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A B S T R A C T

Climate change should be of special concern for the nephrolo-
gist, as the kidney has a critical role in protecting the host from
dehydration, but it is also a favorite target of heat stress and de-
hydration. Here we discuss how rising temperatures and ex-
treme heat events may affect the kidney. The most severe pre-
sentation of heat stress is heat stroke, which can result in severe
electrolyte disturbance and both acute and chronic kidney dis-
ease (CKD). However, lesser levels of heat stress also have mul-
tiple effects, including exacerbating kidney disease and precipi-
tating cardiovascular events in subjects with established kidney
disease. Heat stress can also increase the risk for kidney stones,
cause multiple electrolyte abnormalities and induce both acute
and chronic kidney disease. Recently there have been multiple
epidemics of CKD of uncertain etiology in various regions of
the world, including Mesoamerica, Sri Lanka, India and
Thailand. There is increasing evidence that climate change and
heat stress may play a contributory role in these conditions, al-
though other causes, including toxins, could also be involved.
As climate change worsens, the nephrologist should prepare for
an increase in diseases associated with heat stress and
dehydration.

Keywords: CKD of unknown etiology, CKD of uncertain etiol-
ogy, CKD of non-traditional cause, dehydration, global warm-
ing, heat stress, heat stroke, Mesoamerican nephropathy,
nephrolithiasis, Sri Lankan nephropathy

I N T R O D U C T I O N

Climate change carries a significant threat to humanity. Increasing
greenhouse gas emissions have raised ambient temperatures,

triggered extreme weather events and caused sea level rise that can
threaten food security and nutrition, encourage the spread of infec-
tious diseases and displace populations, with major effects on hu-
man health [1, 2]. One of the major consequences of climate
change is increasing temperatures, which has not only caused an
increase in the mean temperature of 1.0�C in the last century, but
is also responsible for up to 75% of heat extremes [3].

The kidney is on ‘center stage’ in climate change, having key
roles in protecting against heat-associated morbidities, but also
being one of the main organs injured by its wrath. Here we pro-
vide a brief discussion of the main heat-related illnesses that are
expected to increase over the next decades and how they are
expected to affect our specialty. Increasing temperatures are
expected to not only increase the frequency of classic heat-
associated diseases such as heat stroke, but may also exacerbate
traditional kidney diseases and potentially lead to the emer-
gence of new diseases.

H E A T S T R O K E : T H E C L A S S I C A L H E A T -
A S S O C I A T E D K I D N E Y D I S E A S E

Heat stroke represents the most well-known heat-associated ill-
ness and presents with high fevers (core body temperature
>40�C), confusion or coma, light headedness and headaches. It
is a life-threatening condition that can be associated with seiz-
ures, shock, multiorgan failure and death. There are two major
presentations (Figure 1) [4].

Classic heat stroke tends to occur during heat waves and
affects primarily older people who lack air conditioning and
have limited access to water [5]. Epidemics of classic heat stroke
have been associated with major heat waves, such as in Europe
in 2003 [6], Chicago in 2005 [7] and India and Pakistan in 2015
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[8, 9]. The other major presentation is exertional heat stroke,
which typically involves individuals exercising or working in
the heat, such as military recruits, athletes, agricultural workers
and farmers, miners and factory workers [4]. Typically, exer-
tional heat stroke is associated with much more sweating, and
some subjects with classic heat stroke may have a history of
minimal sweating. This is likely one reason electrolyte abnor-
malities tend to be more severe with exertional heat stroke [10].
Nevertheless, electrolyte abnormalities are common in both dis-
orders. For example, �50% of subjects presenting with non-
exertional heat stroke present with hyponatremia (32%) or
hypernatremia (17%), with the latter being more commonly as-
sociated with obtundation and a higher mortality risk [11].
Hypokalemia is especially common in those not presenting
with acute kidney injury (AKI) and total body potassium stores
are usually low even if serum potassium is in the low ‘normal’
range [12]. Hypophosphatemia, hypocalcemia and hypomag-
nesemia may also occur [13–15]. Hyperuricemia is common.
The urine is often concentrated, with leukocyturia, microhema-
turia and minimal proteinuria [16].

AKI also commonly complicates heat stroke and may be as-
sociated with septicemia (likely from heat-associated gut leak
with endotoxemia or bacteremia) or may occur independent of
infection [17]. Liver dysfunction or liver failure can also accom-
pany AKI [18]. Approximately 75% of AKI is due to rhabdomy-
olysis, while 25% may relate to effects of high temperatures or
dehydration, with the former being more common with exer-
tional heat stroke [4, 10, 19]. Some individuals will need tempo-
rary dialysis [19]. Kidney biopsies, if performed, show not only
acute tubular necrosis, but are also characterized by substantial
interstitial inflammation resembling acute interstitial nephritis
[16, 20]. While many recover their kidney function, over time

there is a marked increased risk for chronic kidney disease
(CKD), with biopsies showing chronic tubulointerstitial disease
with glomerulosclerosis [20–22].

Pathogenesis

A primary goal of the body is to maintain body core temper-
ature within a set range, and one of the main ways it does this is
by sweating, which helps dissipate heat as it evaporates off the
skin. Body heat increases not only from ambient and solar radi-
ation, but also from ‘metabolic’ heat generated by body metabo-
lism, which can increase markedly in the setting of exertion.
The body can sweat as much as 10–12 L/day, which can lead to
substantial loss of sodium and potassium [14]. This is associ-
ated with a relatively greater decrease in plasma and extracellu-
lar volume with some shift of water from the intracellular to
extracellular spaces. The decrease in plasma volume stimulates
vasopressin, catecholamines, cortisol and the renin–angioten-
sin–aldosterone system, and the urine will show a prerenal pat-
tern with low urine sodium and paradoxical kaliuresis despite
total body potassium deficiency.

These initial responses are all aimed at keeping body temper-
atures from rising. Indeed, subjects who work in hot conditions
will undergo ‘heat acclimation’, which takes 3–14 days [23, 24].
This involves reducing their core temperature, increasing their
sweating rate, expanding their plasma volume, increasing their
cardiac output (by increasing stroke volume and lowering their
heart rate) and reducing oxygen uptake and glycogen utilization
in the muscle [23, 24]. This adaptation explains why subjects
are most prone to heat stroke during the first week of working
in an extremely hot environment.

A consequence of these adaptations is a high risk for both
extracellular volume depletion (leading to hypotension) or total

Classic heat stroke Exertional heat stroke Heat-related illness

Population Older, sedentary  Outside work, athlete, miner Either

Presentation • Temperature > 40°C
• Mental status changes
• Nausea, vomiting

• Temperature > 40°C
• Mental status changes
• Nausea, vomiting
• Muscle and back pain

• Temperature < 40°C
• Headache
• Nausea, vomiting
• Muscle and back pain

Renal • AKI (25%)
• Rhabdo rare
• Leukocytosis
• Leukocyturia

• AKI (75%)
• Rhabdo common
• Leukocytosis
• Leukocyturia

• AKI may be present
• Rhabdo common
• Leukocytosis
• Leukocyturia

Electrolytes ↑ or ↓ [Na], ↓ [K]
↓ [Mg], ↓ [Phos]

↑ or ↓ [Na], ↓ [K]
↓ [Mg], ↓ [Phos]

↑ or ↓ [Na], ↓ [K]
↓ [Mg], ↓ [Phos]

Risk for CKD Yes Yes Probably

FIGURE 1: Renal manifestations of heat stroke and heat-associated illness. Heat stroke refers to a condition of high body core temperatures
(>40�C) associated with mental status changes and can occur from simple heat exposure (classic or epidemic form) or from the
combination of heat and exercise. The second form is more commonly associated with AKI and electrolyte abnormalities. In both cases,
AKI may occur from either rhabdomyolysis (rhabdo) or from direct effects of heat. Both can be associated with electrolyte abnormalities
and increased risk for CKD. Less severe heat-related illnesses in which body temperature does not reach 40�C are being increasingly
recognized as also increasing the risk for AKI, electrolyte abnormalities and CKD.
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body water depletion (dehydration) if volume resuscitation is
not maintained (Figure 2). Dehydration results in an increase in
serum osmolality (Osm) that can stimulate both vasopressin se-
cretion and activation of the aldose reductase pathway, and
both can induce kidney injury if persistently stimulated [25,
26]. The decrease in intracellular potassium in the muscles pre-
vents glycogen deposition and may be responsible for the rhab-
domyolysis [12]. As compensation fails and temperatures rise,
the primary effect is to stimulate inflammatory pathways, in-
cluding heat shock proteins and cytokines [10, 17]. This is likely
why inflammation is prominent in kidney biopsies.

O T H E R H E A T - A S S O C I A T E D I L L N E S S E S

While heat stroke has a dramatic presentation with a body core
temperature >40�C, there are also many other less severe pre-
sentations that can occur in the emergency room related to heat
stress, including heat syncope, heat exhaustion, heat fatigue and
heat cramps [21] (Figure 1). These milder presentations can
also be associated with electrolyte abnormalities and AKI. For
example, AKI is common with exercising in the heat and can be
asymptomatic and associated with increased excretion of bio-
markers of kidney damage or more severe with oliguric AKI
from rhabdomyolysis [27, 28]. In fact, it is possible to induce

markers of AKI with exercise in the heat, and the biomarkers
tend to associate more with an inflammatory pattern than the
one associated with dehydration. These milder illnesses can also
be associated with long-term consequences. For example, a re-
cent study from Taiwan provided evidence that individuals pre-
senting with these conditions are also at increased risk for
developing CKD later in life compared with age- and
morbidity-matched controls who did not have any heat-associ-
ated illnesses [21].

Next, we will review some of the other manifestations of cli-
mate change on the kidney.

K I D N E Y S T O N E S A N D C R Y S T A L L U R I A

One of the major risk factors for kidney stones is dehydration,
leading to concentration and acidification of the urine that
increases the risk for uric acid nephrolithiasis [29]. Urinary
concentration can also lead to an increased risk for supersatura-
tion of calcium, with crystallization and stone formation [30].
The southern USA is famous for being the ‘Stone Belt’, due to
its higher ambient temperatures and propensity for dehydra-
tion. Climate change is predicted to widen the Stone Belt and to
markedly increase the risk for kidney stones in the future [31].

Dehydration and
ECV depletion

Death

Increased core
temperature

Sweating

• Kidney injury
• Oliguria
• Hyperuricemia
• Kidney stone
• Infection

• Electrolyte imbalance
• Hyponatremia
• Hypernatremia
• Hypokalemia
• Hypophosphatemia
• Hypomagnesemia

• Muscle disorder
• Rhabdomyolysis

• Cerebrovascular
disorders

• Confusion
• Syncope
• Seizures

• Gastrointestinal
disorders

• GI distress
(nausea,vomiting)

• Liver dysfunction

Risk factors:
• Increased heat production
  - physical labor/activity
  - climate change
• Reduced heat dissipation
  - lack of rest time
  - lack of beverage
  - clothes factor: protective mask
• Others
  - age
  - pre-existing disease

Inflammation and
energy depletion

Multiple organ failure

Hyperthermia

Heat stress

Thermoregulatory

FIGURE 2: Pathogenesis of heat stroke. Heat stress leads to an increase in temperature. One of the basic defense systems is sweating, which
can lead to dehydration and extracellular volume depletion. Increasing core temperatures also activate inflammatory pathways. The conse-
quence is multiple organ dysfunction and increased risk for death.
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Hot climates may also stimulate the intake of sugary sodas,
which are also a major risk factor for kidney stones [32]. The
fructose in soft drinks also causes urinary concentration due to
shifting plasma water into the cell, likely in association with gly-
cogen production, and this, coupled with the stimulation of uric
acid production and excretion, can further increase the risk for
kidney stones [33]. Fructose also stimulates adenosine triphos-
phate (ATP) citrate lyase, which in the kidney governs urinary
citrate concentrations, and we found that fructose administra-
tion could reduce urinary citrate levels in healthy volunteers
[34].

In hot rural communities in Mesoamerica, Sri Lanka, India
and Thailand, there is a condition in which subjects develop
painful dysuria associated with the passing of sand-like material
in the absence of urinary tract infection [35]. The passage of
this sand-like or gravel-like material is thought to be due to
crystalluria, likely from uric acid or calcium related to chronic
dehydration associated with manual labor in the heat. Our
group performed a study in which we evaluated sugarcane
workers before and after their work shift during the sugarcane
harvest. While we found that 15% of subjects tended to have
urate crystalluria in postshift urine samples during the harvest
[36], on one occasion we noted 100% to have urate crystalluria
that also was at concentrations typically observed in tumor lysis
syndrome (urine uric acid >100 mg/dL). It turned out that this
latter analysis was done during a heat wave in which tempera-
tures were the highest for that year.

E X A C E R B A T I O N O F S U B J E C T S W I T H
E X I S T I N G C K D

Subjects with CKD are especially prone to heat-associated ill-
nesses due to reduced thermoregulatory ability [37]. Indeed, the
subjects most at risk for heat stroke include not only older sub-
jects, but also those with diabetes, obesity and CKD. Recent
studies suggest that subjects with obesity also tend to drink less
water, to be hyperosmolar and to have elevated vasopressin
(measured as copeptin) levels, so they are even more prone to
volume depletion or hyperosmolality [38, 39]. Interestingly,
they tend to have lower body temperatures, especially during
the day, but their ability to dissipate heat is also less efficient
[40]. Thus it is likely that the risk for AKI and electrolyte abnor-
malities from heat stress may be exacerbated in subjects with
CKD, diabetes or metabolic syndrome [39]. Furthermore, dialy-
sis patients are particularly sensitive to extreme heat events and
have shown a relatively increased risk of hospital admission and
mortality [41].

There is also an interesting but largely unstudied possibility
that heat stress may increase the risk of developing obesity and
diabetes. In addition to the linkage of heat stress with soft drink
intake, there is increasing evidence that dehydration may in-
crease endogenous fructose production, which can increase the
risk for obesity, diabetes and both diabetic and nondiabetic kid-
ney disease [42, 43]. Fructose metabolism has also been shown
to drive vasopressin production, which can induce metabolic
syndrome via activation of vasopressin 1b receptor [44]. Heat
stress and dehydration, by stimulating fructose and vasopressin
production, might be expected to increase the risk for both

diabetes and obesity, as well as kidney injury associated with
these diseases.

C K D O F U N K N O W N E T I O L O G Y

In recent years, numerous epidemics of CKD have been identi-
fied primarily in hot, rural regions of the world. The best-de-
scribed sites include Mesoamerican nephropathy along the
Pacific Coast of Mesoamerica [45–47], CKD of unknown etiol-
ogy in Tierra Blanca, Mexico [48], Sri Lankan nephropathy in
northern Sri Lanka [49, 50] and Uddanam nephropathy in the
Andhra Pradesh region of India [51, 52]. Other emerging sites
include north central Thailand, Qatar and Egypt.

All of these epidemics have many similar characteristics.
First, they are all occurring among people who are working out-
side under hot conditions, usually in agricultural communities.
Most of those involved are young or middle-aged males (espe-
cially in Mesoamerica), who are often poor, with minimal if any
medical insurance. In Sri Lanka, women working in the rice
paddies account for nearly half of the cases. The occupations
can vary, with working in the sugarcane fields being the most
common in Mesoamerica and working in the rice paddies being
most common in Sri Lanka. In India, there are a variety of occu-
pations, including harvesting rice and cashews, while in
Thailand it is usually either rice or sugarcane workers. In addi-
tion, kidney disease has also been reported in other nonagricul-
tural jobs in these regions, including construction, fishing, gold
mining and brick making [53]. While these diseases are com-
mon in individuals who have lived all of their lives in these
regions, they also occurs among migrant workers. In Qatar, for
example, most workers originate from Nepal [54].

The clinical presentation is similar in all of these epidemics.
Usually the patient has elevated serum creatinine identified dur-
ing a health screening [45, 55]. Diabetes is absent and blood
pressure (BP) is normal or only slightly elevated (i.e. BP is usu-
ally <140/90 mm Hg). At this stage, the patient is often asymp-
tomatic, although some may have a history of painful dysuria
from crystalluria (see above). Laboratory tests often show hypo-
kalemia, hyperuricemia, hypo- or hypernatremia and occasion-
ally low serum phosphate or magnesium levels [56]. Urine
usually shows low-grade (<1 g/day) or no proteinuria, often
with occasional white cells and red cells [57, 58]. Some will have
evidence of urate crystals in the urinary sediment [36]. Kidney
biopsy, if performed, usually shows a type of chronic tubuloin-
terstitial nephritis with a variable amount of fibrosis and in-
flammation. The glomeruli may show some wrinkling, as well
as mesangial expansion with or without global glomerulosclero-
sis [56, 59, 60].

An acute presentation has also been reported in both
Mesoamerica and Sri Lanka [61–63]. In this rarer presentation,
patients will get sick while working and will present in the
emergency room with fever (55%), nausea and vomiting (50%)
and headaches (50%), often with muscle weakness and back
pain. These patients may have anemia, leukocytosis, hypokale-
mia and hyperuricemia and often have a urinalysis that shows
leukocyturia (98%) with or without hematuria and proteinuria.
Biopsies in these patients show acute interstitial nephritis with
tubular injury [61–63]. In Mesoamerica, those who present
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with AKI are from among the job categories with the heaviest
workload.

The natural history of this mysterious CKD of unknown
cause (CKDu) is one of progressive deterioration of renal func-
tion leading to uremia. Unfortunately, most of the individuals
who develop these conditions are disadvantaged and lack ade-
quate medical care, carry no insurance, are unable to receive ad-
equate dialysis and end up dying of kidney failure.

Etiology

The similarities in epidemiology, clinical presentation, labo-
ratory abnormalities, histologic findings and natural history
have suggested that the CKDu from these endemic regions may
have a common etiology. Today the leading hypothesis is that it
represents a type of heat stress–related injury [17]. In particular,
the concept is that these subjects are developing subtle injury to
their kidneys each day while they are in the field that causes
CKD over time, or they may have an occasional more severe
AKI that has the same effect of progressing to CKD. Supporting
evidence is that up to 30% of patients with AKI diagnosed dur-
ing a sugarcane harvest will progress to CKD 6–12 months later
[64]. Some patients with the more severe acute presentation
also progress to CKD [65]. The reason these epidemics have
emerged has also been attributed to climate change and an in-
crease in heat waves [66].

There is substantial supporting evidence for this theory [67].
First, there is evidence, especially in Sri Lanka and
Mesoamerica, that the epidemics are not simply due to better
diagnosis and recognition, but rather represent a true increase
in the prevalence of CKD since the 1970s and 1980s. For exam-
ple, a study in the Guanacaste region of Costa Rica that was
based on autopsy reports documented a dramatic increase in
CKDu beginning in the 1970s [68]. Second, the sites where
CKDu is occurring typically represent some of the hottest areas
in the region [66, 69]. Third, all the occupations are associated
with intense heat exposure and symptoms of dehydration are
common [70, 71]. Some studies from Mesoamerica have also
shown that the risk for developing CKD is greater if the workers
are working in sugarcane fields at sea level where it is hotter, as
opposed to sugarcane fields at higher altitudes where tempera-
tures are cooler [57]. Fourth, there is evidence from cross-shift
studies in Mesoamerica that individuals are often becoming
mildly dehydrated and develop cross-shift evidence for acute
reductions in kidney dysfunction and the development of hy-
peruricemia [72, 73]. Similar findings have been demonstrated
for volunteers who exercise in the heat [27, 74]. Fifth, experi-
mentally it has been possible to induce CKD in rats by repeated
exposure to heat and dehydration that is histologically similar
to that observed in these epidemics [25]. The degree of renal in-
jury can be enhanced if the core temperature of the rats is in-
creased by giving mitochondrial uncoupling agents [75]. Sixth,
there is increasing evidence that measures to reduce heat stress,
such as the implementation of better hydration, shade and rest,
can reduce the frequency of individuals developing cross-shift

AKI [76, 77]. Finally, the clinical and pathophysiological simi-
larities between CKDu and the acute and chronic effects of heat
stroke make a compelling case for a similar pathogenesis.

Pathogenesis

The pathogenesis of CKDu may involve both heat-related
mechanisms and mechanisms associated with dehydration
(Osm) (Figure 3). For example, recurrent hyperosmolality can
induce activation of the polyol (aldose reductase) pathway in
the kidney, leading to local fructose generation that can be me-
tabolized in the proximal tubule to release oxidants, uric acid
and inflammatory cytokines and chemotactic factors [25]. This
injury can be amplified if the rehydration fluid has a high con-
tent of fructose (such as with sucrose or high fructose corn
syrup) [78]. Similarly, recurrent dehydration also stimulates va-
sopressin production, and chronically elevated vasopressin lev-
els can also induce both glomerular and tubular injury [79–81].

Other potential mechanisms include a direct thermal path-
way of injury that is linked with intracellular ATP depletion
and stimulation of inflammation [82–85]. Other possible con-
tributors could include the effects of chronic hypokalemia to
cause vasoconstriction, the possibility of rhabdomyolysis as a
potential contributor or the effects of hyperuricemia or uricosu-
ria. Indeed, there is one experimental study that found that allo-
purinol can prevent both kidney and liver injury associated
with recurrent heat stress and dehydration [86].

Limitations

While the evidence that heat stress and/or dehydration is in-
volved in the pathogenesis of the epidemics of CKDu world-
wide is strong, these studies do not exclude other potential
contributing factors such as environmental toxins (agrochemi-
cals and heavy metals in drinking water), infection diseases and
working conditions. Dehydration stimulates the reabsorption
of fluid in the proximal tubule and would be expected to am-
plify the uptake and toxicity of nephrotoxins. One toxin we
have been concerned about is silica, which is present in sugar-
cane and rice husk ash and could be inhaled or ingested via con-
taminated drinking water. An ironic aspect is that the
generation of this ash from burning the cane and rice husks
increases black carbon and atmospheric biomass that can in-
crease the greenhouse effect and contribute further to climate
change.

In summary, climate change will, and likely is, having a very
significant effect on our specialty. Climate change may be caus-
ing not only electrolyte disturbances and worsening existing
kidney diseases, but it may also have a role in the appearance of
new diseases that may dominate the future. Due to the increase
in CKDu, medical expenses related to kidney disease treatment,
including dialysis, will increase and more resources will be con-
sumed, thus we need more physicians with an interest in inves-
tigating and developing new and effective therapies to treat
diseases associated with heat stress and dehydration. Where is
Sherlock Holmes when we need him? [67]
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