the trends in OmicsTIDE and the modules defined by the
authors of the publication. Although the modules could not be
reproduced perfectly in OmicsTIDE due to the much simpler clus-
tering approach, between 70% and 85% of the genes found in the
respective modules agreed with the trends identified in OmicsTIDE.

The second case study applies a more complex experimental de-
sign enabling an intra-omics as well as inter-omics comparison. As
OmicsTIDE provides the option of combining different pairwise
omics data comparisons within a single analysis according to our
third goal, trends could be analyzed in the intra-omics as well as the
inter-omics comparison while keeping an overview of all involved
datasets. The exploration of the Sankey diagram using the focus-on-
hover strategy could show that the trends initially found in the intra-
omics analysis (the transcriptome comparison) are also revealed in
the proteome. In summary, the parallel analysis of intra- and inter-
omics data in OmicsTIDE leads to easily interpretable expression
trends and possible hypotheses.

In OmicsTIDE, we compare datasets using shared keys (e.g.
gene IDs), which facilitates the comparative visualization of trends.
In a future version, a pairwise comparison between omics layers not
sharing keys and an advanced comparison of non-intersecting genes
could be achieved by linking keys using meta-information, such as
common pathway IDs.

With OmicsTIDE we present a tool for initial exploration and
hypothesis generation, which complements advanced statistical or
machine-learning methods. The choice of additional analysis meth-
ods depends on the generated hypothesis. Yet, in future versions, we
plan to integrate methods for statistical validation of the extracted
trends.

OmicsTIDE is designed in particular for biologists; its user inter-
face creates clear default views that show the concordant and

discordant patterns in omics abundance data in a pairwise manner.
The simple input format (numerical matrices) leads to great flexibil-
ity in OmicsTIDE as it can perform inter-omics as well as intra-
omics comparisons, thus allowing for example also the comparison
of two transcriptomic, proteomic or metabolomic datasets as well as
the analysis of complex mixed-omics experimental designs.
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