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ABSTRACT
In biomedical research, cluster analysis is often performed to iden-
tify patient subgroups based on patients’ characteristics or traits. In
the model-based clustering for identifying patient subgroups, mix-
turemodels haveplayed a fundamental role inmodeling.While there
is an increasing interest in using mixture modeling for identifying
patient subgroups, little work has been done in selecting the predic-
tors that are associated with the class assignment. In this study, we
develop and compare two approaches to perform variable selection
in the context of a mixture model to identify important predictors
that are associatedwith the class assignment. These two approaches
are the one-step approach and the stepwise approach. The former
refers to an approach in which clustering and variable selection are
performed simultaneously in one overall model, whereas the latter
refers to an approach in which clustering and variable selection are
performed in two sequential steps. We considered both shrinkage
prior and spike-and-slab prior to select the importance of variables.
Markov chain Monte Carlo algorithms are developed to estimate the
posterior distribution of themodel parameters. Practical applications
and simulation studies are carried out to evaluate the clustering and
variable selection performance of the proposed models.
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1. Introduction

In biomedical research, cluster analysis based on patients’ characteristics or traits is often
performed to identify disease subtypes. Disaggregating disease heterogeneity can help bet-
ter understand the underlying biological mechanisms, which is a key building block for
better disease management strategies, novel treatments and precision medicine.

Of many existing statistical methods, the finite mixture model (FMM) is a popular tool
for modeling population heterogeneity. This model refers to modeling with categorical
latent variables that represent subgroups of the population that is unobserved and need
to infer from the data [40]. When clustering is the main interest, FMM is a powerful tool
and is usually referred to as model-based clustering. Application of model-based cluster-
ing can be found in many different areas of research, for example, in the analysis of gene
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expression data [60], brain magnetic resonance image data [61], adolescent alcohol use
[11] and identifying asthma phenotypes [52]. A comprehensive review of this topic can
be found in the discussion [21] and the recent review of model-based clustering [41]. An
R package FlexMix has also been developed to perform finite mixture regression analysis
[23,32].

While it is important to correctly identify clusters, for many cluster analyses, identifying
clinical factors that are associated with the class assignment is also of great interest. These
factors are crucial since they can help clinicians to make informed treatment decisions.
However, it is often hardly known which variables are associated with class membership.
Including all variables into the model without a selection will result in a large and complex
model, which is also often difficult to interpret. Therefore, it is desirable to identify the
appropriate subset of the variables in amixturemodel to obtain a parsimoniousmodel that
simultaneously achieves consistent variable selection and optimal classification. Within
the mixture model framework, several methods have been proposed to perform variable
selection. Following the categorization in [18], the existing variable selection methods in
the mixture model can be roughly divided into penalization approaches, in which variable
selection is performed by using a penalized log-likelihood approach [28,59], model selec-
tion approaches, in which variable selection is considered as a model selection problem
[12,17,19] and Bayesian approaches, in which variable selection is conducted by making
inference about the posterior distribution via sampling strategies such as Markov Chain
Monte Carlo (MCMC) [51,61]. A common feature of these approaches is that the vari-
able selection procedure is applied in component-specific distribution (see fk(·) defined in
Equation (2) in Section 3) to identify important variables or measurements, while assum-
ing the probabilities of mixture components (or mixture weights) (see πik(·) defined in
Equation (3) in Section 3) do not depend on any covariates. Nevertheless, in clinical prac-
tice researchers may also be interested in which covariates predict the class assignment.
Therefore, allowing variable selection in the context of themixturemodel to determine the
variables affecting the probabilities of themixture components would significantly increase
the flexibility of the model.

In the current study,we develop two approaches to performvariable selection in the con-
text of themixturemodel to identify important predictors that are associated with the class
assignment. These two approaches are referred to as the one-step approach and the step-
wise approach. The former refers to an approach in which clustering and variable selection
are performed simultaneously in one overallmodel, whereas the latter refers to an approach
in which clustering and variable selection are performed in two sequential steps. Shrinkage
and spike-and-slab priors are adapted to these proposed approaches for selecting impor-
tant variables. MCMC algorithms are developed to estimate the posterior distributions of
parameters of interest. Real data and simulated data are used to compare the performance
of these two approaches under different scenarios. The remainder of this paper is organized
as follow: in Section 2, we describe two motivating studies and datasets to be considered
in the current study. In Section 3, we first review the FMM and then describe the proposed
model for both cross-sectional and longitudinal data. Variable selection methods based on
shrinkage and spike-and-slab priors are also introduced in this section. In Section 4, we
discuss the Bayesian inference for the proposed models. In Section 5, we apply the pro-
posed models to analyze two motivating datasets for discovering disease phenotypes and
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their risk factors, and in Section 6, we perform a simulation study to compare the cluster-
ing and variable selection performance of these models under different scenarios. Finally,
in Section 7, we discuss and conclude our findings.

2. Motivating examples

Ourmethodological development is motivated by two clinical studies, namely the Primary
Biliary Cirrhosis (PBC) study and the ChildhoodAsthmaManagement Program (CAMP).

2.1. Primary biliary cirrhosis study

The first example is a well-known study, the Mayo Clinic trial of the liver Primary Bil-
iary Cirrhosis (PBC). PBC is a fatal chronic liver disease with an unknown cause. A
randomized placebo-controlled trial was conducted between 1974 and 1984 to study the
effect of the drug D-penicillamine on the treatment of PBC. In this 10-year interval, the
trial recruited 424 PBC patients who met the eligibility criteria [14]. This dataset can be
found in [16] and is also available in R survival package. The trial collected several vari-
ables, for example, patients’ age survival status (0=alive, 1=liver transplant, 2=dead), drug
(1=D-penicillamine, 2=placebo), presence of ascites (0=no, 1=yes), hepatomegaly (0=no,
1=yes), spiders (0=no, 1=yes) and edema (0=no, 1=yes), as well as other indices such as
serum bilirubin and cholesterol level. A common problem from the clinical practice is
how to make use of these markers of disease progression to identify subgroups (i.e. clus-
ters) of PBC patients with similar characteristics, and what are the predictors of these
group assignments. These subgroups may provide an important indication of patients’
prognostic.

2.2. Childhood asthmamanagement program

It is widely accepted that asthma is not a single disease, but a distinct disease caused by dif-
ferent underlying biological mechanisms. Discovering different phenotypes of asthma and
factors associatedwith these phenotypes can help better understand the underlying biolog-
ical mechanisms, which is a key building block for better asthma management strategies,
novel treatments and precision medicine.

The Childhood AsthmaManagement Program (CAMP) is a triple-blinded randomized
clinical trial originally designed to evaluate whether treatment with either an inhaled corti-
costeroid (budesonide) or an inhaled noncorticosteroid drug (nedocromil) safely produces
an improvement in lung growth when compared with treatment for symptoms only. The
primary outcome of CAMP is lung function measured by forced expiratory volume in 1 s
(FEV1). Participants recruited to the trial were also followed by three phases of obser-
vational follow-up lasting 13 years. Both trial and observational follow-up included an
annual prebronchodilator and postbronchodilator spirometry test (during which FEV1
data were collected) as part of the protocol. At baseline, 1041 children were randomly
assigned to receive 200 μg of budesonide (311 children), 8mg of nedocromil (312 chil-
dren), or placebo (418 children) twice daily. These participants were from 5 to 12 years of
age with mild-to-moderate asthma and were treated for four to six years. The trial found
that the anti-inflammatorymedications did not have a better long-term effect than placebo
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on lung function growth [7]. The trial also assessed differences between treatment groups
regarding airway responsiveness, morbidity and physical growth etc. More details about
the design of this study can be found in [6].

Since lung function has been associated with asthma in childhood [35] and adulthood
[44], we are interested in understanding the growth and decline in lung function in these
patients with childhood asthma. These distinct lung function patterns may reveal links
between asthma and subsequent chronic airflow obstruction and aid in developing opti-
mal personalized treatment strategies. Moreover, identifying determinants of the growth
and decline in lung function would facilitate early disease diagnosis and prevent it from
progressing to a more severe stage.

3. Methodology

In this section, we begin by first reviewing the finite mixture model, then describing
the one-step and stepwise approaches for cluster analysis. We also describe the Gaussian
mixture model for both cross-section and longitudinal data, as well as variable selection
priors.

3.1. Review of the finitemixturemodel

The model presented here is intended to be in sufficient generality to allow for more com-
plex data structures. Let yi denote the data for N subject (i = 1, . . . ,N), where yi can be a
single data point or multi-dimensional vector. An FMM with K components (i.e. classes)
can bewritten as f (yi) = ∑K

k=1 πkfk(yi), for k = 1, . . . ,K, where fk(yi) are densities of clus-
ter k and πk are the probabilities of mixture components (or mixture weights) that sum to
one, that is, 0 ≤ πk ≤ 1 and

∑K
k=1 πk = 1. It is not uncommon that fk is assumed to have a

parametric form, i.e. fk(yi) = fk(yi;�k), where �k is a set of parameters that characterize
the density fk(·). Therefore, the FMM can be written as

f (yi;�) =
K∑

k=1

πkfk(yi;�k), (1)

where � = (π ′,�′
1, . . . ,�

′
K)′. Depending on the types of data, one can specify a different

probability model for fk. For example, to model continuous cross-sectional data fk may be
a Gaussian density defined by mean and variance, whereas to model longitudinal data fk
may be a multivariate Gaussian density defined by mean vector and variance-covariance
matrix.

3.2. One-step approach

A more general formulation of the FMM is to allow πk depend on some covariates xi and
the class-specific density function depend on some covariates ui, that is,

f (yi; xi, ui,�) =
K∑

k=1

πik(xi,βk)fk(yi; ui, θk), (2)
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where � = (π ′,�′
1, . . . ,�

′
K)′, and �k = (β ′

k, θ
′
k)

′ denotes all parameters to be estimated
for the kth component. θk is a set of parameters characterized the distribution fk.πik(xi,βk)

is the probability of subject i belonging to class k, depending on the p dimensional covari-
ates xi = (xi1, . . . , xip)′ and its associated parameters βk = (βk1, . . . ,βkp)

′. Specifically,
πik(xi,βk) can be modeled using a multinomial logistic regression

πik(xi,βk) = exp{βk0 + x′
iβk}∑K

l=1 exp{βl0 + x′
iβ l}

. (3)

We set β10 = 0 (i.e. the intercept of the first class) and β1 = 0 (i.e. the p-dimensional coef-
ficients of the first class) for identifiability purpose. The coefficients βk (for k>1) can be
interpreted in terms of change in log-odds relative to the first category. We refer to this
model as the one-step approach in which predictors are included in the FMM.

3.3. Stepwise approach

Alternatively, one can also determine the variables that are associated with the class mem-
bership using an unconditional approach, also known as the stepwise approach. In the
stepwise approach, the classification and prediction are separated steps such that class pre-
dictors do not affect the classification results. This avoids the scenarios in which including
different covariates could lead to a different classification.

Specifically, the stepwise approach to incorporate predictors is consist of two steps. In
the first step, we identify the latent classes (i.e. most likely class membership) via an uncon-
ditionalmodel without including any predictors, i.e. f (yi) = ∑K

k=1 πkfk(yi), whereπk does
not depend on covariates and is identical to all subjects in class k. And in the second step,
the class membership variable derived from the model is used as the outcome variable
and regressed on the latent class predictors, which can be achieved by using a multinomial
logistic regression as in (3).

3.4. Gaussianmixturemodel for cross-sectional data

To specify fk, here we consider two common models based on Gaussian distribution. The
first model can be used to model continuous cross-sectional data, whereas the second
model can be used to model continuous longitudinal data.

For cross-sectional data, let yi = yi denote a single data point of subject i. Let ui = ui
denote the time when the measurement is collected. The Gaussian mixture regression
model can be written as

fk(yi; ui, θk) = N(μk, σ 2
k ), (4)

where N(·, ·) is a normal distribution and to model the component mean with the time
covariate ui, one can further specify a regression model μk = U ′

iγ k, where U i is a q ×
1 design matrix of ui. In such case, θk = (γ k, σ 2

k ). For example, if the component mean
μk is assumed to have a quadratic relationship with ui, one can specify U i = (1, ui, u2i )

′
and γ k = (γk0, γk1, γk2)′, which leads to μk = γk0 + γk1ui + γk2u2i . To facilitate the Gibbs
sampling of the model parameters, we used the following standard independent conjugate
priors, γ k ∼ MVN(0,Vk0) and σ 2

k ∼ IG(ak0, bk0), where Vk0 is the variance–covariance
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matrix of a q dimensional multivariate normal distribution. IG denotes the inverse gamma
distribution with parameters ak0 and bk0.

3.5. Gaussianmixturemodel for longitudinal data

For longitudinal data, let yi = (yi1, . . . , yini)′ denote the data for subject i, where ni denote
the number of measurements for subject i. Let ui = (ui1, . . . , uini)′ denote the time when
these measurements are collected. The growth mixture model for class k can be written as

fk(yi,ϑ ik; ui, θk) = MVN(U ′
iγ k + Z′

iϑ ik, σ 2
k Ini×ni), (5)

where θk = (γ k,�k, σ 2
k ) and ϑ ik ∼ MVN(0,�k). U i denotes the q1 × ni design matrix

of the fixed effect and Zi, which is a subset of the columns of U i, denotes the q2 × ni
(q2 < q1) design matrix of random effect. ϑ ik is the corresponding random effect coef-
ficient. Under this model, the subject i that belongs to class k has a mean trajectory
U ′

iγ k and the variance–covariance matrix Zi�kZ′
i + σ 2

k Ini×ni . We used the following
standard independent conjugate priors, γ k ∼ MVN(0,Vk0), σ 2

k ∼ IG(ak0, bk0), �−1
k ∼

Wishart(rk0, (rk0Rk0)
−1), where the prior for theWishart distribution is parametrized such

that the mean is R−1
k0 . In the special case where �k is a diagonal matrix, i.e. �k = φ2

k Iq2 , an
inverse gamma prior is used, i.e. φ2

k ∼ IG(a∗
k0, b

∗
k0).

3.6. Variable selection priors

For the mixture model specified in (2) and (3), the number of coefficients β needed to be
estimated grows as the number of class K and the covariate dimension p increase. From
a practical perspective, it is crucial to identify only the variables of importance in order
to obtain an interpretable and parsimonious model ; therefore, it is necessary to place
restrictions on the estimation of β in order to obtain a robust final model.

Bayesian variable selection methods have received increasing attention and a variety of
MCMC methods have been proposed for identifying important variables. These meth-
ods fall within the concept of Bayesian modeling average (BMA) in which parameter
estimates uncertainty and model uncertainty are simultaneously achieved [24,37,58]. A
popular class of the method for variable selection is imposing a shrinkage prior on the
regression coefficientsβ to cause a ‘shrinkage’ of the parameter estimation to lie around the
origin. Examples of shrinkage priors include Bayesian lasso (also known as Laplace prior)
[46,56], Horseshoe prior [9,10], Dirichlet–Laplace prior [4] and the modified Bayesian
lasso method [38]. However, shrinkage prior itself usually would not lead to variable selec-
tion, and hard shrinkage (HS) rules (e.g. coefficients > 1 standard deviation (SD)) may be
applied to achieve this purpose. A review of thesemethods can be found in [37]. In our cur-
rent implementation, we considered a popular shrinkage prior, the Horseshoe prior, which
possesses strong theoretical guarantees for estimation, prediction and variable selection
[9,10].

3.6.1. Horseshoe prior
Since its proposal, the Horseshoe prior has become one of the most popular methods
for shrinkage due to its outstanding performance and computational advantages. The
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Horseshoe prior is a global-local shrinkage procedure in which the local shrinkage for the
coefficient is determined by a hyper-parameter εk and the overall level of shrinkage is deter-
mined by a hyper-parameter ξkj. While the Horseshoe prior does not have a closed-form
density function, it can be written as a scale mixture of normals,

βkj | εk, ξkj ∼ N(0, ε2kξ
2
kj), εk ∼ C+(0, 1), ξkj ∼ C+(0, 1), (6)

where C+ denotes half-Cauchy distribution. Unlike Bayesian lasso which imposes shrink-
age effect uniformly across all coefficients, the Horseshoe uses half-Cauchy distributions
over the global parameter (ξkj) and local hyper-parameter (εk) which results in strong
shrinkage over weak coefficients whereas almost no shrinkage over the large coefficients.
Such property has been proven to be useful to discriminate between true effects and noise.
To efficiently sample from the posterior distribution, Makalic and Schmidt [39] proposed
a simple sampler for regression models the Horseshoe prior.

Another category of variable selectionmethod is the spike-and-slab prior (also known as
discrete mixtures) which places a mixture prior of a point mass at β = 0 and a continuous
at β �= 0. The spike-and-slab prior directly estimates the variable inclusion probabilities
and thereby provides a directmeasurement of variable importance. Examples of spike-and-
slab priors include stochastic search variable selection (SSVS) [22], Gibbs variable selection
[8,13] and Kuo andMallick (KM) prior based on unconditional distribution [31]. A review
of these methods can be found in [45]. In our current study, we considered a commonly
used prior, i.e. SSVS prior.

3.6.2. Stochastic Search Variable Selection
In SSVS, selecting a subset of important predictors is equivalent to setting the associatedβkj
of those non-selected variables to zero. With this idea, the SSVS places a normal mixture
prior on βkj

βkj | δkj ∼ (1 − δkj)N(0, τ 2kj) + δkjN(0, c2kjτ
2
kj), δkj ∼ Bernoulli(pkj). (7)

Therefore, βkj ∼ N(0, τ 2kj), if δkj = 0, and βkj ∼ N(0, c2kjτ
2
kj), if δkj = 1. The idea here is to

set τkj very small, such that those βkj for which δkj = 0 will tend to be clustered around
0 (leading to the spike), and to set ckj very large, such that for those βkj for which δkj = 1
will tend to be dispersed (leading to the slab). To facilitate the posterior computation, the
SSVS can also be represented as a multivariate normal prior, βk | δk ∼ MVN(0,Dk	kDk),
where 	k is the prior correlation matrix,Dk = diag((ak1τk1), . . . , (akpτkp)), with akj = 1 if
δkj = 0 and akj = ckj if δkj = 1.

It is recognized that SSVS is closely connected to the Horseshoe prior. To see this
connection, one can re-parametrize the SSVS in (7) as βkj | δkj ∼ (1 − δkj)N(0, s2kj) +
δkjN(0, s̃2kj), where s

2
kj and s̃2kj denote the hyper-variances for the spike and slab distribu-

tions. Setting s̃kj = 0 induces a degenerate distribution at the origin and under such case
the SSVS can be written analogous to (6) as βkj | δkj ∼ N(0, δ2kjs̃

2
kj). Here δkj and s̃kj have

taken the role of εk and ξkj in (6), but instead of giving continuous distribution for δkj it
only allows to take two values (i.e. δkj = 0, 1).
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4. Bayesian inference

Based on the prior distributions described previously, in this section, we sketch the ideas
of posterior computation via Gibbs sampling, followed by the clustering procedure and
approaches to determine the number of clusters.

4.1. Posterior computation

To facilitate the posterior computation via Gibbs sampling, we considered a data-
augmentation approach which is based on a new class of Polya-Gamma (PG) distribution
(a subset of the class of infinite convolutions of gamma distributions), which allows
fully Bayesian inference in models with binomial or multinomial likelihoods through an
efficient Gibbs sampler.

A challenge of using an MCMC algorithm (including the Gibbs sampler) is the non-
identifiability of the classes (or components). This issue arises because the mixture model
is invariant under permutation of the indices of the classes, i.e. the parameters �1 in class
1 cannot be distinguished from parameters �2 in class 2 because they are exchangeable in
the sense that the likelihood function will be invariant. As a result, the marginal posterior
distributions of the parameters will be identical for each mixture component. This phe-
nomenon is also known as the ‘label switching’ problem. In the current study, we applied a
popular post-processing algorithm to reorder the labels based on Kullback–Leibler diver-
gence [55]. The convergence of MCMC can be checked using Geweke statistics as well as
visual inspection of the trace plots. The algorithm for posterior updates of parameters is
provided in the Supplementary Materials.

The optimal classification for subject i (i = 1, . . . ,N) can be determined based on the
marginal posterior component probabilities that subject i is assigned to class k, which is
defined as

P(zik = 1 | yi) =
∫

P(zik = 1 | yi,�)P(� |Y) d�

≈
S∑

s=1

π
(s)
ik P(z(s)ik = 1 | yi,�(s)

k )∑K
l=1 π

(s)
il P(z(s)il = 1 | yi,�(s)

l )
,

whereY denotes all data and� denotes all the parameters. S is the total number ofMCMC
iterations. z(s)ik , �

(s) and π
(s)
i,k denote the values at the sth iteration. Subject i can then be

assigned to the class with the largest P(zik = 1 | yi), for k = 1, . . . ,K.

4.2. Determine the number of clusters

Although there is no widely accepted method for determining the number of clusters K
in the mixture model, there have been many methods proposed. The common practice
assumes the number of clusters K is fixed and finding the best K can be viewed as a model
selection process. In such cases, model selection criteria can be implemented to compare
models with different values of K. Statistical information criteria are commonly used, such
as Akaike’s Information Criterion (AIC) [1] and Bayesian Information Criterion (BIC)
[50]. Alternatively, the Lo–Mendell–Rubin (LMR) [33] method or bootstrap likelihood
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ratio test (BLRT) [40] have also been used to determineK in finitemixturemodels. Nylund
et al. [43] compared these indices for selecting the number of clusters in latent class mod-
els, factor mixture models and growth mixture models, and found that BIC outperformed
the AIC, and the bootstrap likelihood ratio test provided the most consistent indicator of
clusters.

Many model selection approaches were also proposed within the Bayesian framework.
For example, the Bayes factor (BF) [27] is a commonly used index that is based on inte-
grated likelihood, and can be applied when there are more than two candidate models and
can be used for comparing non-nested models. For comparing two models, M1 and M2,
the BF is defined as the ratio of the two integrated likelihood, i.e. B12 = P(y |M1)

P(y |M2)
. While

BF provides the researcher with a directly interpretable number that quantifies the evi-
dence provided by the data, it requires integration over all parameter space and therefore is
computationally intensive, particularly when there are many parameters of interest. Alter-
natively, BIC can be used and previous studies suggest that it provides good performance in
model-based clustering context [20]. The BIC is defined asBICk = −2 log P(Y | �k,Mk) +
vk log(N), where log P(Y | �k,Mk) is the log-likelihood under model Mk, Y denotes all
the data, N is the sample size and vk is the number of parameters. The model with the
smallest BIC is usually preferred. The log BF can be approximated by BIC with 2 ln(B10) ≈
2(�BIC), where B10 is the BF comparing a model with k+ 1 classes to a model with k
classes, and �BIC is the changes between these two models [26,42].

Apart from the above methods, many other approaches are also proposed, such as
Deviance Information Criterion (DIC) [53], ‘no small clusters’ criterion [49], the approxi-
mate weight of evidence (AWE) [2], integrated classification likelihood (ICL) [5], etc.

5. Practical application

In this section, we apply both one-step and stepwise approaches with variable selection
priors to the PBC and CAMP datasets introduced in Section 2.

5.1. Primary biliary cirrhosis data

For the PBC data, the primary interest is to identify subgroups of patients with similar
serum Bilirubin levels and predictors that are associated with these group assignments.
Bilirubin is an orange-yellow substance made during the normal breakdown of red blood
cells and higher than normal levels of bilirubin may indicate an increased risk of liver
problems. Bilirubin was converted to a logarithmic scale (logbili) prior to modeling. Eight
predictors were considered in the current analysis, namely treatment (trt, D-penicillamine
vs. placebo), edema (edema), alkaline phosphatase (alk.phos), serum cholesterol (chol),
serum albumin (albumin), triglycerides (trig), standardized blood clotting time (protime),
histologic stage of disease (stage, stage 1 or 2 vs. stage 3 or 4). Here, we initially considered
the 312 subjects who participated in the randomized trial.We then removed 30 (9.6%) sub-
jects who had incomplete covariates data. Therefore, the data included in our final analysis
consists of 282 subjects. Age was centered and all predictors were standardized such that
the means were 0 and variances were 1.
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We chose the hyper-parameters of prior distributions to provide weakly information
to the parameters of interest. For priors of the growth trajectory parameters, we used
Vk0 = 1000I2, ak0 = 3 and bk0 = 0.01. We used λ21 = · · · = λ2K = λ2 ∼ gamma(ιa0 =
0.01, ιb0 = 0.01), where ιa0 and ιb0 are the shape and rate parameters, respectively. This
induces a non-informative prior on the tuning parameter. For the hyper-parameters in
SSVS, based on a preliminary analysis, we set c2kj = 100 and τ 2kj = 0.01 (SSVS1) and c2kj =
100 and τ 2kj = 0.04 (SSVS2) for all k and j. These values induce a hyper-variance of 1 for
slab and 0.01 for spike in SSVS1, and a hyper-variance of 4 for slab and 0.04 for spike in
SSVS2. For each model, we ran the MCMC with 6000 iterations, discarded the first 1000
iterations as burn-in and kept every 5th iterations. The final chain includes 1000 samples.

The BIC for one- to six-class models are 832.9, 803.8, 822.8, 845.2, 867.5 and 879.4,
respectively. And the 2 ln(B10) comparing models of 2-class vs. 1-class, 3-class vs. 2-class,
4-class vs. 3-class, 5-class vs. 4-class, 6-class vs. 5-class are 58.2, −38, −44.8, −44.6, and
−23.8, respectively. According to Kass and Raftery recommendation, 2 ln(B10) > 10 is
considered as very strong evidence against a simpler model [27]. Therefore, the two-class
model provided the best fit to the current data compared to all other models. Therefore, we
set K = 2 and refit the one-step approach with predictors and stepwise approaches with
predictors based on different variable selection priors described in Section 3. The clustering
results for different models are shown in Figure 1 and parameter estimates with 95% cred-
ible interval (CR) are shown in Table E1. Overall there were clear patterns of two groups,
with Class 1 indicating patients with high Bilirubin andClass 2 indicating patients with low
Bilirubin. However, the class proportions were different between the conditional models
(i.e. with predictors) and the unconditional model (i.e. without predictors). Specifically,
the unconditional model (Figure 1(A)) assigned 39% of patients to Class 1 and 61% to
Class 2, whereas conditional models with Horseshoe (Figure 1(B)), SSVS1 (Figure 1(C))
and SSVS2 (Figure 1(D)) priors consistently assigned 46% to Class 1 and 54% to Class 2.
This indicates models including covariates changed the patients’ posterior class probabil-
ity, which resulted in higher uncertainty compared to the unconditionalmodel (Figure E1).
This difference between conditional and unconditional models resulted in different class
proportions.

The covariate effects based on different models were shown in Figure 2. In general,
within the same category of models (i.e. one-step or stepwise approaches), all models pro-
vided similar coefficient estimation (Figure 2(A)), which was expected given the small
number of predictors considered in this analysis. Based on the HS rule, the one-stepmodel
with Horseshoe prior identified six important predictors (i.e. albumin, chol, edema, pro-
time, stage, trig), whereas based on the inclusion probability (>0.5), SSVS1 and SSVS2
identified five (i.e. albumin, chol, protime, stage, trig) and two predictors (i.e. chol, trig),
respectively (Figure 2(B)). These predictors were shown to be associated with the patients’
class membership. For example, a patient with a higher albumin value was more likely
to be assigned to Class 1 when compared to Class 2. It is interesting to observe that
the estimated coefficients from the conditional models (i.e. Horseshoe-onestep, SSVS1-
onestep, SSVS2-onestep) moved towards the origin as compared to unconditional models
(i.e. Horseshoe-stepwise, SSVS1-stepwise, SSVS2-stepwise). This attenuation was due to
the increased number of patients in Class 1 in the conditional models. For the stepwise
models, Horseshoe identified the same set of predictors as those in one-step models. The
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Figure 1. Observed trajectory patterns of two-class models based on different variable selection priors
in PBC data. ‘Unconditional’ refers to model without including predictors. SSVS1: c2 = 100, τ 2 = 0.01;
SSVS2: c2 = 100, τ 2 = 0.04.

SSVS1-stepwise model also identified the same set of predictors as the shrinkage priors,
whereas the SSVS2-stepwise only kept four predictors (albumin, chol, protime, trig) in the
model.

5.2. Childhood asthmamanagement programdata

For the CAMP data, the primary interest is to characterize the FEV1 trajectory at the
population level and the individual level, as well as to identify significant predictors of
abnormal FEV1 longitudinal patterns. In the current analysis, we included 657 partici-
pants who contributed to a total of 15,138 measurements. On average, each participant
had 23 measurements. Of these participants, there are 450 (68.5%) white and 391 (60%)
male. The mean (SD) of age is 8.97 (2.10). For predictors of the class membership, here
we considered 12 baseline covariates and their first-order interaction (66 combinations) as
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Figure 2. Covariate effects of two-classmodels in PBC data. (A) Log odds ratios estimated fromdifferent
models. (B) Inclusion probabilities estimated from different SSVS models. SSVS1: c2 = 100, τ 2 = 0.01;
SSVS2: c2 = 100, τ 2 = 0.04.

candidate predictors, which induce a total of 78 covariates. These 12 baseline covariates
are race (white vs. other), any_pets (any pets, yes vs. no), agehome (age of current home,
years), ast.age (age when asthma confirmed by MD), whitecell (white blood cell count),
hemoglobin, gas.stove (gas cooking stove, range or oven), wood.stove (yes vs. no), hosp.ast
(child ever in hospital for asthma, yes vs. no), mother.ast (mother has asthma, yes vs. no).
To model the FEV1 patterns, we considered a quadratic function with random intercept
and slope.

We chose similar hyper-parameters for the growth trajectory model as the previous
example. Specifically, we usedVk0 = 1000I2, ak0 = 3 and bk0 = 0.01, r = 4 andRk = 3I2.
For hyper-parameter of Lasso prior, here we used λ21 = · · · = λ2K = λ2 ∼ gamma(ιa0, ιb0),
where ιa0 = 10 and ιb0 = 1/λ̂2, respectively. The λ̂ denotes the maximum likelihood
estimate of λ. This yields a gamma distribution with amean of 10 times of the λ̂. For hyper-
parameters of SSVS, we considered four different settings. In SSVS1, we set c2kj = 100 and
τ 2kj = 0.01 which yielded a hyper-variance of 1 for slab and 0.01 for spike. In SSVS2, we set
c2kj = 100 and τ 2kj = 0.1 which yielded a hyper-variance of 10 for slab and 0.1 for spike. In
SSVS3, we set c2kj = 100 and τ 2kj = 0.3 which yielded a hyper-variance of 30 for slab and
0.3 for spike. In SSVS4, we set c2kj = 100 and τ 2kj = 0.5 which yielded a hyper-variance of
50 for slab and 0.5 for spike. For each model, we ran the MCMC with 60,000 iterations,
discarded the first 10,000 iterations as burn-in and kept every 50th iterations as burn-in
and kept every. The final chain of each model includes 1000 samples.

The BIC for one- to six-class models are 9556, 8206, 8028, 7936, 7938 and 7932, respec-
tively. While a six-class model yielded the lowest BIC, the 2 ln(B10) of comparing the
six-class model to a four-class model was 7.6, which did not show a significant improve-
ment in terms of model fitting. In contrast, the 2 ln(B10) comparing a four-class model to
a three-class model was 184, which showed a significant improvement (>10) and justified
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using amore complicatedmodel. This evidence indicated that a four-class model provided
a good fit to the current data.

The observed trajectory patterns of the four-class model based on different variable
selection priors are shown in Figure 3 and the parameter estimates with 95%CR are shown
in Table E2. The four FEV1 growth patterns were similar across different models. Class 1
represented normal FEV1 patterns and patients from this class had the best lung func-
tion compared to patients from all other classes. Class 2 and Class 3 represented mild and
moderate reduced FEV1 patterns, while Class 4 represented severe reduced FEV1 patterns,
which suggested that patients from this group had the worst lung function compared to the
patients from all other classes. However, the proportion of patients assigned to different
classes differ across different models. Specifically, the proportion of Class 2 (ranged 37% to
39%) and Class 4 (8% to 9%) were relatively stable across different models whereas Class 1
(ranged 18% to 33%) andClass 3 (20% to 34%) were substantially different among different
models. The difference in class proportion can be partially explained by the predictors kept
by each model. Similar to the previous example, the models including covariates changed
the patients’ posterior class probability, which also resulted in different class proportions
(Figure E2). Consider Class 1 (with the best FEV1 patterns) as the reference category, the
predictors selected by each model were shown in Figure 4. Unlike the previous example
when only eight predictors were considered, in the current example different models kept
a different number of variables and there is a lack of consistency. Take the comparison
between Class 2 vs. Class 1 for example, Horseshoe prior identified only one predictor (i.e.
bPREFEV) in either the one-step or stepwise approach. For SSVS prior, we observed that
the larger the hyper-variance (for either spike or slab), the smaller number of predictors
were kept in the model. For example, SSVS1 resulted in a model with the largest number
of predictors in either the one-step or stepwise approach. In contrast, SSVS4 yielded the
smallest model. Similar results were observed for the comparison of Class 3 vs. Class 1 and
Class 4 vs. Class 1.

To compare the behavior of different models, we provided the estimated posterior dis-
tribution of a selected predictor (for variable bPREFEV) in Figure E3. It was evident that
the posterior density of the Horseshoe model was tighter (i.e. with smaller SD) compared
to other models. And the estimate shifted away from zero when higher class (i.e. the class
with lower FEV1 patterns) is compared to Class 1. This is expected given Class 1 was the
group with the highest mean FEV1 over time and the higher the class number, the lower
the FEV1 and, therefore, the larger the difference (Figure 3).

6. Simulation study

To further investigate the performance of variable selection in both one-step and stepwise
approaches, in this section, we conducted a small simulation study.We only considered the
longitudinal setting in this simulation. We generated the data frommixture models withK
classes using quadratic mean functions with random intercept and slope. We considered
K = 2, 3, 4which are commonly seen in practice. The trajectory of each classwas generated
to mimic the FEV1 trajectories from the CAMP. Specifically, we considered two scenarios
(Figure E4), representing high separation (Scenario 1) among classes and low separation
among classes (Scenario 2). The total sample size was set at N = 600, and the number of
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Figure 3. Observed trajectory patterns of four-class models based on different variable selection priors
in CAMP data. ‘Unconditional’ refers tomodel without including predictors. SSVS1: c2 = 100, τ 2 = 0.01;
SSVS2: c2 = 100, τ 2 = 0.1; SSVS3: c2 = 100, τ 2 = 0.3; SSVS4: c2 = 100, τ 2 = 0.5.
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Figure 4. Variable selected by different variable selection approaches. SSVS1: c2 = 100, τ 2 = 0.01;
SSVS2: c2 = 100, τ 2 = 0.1; SSVS3: c2 = 100, τ 2 = 0.3; SSVS4: c2 = 100, τ 2 = 0.5.

measurements per individual ni was set to have an equal probability of being 1 to nmax =
10, using a uniform distribution.

For subject-level covariates (e.g. baseline covariates), we generated a p = 20 dimen-
sional covariates X from a multivariate normal distribution MVN(0,
), where 


has exchangeable correlation structure with ρ = 0.5, representing moderate correla-
tion between predictors. The regression coefficients were set to be sparse to rep-
resent common scenarios often seen in practice. For identifiability purpose, we set
β10 = 0 and β1 = 0, and therefore, the first class was considered as a reference cat-
egory. For K = 2, we set β20 = log(2) and β2 = (log(2), log(5), log(5), log(8), log(8),
0, . . . , 0), with p−5 zeros. For K = 3, we set β20 = log(2), β30 = − log(2), β2 =
(log(2), log(5), log(5), log(8), log(8), 0, . . . , 0), β3 = (0, . . . , 0, log(2), log(5), log(5),
log(8), log(8)) with p−5 zeros for both β2 and β3. And for K = 4, we set β20 = log(2),
β30 = − log(1.2), β40 = − log(2), β2 = (log(2), log(5), log(5), log(8), log(8), 0, . . . , 0),
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β3 = (0, . . . , 0, log(2), log(5), log(5), log(8), log(8), 0, . . . , 0), β4 = (0, . . . , 0, log(2), log
(5), log(5), log(8), log(8)) with p−5 zeros for β2, β3 and β4, respectively.

To evaluate the performance of different models, we used several evaluation met-
rics. To evaluate the clustering performance, we considered the correct classification rate
(cRate) and adjusted rand index (aRand). Both of these two indices measure the agree-
ment between the estimated class membership and the true class membership, and the
higher cRate or aRand indicates a better agreement. To evaluate the variable selection per-
formance, we used the true positive rate (TPR), true negative rate (TNR), accuracy (ACY)
and root mean square error (RMSE). These metrics were calculated over all the p(K − 1)
estimated coefficients from each model to represent the overall model performance in
clustering and parameter estimation. For each setting in each scenario, we simulated 25
datasets, and both one-step and stepwise approaches with Horseshoe or SSVS priors were
applied to these datasets to estimate the class and identify predictors of the class member-
ship, assuming the number of classes K is known. The mean and SD of these metrics were
reported.

The simulation results for Scenario 1 (high separation) and Scenario 2 (low separa-
tion) are provided in Tables 1 and 2, respectively. Specifically, in Scenario 1 and when
K = 2, all approaches performed reasonably well in identifying the true class member-
ship. This is expected given the high separation between classes. However, it was interesting
that one-step approaches yielded slightly lower cRates and aRands compared to stepwise
approaches, while within either the one-step or stepwise approaches, the clustering per-
formance was similar among each other. On the other hand, one-step approaches with
Horseshoe and SSVS1 yielded slightly better variable selection performance in terms of
accuracy, compared to their stepwise model counterpart. For example, Horseshoe-onestep
yielded higher accuracy compared to Horseshoe-stepwise (0.97 vs. 0.94). Of note, the
one-step or stepwise approach with Horseshoe prior correctly identified all non-zero coef-
ficients in all datasets, with a mean (SD) TPR of 1 (0). Similar results were observed for
K = 3 and K = 4. In particular, the Horseshoe priors yielded higher TPR and ACY com-
pared to SSVS priors (i.e. SSVS1 and SSVS2) for either a one-step or stepwise approach. Of
note, Horseshoe prior maintained high variable selection accuracy in both one-step and
stepwise approaches. However, the one-step model with Horseshoe prior generally yielded
better variable selection performance compared to the stepwise model with Horseshoe
prior in all settings and scenarios we considered. Similar results were found in Scenario 2.

7. Discussion

In this study, we developed and compared two approaches for variable selection in the
context of the mixture model to determine the variables affecting the probabilities of the
mixture components: the one-step approach and the stepwise approach. Horseshoe prior
and SSVS prior were used within these two approaches to select important variables. We
also developed MCMC algorithms based on Gibbs sampling to estimate the posterior dis-
tribution of model parameters. The proposed models were applied to two clinical datasets
with the goal of finding disease phenotypes and their predictors. A simulation study was
carried out to investigate the clustering and variable selection performance under different
settings and scenarios.
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Table 1. Simulation results for Scenario 1 (high separation).

cRate aRand TPR TNR ACY RMSE

K = 2, N = 600
Horseshoe-onestep 0.99 (0) 0.97 (0.01) 1 (0) 0.95 (0.05) 0.97 (0.04) 0.28 (0.05)
SSVS1-onestep 0.99 (0) 0.97 (0.01) 0.98 (0.06) 0.68 (0.17) 0.75 (0.13) 0.27 (0.04)
SSVS2-onestep 0.99 (0) 0.97 (0.01) 0.83 (0.07) 1 (0.01) 0.96 (0.02) 0.27 (0.04)
Horseshoe-stepwise 1 (0) 1 (0.01) 1 (0) 0.91 (0.08) 0.94 (0.06) 0.19 (0.06)
SSVS1-stepwise 1 (0) 1 (0.01) 0.99 (0.04) 0.49 (0.15) 0.62 (0.11) 0.34 (0.11)
SSVS2-stepwise 1 (0) 1 (0.01) 0.93 (0.1) 0.99 (0.03) 0.97 (0.03) 0.33 (0.11)

K = 3, N = 600
Horseshoe-onestep 0.85 (0.03) 0.65 (0.05) 1 (0) 0.84 (0.05) 0.88 (0.04) 0.94 (0.04)
SSVS1-onestep 0.84 (0.03) 0.64 (0.05) 0.94 (0.05) 0.6 (0.18) 0.69 (0.12) 0.97 (0.05)
SSVS2-onestep 0.84 (0.03) 0.64 (0.05) 0.39 (0.13) 0.95 (0.05) 0.81 (0.05) 0.96 (0.05)
Horseshoe-stepwise 0.9 (0.02) 0.75 (0.04) 1 (0) 0.71 (0.09) 0.79 (0.07) 1.02 (0.05)
SSVS1-stepwise 0.9 (0.02) 0.75 (0.04) 0.81 (0.11) 0.53 (0.1) 0.6 (0.06) 1.08 (0.06)
SSVS2-stepwise 0.9 (0.02) 0.75 (0.04) 0.42 (0.14) 0.85 (0.04) 0.74 (0.04) 1.07 (0.06)

K = 4, N = 600
Horseshoe-onestep 0.85 (0.02) 0.7 (0.03) 1 (0) 0.76 (0.06) 0.82 (0.04) 0.9 (0.1)
SSVS1-onestep 0.85 (0.02) 0.69 (0.03) 0.96 (0.04) 0.38 (0.16) 0.53 (0.12) 0.98 (0.12)
SSVS2-onestep 0.85 (0.01) 0.69 (0.03) 0.59 (0.07) 0.82 (0.06) 0.76 (0.05) 0.96 (0.11)
Horseshoe-stepwise 0.86 (0.02) 0.73 (0.03) 1 (0) 0.64 (0.07) 0.73 (0.05) 0.93 (0.05)
SSVS1-stepwise 0.86 (0.02) 0.73 (0.03) 0.78 (0.08) 0.37 (0.06) 0.48 (0.05) 1.03 (0.07)
SSVS2-stepwise 0.86 (0.02) 0.73 (0.03) 0.33 (0.07) 0.73 (0.05) 0.63 (0.04) 1.01 (0.07)

Notes: Results are presented as mean (SD) over all simulated datasets. cRate: correct classification rate; aRand: adjusted
Rand index; TPR: true positive rate; TNR: true negative rate; ACY: accuracy; RMSE: rootmean square error. SSVS1: c2 = 100,
τ 2 = 0.01; SSVS2: c2 = 100, τ 2 = 0.1.

In our practical applications, we considered BIC and BF to determine the number of
clusters in the proposed mixture models. While these indices have been widely used in
many model-based cluster analyses, they can be infeasible when there are a larger number
of candidate models needed to fit. Alternatively, one can treat K as a random variable, and
the inference ofK is considered as part of the modeling process. In this regard, Richardson
and Green proposed a reversible jump MCMC method, which allows the sampler jumps
between parameter subspaces of different dimensionality [48]. Stephens proposed a birth-
and-death process, in which theMCMC sampler allows the number of components to vary
by allowing new components to be ‘born’ and existing components to ‘die’ [54]. Moreover,
Bayesian non-parametric methods such as the Dirichlet process mixture [15] can also be
employed.

A previous study by Vermunt suggested two improved stepwise approaches to account
for the uncertainty of the class assignment estimated from a latent class model [57]. In our
current study, we also compared the one-step and stepwise approaches but instead focus on
estimating the covariate effects and selecting the variables that are associated with the class
assignment. It is worth noting that even if covariate selection works well with both one-
step and stepwise approaches, some covariate effects are expected to be downward biased
given the penalization effect from either the shrinkage or spike-and-slab prior, which is also
reflected in the estimates of RMSE in our simulation study (Tables 1 and 2). Moreover, for
the stepwise approach, if the uncertainty of the class membership is not taken into account,
a systematic underestimation of covariate effects may occur [57].

The number of predictors considered in the current study is not large as compared to
manymedical studies whichmay have hundreds or thousands of predictors, such as genet-
ics studies. The definition of large here ismore relevant to the computational scale in which
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Table 2. Simulation results for Scenario 2 (low separation).

cRate aRand TPR TNR ACY RMSE

K = 2, N = 600
Horseshoe-onestep 0.88 (0.02) 0.57 (0.07) 1 (0) 0.97 (0.04) 0.98 (0.03) 0.71 (0.08)
SSVS1-onestep 0.88 (0.02) 0.56 (0.07) 0.88 (0.1) 0.93 (0.06) 0.92 (0.05) 0.69 (0.09)
SSVS2-onestep 0.87 (0.02) 0.56 (0.06) 0.06 (0.11) 1 (0) 0.76 (0.03) 0.69 (0.09)
Horseshoe-stepwise 0.91 (0.01) 0.66 (0.04) 1 (0) 0.95 (0.05) 0.96 (0.04) 0.62 (0.17)
SSVS1-stepwise 0.91 (0.01) 0.66 (0.04) 0.93 (0.1) 0.83 (0.08) 0.86 (0.06) 0.6 (0.19)
SSVS2-stepwise 0.91 (0.01) 0.66 (0.04) 0.41 (0.19) 1 (0) 0.85 (0.05) 0.6 (0.19)

K = 3, N = 600
Horseshoe-onestep 0.81 (0.04) 0.54 (0.06) 1 (0) 0.94 (0.04) 0.95 (0.03) 0.73 (0.08)
SSVS1-onestep 0.81 (0.04) 0.54 (0.06) 0.86 (0.1) 0.71 (0.09) 0.74 (0.05) 0.73 (0.09)
SSVS2-onestep 0.8 (0.04) 0.54 (0.06) 0.16 (0.14) 1 (0.01) 0.79 (0.03) 0.73 (0.09)
Horseshoe-stepwise 0.81 (0.05) 0.56 (0.06) 1 (0) 0.87 (0.09) 0.9 (0.07) 0.73 (0.16)
SSVS1-stepwise 0.81 (0.05) 0.56 (0.06) 0.7 (0.13) 0.63 (0.08) 0.65 (0.06) 0.73 (0.19)
SSVS2-stepwise 0.81 (0.05) 0.56 (0.06) 0.2 (0.12) 0.95 (0.04) 0.77 (0.04) 0.73 (0.18)

K = 4, N = 600
Horseshoe-onestep 0.77 (0.03) 0.55 (0.04) 1 (0) 0.85 (0.06) 0.89 (0.04) 0.68 (0.08)
SSVS1-onestep 0.76 (0.03) 0.55 (0.04) 0.88 (0.08) 0.51 (0.1) 0.6 (0.08) 0.69 (0.09)
SSVS2-onestep 0.76 (0.03) 0.54 (0.04) 0.3 (0.12) 0.97 (0.03) 0.8 (0.04) 0.68 (0.09)
Horseshoe-stepwise 0.78 (0.03) 0.56 (0.04) 1 (0) 0.81 (0.09) 0.85 (0.07) 0.67 (0.13)
SSVS1-stepwise 0.78 (0.03) 0.56 (0.04) 0.69 (0.13) 0.49 (0.08) 0.54 (0.05) 0.68 (0.16)
SSVS2-stepwise 0.78 (0.03) 0.56 (0.04) 0.21 (0.07) 0.87 (0.06) 0.71 (0.04) 0.68 (0.16)

Notes: Results are presented asmean (SD) over all simulated dataset. cRate: correct classification rate; aRand: adjusted Rand
index; TPR: true positive rate; TNR: true negative rate; ACY: accuracy; RMSE: root mean square error. SSVS1: c2 = 100,
τ 2 = 0.01; SSVS2: c2 = 100, τ 2 = 0.1.

estimating 2p(K−1) models would be infeasible when p and/or K increase. Therefore, the
variable selection provides a convenient tool to identify important predictors and to facili-
tate better interpretation. Furthermore, the literature has not reached a consensus in terms
of whether adding covariates can improve the class recovery or not (i.e. subjects are classi-
fiedmore accurately). Huang et al. [25] found that whether covariates were included in the
model and which covariates were included could have an impact on the class assignment,
which highlights how the inclusion of covariates and the decision of what covariates to
include can dramatically influence the nature of the latent class variable. A previous study
also showed that deciding the number of latent classes without predictors of latent class (i.e.
via an unconditional model), and including the latent class predictors into the model sub-
sequently lead to good estimates for all model parameters [29]. Similarly, our study finds
that the one-step approach with variable selection priors resulted in larger uncertainty in
the posterior class probability compared to the unconditionalmodel inwhich nopredictors
were included (Figures E1 & E2) and, therefore, resulted in worse clustering performance.

The implementation of SSVS in the current study considers several sets of hyperparam-
eters in both Practical Applications and Simulation Studies. It is recognized that SSVS is
sensitive to the specification of its hyperparameters c2 and τ 2, as observed in our analyses,
and these hyperparameters are rarely known in practice. Moreover, tuning these hyperpa-
rameters is a difficult process in many applications. While our implementation considers
different specifications of these hyperparameters, careful selection and tuning these param-
eters by amore extensive searchmay lead to refined results. In contrast, theHorseshoe prior
is free of tuning parameters andwas found to have desirable variable selection performance
in our practical applications and simulation study. However, the Horseshoe prior has also



JOURNAL OF APPLIED STATISTICS 405

been criticized for not providing sufficient shrinkage to large coefficients, which is undesir-
able when the parameters are weakly identified. Its variants such as regularized Horseshoe
[47] that allows users to specify a minimum level of regularization to the largest values can
be considered in the future study to refine the model.

The current proposed model refers to a basic model where fk is a Gaussian distribution,
and classes (or components) are used to model unobserved heterogeneity. More compli-
cated models can be considered in future studies. In this regard, variable selection priors
can be adapted to mixture models such as latent class analysis [3], shape invariant mix-
ture model [36], Bayesian consensus clustering [34] and Bayesian model for multivariate
continuous and discrete longitudinal data [30].
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