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ABSTRACT
Based on successes in preclinical animal transplant models, adoptive cell therapy (ACT) with 
regulatory T cells (Tregs) is a promising modality to induce allograft tolerance or reduce the use 
of immunosuppressive drugs to prevent rejection. Extensive work has been done in optimizing the 
best approach to manufacture Treg cell products for testing in transplant recipients. Collectively, 
clinical evaluations have demonstrated that large numbers of Tregs can be expanded ex vivo and 
infused safely. However, these trials have failed to induce robust drug-free tolerance and/or 
significantly reduce the level of immunosuppression needed to prevent solid organ transplant 
(SOTx) rejection. Improving Treg therapy effectiveness may require increasing Treg persistence or 
orchestrating Treg migration to secondary lymphatic tissues or places of inflammation. In this 
review, we describe current clinical Treg manufacturing methods used for clinical trials. We also 
highlight current strategies being implemented to improve delivered Treg ACT persistence and 
migration in preclinical studies.
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Introduction

Regulatory T cells (Tregs) are a specialized subpo-
pulation of CD4+ T cells that are crucial in main-
taining immune homeostasis and preventing 
autoimmunity.1 Tregs in humans are characterized 
by their prolific expression of the high-affinity 
interleukin IL-2 receptor α-chain (CD25), tran-
scription factor forkhead box P3 (Foxp3), and low 
expression of IL-7 receptor α-chain (CD127).2 The 
importance of Treg number and/or function in 
immune tolerance is illustrated by immunodysre-
gulation polyendocrinopathy enteropathy X-lined 
(IPEX) syndrome which is caused by a mutation in 
the FoxP3 gene and can be cured by restoring 
normal Treg populations via hematopoietic cell 
transplant (HCT).3,4

Tregs function to suppress immune responses 
toward self and non-self by limiting the activation 
and proliferation of other T cells through multiple 
mechanisms. These mechanisms include the produc-
tion of anti-inflammatory cytokines such as TGF-β 
(transforming growth factor beta) and IL-10 and the 

expression of membrane-bound molecules such as 
CTLA-4 (cytotoxic T cell-associated antigen), LAG- 
3 (lymphocyte activation gene 3), TIGIT (T cell 
immune receptor with Ig and ITIM domains), and 
CD39 (ectonucleoside triphosphate diphosphohydro-
lase 1).1,5 Tregs can also modulate antigen-presenting 
cells (APCs) through contact-dependent mechanisms 
that alter APCs capacity for co-stimulation and anti-
gen presentation.5 Additionally, high expression of 
CD25 enables them to sequester local IL-2 which 
limits effector T cell expansion and function by 
depriving them of IL-2.6,7

Interest in harnessing the suppressive capacity of 
Tregs for immunotherapy originates from early 
studies which demonstrated the importance of 
CD4+CD25+ Tregs in inhibiting the development 
of autoimmune disease.8 It was then demonstrated 
that naturally occurring CD4+CD25+ Treg popula-
tions could be expanded ex vivo to treat autoim-
mune diseases in mice by suppressing and 
modulating effector T cells.9 Thereafter, using 
adoptively transferred CD4+CD25+ Tregs in 
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a series of preclinical sentinel model studies in solid 
organ transplantation (SOTx) and graft-versus- 
host disease (GvHD) after allogeneic hematopoie-
tic cell transplantation (AlloHCT) further sup-
ported Treg therapeutic potential to induce 
immunological tolerance to non-self-antigens to 
prevent allograft rejection and GvHD. GvHD is 
a life-threatening complication of AlloHCT, 
which is used to treat hematological and non- 
hematological diseases.10 GvHD is an alloreactive 
donor T cell-mediated response driven immunolo-
gically by differences between donor and recipient. 
In seminal studies completed by Taylor et al., they 
demonstrated that depletion of murine 
CD4+CD25+ cells from the BM donor increased 
GvHD, which was then reduced upon infusion of 
fresh donor CD4+CD25+ cells.11 Since then, utiliz-
ing Treg to prevent/delay GvHD has been routinely 
demonstrated in preclinical murine models.12–14

The therapeutic potential of Tregs to support 
allograft survival after SOTx has also been demon-
strated using preclinical models of skin and heart 
Tx. For example, heart allograft survival was pro-
longed following transfer of ex vivo expanded 
CD4+CD25+ Tregs in wild-type mice.15 

Additionally, studies using humanized murine 
models demonstrated prolonged allograft survival 
in pancreatic islet and skin Tx following adoptive 
transfer of huTreg.16–18 What would further trans-
late to huTregs was the finding that murine Treg 
function was more potent than CD4+CD25+ Treg 
when sorted based on low expression of CD127.19 

Due to their immunological similarity to humans, 
the use of non-human primate models (NHP) has 
also been important in evaluating adoptive cell 
therapy (ACT) with Treg in SOTx. Ex vivo 
expanded Treg in NHP models are well character-
ized and adoptive transfer has been reported to 
suppress renal allograft rejection and prolong 
survival.20–22

Recently, clinical studies have been completed or 
underway assessing Treg to improve outcomes 
after SOTx or with AlloHCT to prevent GVHD.5,  

23–25 These clinical studies have also shown that 
large numbers of CD4+CD25+ Treg can be 
expanded in the presence of high doses of IL-2 ex 
vivo and infused safely.5, 26–34 The number of clin-
ical trials utilizing Treg cell therapy in transplanta-
tion and other fields are expected to increase. In 

this review, we describe current clinical GMP 
methods used to isolate and expand Tregs ex vivo 
for clinical trials in solid organ Tx and treatment/ 
prevention of GvHD. We then discuss in vivo and 
ex vivo strategies being used to improve adoptive 
Treg cell therapy persistence and migration to 
increase the efficacy of Treg therapy in preclinical 
studies. While numerous preclinical publications 
exist describing manufacturing methods of Treg 
cell products, few of these publications provide 
a correlation with completed clinical studies in 
SOTx. Therefore, to improve and enhance Treg 
cell therapy in the clinic, it is important to highlight 
manufacturing protocols specific to completed and 
recruiting clinical trials when possible. In this 
review, we aim to briefly introduce general con-
cepts around Treg and then highlight clinical man-
ufacturing methods used to generate Treg cell 
products used in SOTx referencing published clin-
ical trial protocols, manuscripts, and preclinical 
protocol development. It is also noteworthy that 
even in preclinical animal transplant models Treg 
ACT has only provided prolonged SOTx survival. 
Thus, even at the preclinical level, Treg ACT is far 
from optimized. All clinical trials to date unfortu-
nately have not reduced the levels of immunosup-
pressive drugs needed to prevent SOTx 
rejection.5,21,28,33 Thus, we also provide examples 
of ways investigators are working to improve Treg 
ACT and move the needle toward the field’s goal of 
maintenance of normal graft function without the 
use of immunosuppression, also known as drug- 
free tolerance or operational tolerance (OT).

Adoptive Treg therapy

Treg ACT has developed due to the need for alter-
native therapeutic agents to limit the need for 
immunosuppression (IS) after SOTx, and ideally 
support the routine induction and maintenance of 
immune transplant tolerance in recipients of allo-
geneic materials. SOTx remains the only effective 
lasting treatment for end-stage organ diseases. 
Strategies to increase short-term outcomes after 
SOTx have relied on better patient donor selection 
and improved immunosuppressive regimens.24 For 
example, calcineurin inhibitors, antiproliferative 
agents, and mTOR (mammalian target of rapamy-
cin) inhibitors can control the immune response 
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early post-transplant, but have detrimental side 
effects such as cardiovascular diseases, kidney fail-
ure, and susceptibility to opportunistic 
infections.24 Efforts to improve long-term out-
comes and 10-year survival remain unsuccessful 
due to the failure of multi-drug immunosuppres-
sion to address chronic rejection despite their toxic 
side effects.21,35 Other therapeutic strategies such as 
co-stimulation-blockade (CoSB) or monoclonal 
antibody (Ab) therapy to target cytokines and 
other co-stimulatory molecules have only had lim-
ited success at reducing the use of immunosuppres-
sive drugs.21 Therefore, utilizing Tregs or other 
regulatory immune cells as a potential immune 
cell therapy may be a promising alternative to 
reduce the use of immunosuppressive drugs and 
even induce allograft tolerance based on data 
obtained from various preclinical murine and 
NHP studies.

Despite new prophylaxis strategies, GVHD is 
a common side effect of AlloHCT where alloreac-
tive T cells destroy host tissues. Current treatments 
for GVHD involve nonspecific multi-drug immu-
nosuppression, particularly corticosteroids, that 
often leads to morbidity and mortality due to can-
cer relapse or secondary infection.10 Thus, alterna-
tive therapies such as Tregs are being investigated 
to prevent the development of GVHD after 
AlloHCT. If prophylaxes therapies can successfully 
prevent GVHD, this could also expand the use of 
AlloHCT beyond cancer treatment and for routine 
use as a means to induce transplant tolerance after 
SOTx.36–38

Treg isolation

The donor source of Tregs is important when 
designing and describing Treg cell therapy pro-
ducts. Tregs are typically classified as thymic- 
derived Tregs (tTreg) and peripherally-derived 
Tregs (pTreg).39 In contrast to tTreg cells that 
originate from the thymus, pTreg develop from 
conventional CD4+ T cells in the periphery after 
antigen encounter along with TGF-β, especially in 
the gut.23 Similarly, investigators have “induced” 
Foxp3+ Treg (iTreg) in vitro from CD4+ Foxp3- 
populations by expanding CD4+CD25− cells in the 
presence of IL-2, rapamycin, and TGF-β.40 To date, 
the majority of the Tregs used in clinical trials for 

SOTx, however, were isolated from autologous per-
ipheral blood mononuclear cells (PBMC) or 
Umbilical cord blood (UCB). Unfortunately, there 
are no consistently reliable specific markers to dis-
tinguish between tTreg and pTreg in mice and 
humans, thus making specific origination of Treg 
isolated from these sources imprecise. There is 
evidence to support the use of allogenic Tregs in 
humans; however, that is beyond the scope of this 
review.26,27,30 Therefore, this review will focus dis-
cussions on the detailed manufacturing of autolo-
gous Tregs from human subjects.

Human Tregs are relatively rare in the PBMCs 
and comprise only 2–10% of peripheral CD4+ 

T cells in healthy adults. Thus, Treg isolation 
and ex vivo expansion is required to reach the 
numbers of Treg predicted in animal studies to 
be therapeutic after adoptive transfer.21,41,42 As 
introduced above, the Tregs for clinical trials 
have been most commonly isolated from PBMC 
or UCB.24,26,27, 43–45 A recent novel strategy used 
pediatric thymuses which are routinely discarded 
during pediatric heart transplantation as a Treg 
source.46,47 Tregs develop in the thymus and thus 
the thymus represents an attractive alternative 
source to isolate Tregs for cellular therapies. In 
a study involving 11 different donors, roughly 
12% of the CD4+ cells were CD3+ CD4+ CD8− 

CD25+ CD127− with 85% of these cells expressing 
the FoxP3.46 This approach is an exciting alterna-
tive to isolate large numbers of Tregs; however, it 
is so far limited to pediatric heart transplant reci-
pients or when third-party Tregs are utilized. The 
clinical feasibility to isolate and expand functional 
tTregs is currently being explored in an ongoing 
clinical trial (THYTECH; NCT0492449) where 
tTregs isolated from the thymus are being tested 
for their ability to prevent rejection after pediatric 
heart transplantation.46

Treg isolation from leukapheresis has also been 
evaluated as a potential alternative source and 
offers increased starting cell density to improve 
Treg yields for subsequent ex vivo expansion.48 

Although not yet tested in clinical trials, the use 
of Granulocyte Colony-Stimulating Factor 
(G-CSF)-mobilized peripheral blood stem cells 
(G-PBSC) may be another potential source that 
could be used to isolate Tregs for patients receiving 
HCT.49,50 In this case, Treg isolation and expansion 
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would be performed after CD34 selection utilizing 
the typically discarded CD34 negative fraction. 
Application of G-CSF significantly increased Treg 
yield while preserving suppressive function and 
phenotype.50 To date, only PBMC and UBC have 
been clinically tested in SOTx and AlloHCT.

There has been rapid progress in the develop-
ment of Good Manufacturing Practice (GMP) 
grade protocols to isolate and expand large num-
bers, and recent reviews have detailed the strategies 
used to isolate Tregs from various blood products 
for use in clinical trials.24,44,51,52 Of these, common 
isolation techniques include fluorescence-activated 
cell sorting (FACS), direct or untouched magnetic 
cell separation, or a combination of both. In the 
case of magnetic cell separation, these systems uti-
lize magnetic microbeads to bind cells of interest 
(direct enrichment, or “positive” selection) or to 
selectively deplete unwanted cells (“negative” selec-
tion). Additionally, regardless of the methodology 
or source, high surface expression of CD25 remains 
the primary marker used to distinguish human 
Tregs from non-target cells along with low expres-
sion of CD127.53 Unfortunately, there is no singu-
lar surface marker for Tregs that distinguish them 
from other immune cells, and Foxp3 is an intracel-
lular transcription factor that cannot be utilized for 
the isolation of live cells. Therefore, multiple sur-
face parameters are needed to isolate Treg from 
blood products. Many groups have utilized cell 
sorting based on parameters of 
CD3+CD4+CD25+CD127low.28,31, 54–56 While this 
process yields highly pure Tregs, it is less efficient 
as run times can take many hours depending on the 
purity and cell concentration of the starting pro-
duct. Additionally, there can be considerable cell 
loss with traditional sorting via FACS or positive 
and negative bead selection. Such loss impacts the 
overall product yield and increases the need for 
robust ex vivo expansion. These shortcomings 
have driven advancements that have been made 
in streamlining GMP-compliant protocols to gen-
erate clinical grade Tregs.

One of the most notable advancements in this 
field has been with Miltenyi’s closed system mag-
netic cell separators CliniMACS Prodigy and 
CliniMACS Plus.57 These systems utilize magnetic 
microbeads to enrich for Tregs or to selectively 
deplete non-Treg (CD19+, CD8+, or CD127+ 

cells). Like flow cytometric cell sorting, this plat-
form allows for multiparameter selection, and 
numerous protocols specifically for Tregs have 
been developed and established. Currently, the 
approaches most cited are CD25 enrichment with 
or without prior selective depletion of CD8+ and/or 
CD19+ cells.26,27,29,30,48, 58–63

Another notable strategy that is becoming more 
common for Treg isolation allowing for a high 
purity Treg product is CD25 enrichment utilizing 
Miltenyi’s CliniMACS systems as described above 
in combination with a purification based on 
CD4+CD25+ CD127low selection using the closed 
cartridge, low cost MACSQuant® Tyto® (Miltenyi 
Biotec: Bergisch Gladbach, Germany). This strat-
egy works by using a clinical GMP grade CD25 
reagent (like the CD25 Enrichment microbeads) 
that is also biotinylated which allows the user to 
fluorescently label CD25 positive cells with phy-
coerythrin (PE) and perform purification using the 
MACSQuant Tyto sorter following the CD25 
enrichment step. In addition, other fluorescent 
markers in addition to CD25, such as CD4, 
CD127, or CD45RA, can be used for subsequent 
sorting if desired. This approach significantly 
reduces the processing time while also preserving 
the yield and purity of the product. If optimized, 
this type of processing approach could limit pro-
duct variability and increase reliability. 
Investigators have demonstrated the feasibility of 
using the CliniMACS for CD4+CD25+ Treg enrich-
ment; however, in this case, the purity was 
suboptimal.64,65 In theory, subsequent sorting for 
CD4+CD25+CD127low could significantly improve 
the purity and allow for robust ex vivo expansions 
of pure Treg populations.

Treg expansion

Based on the opinion, large doses of Tregs will be 
the most effective immunotherapy. CliniMACS- 
based and other Treg isolation protocols have 
been paired with ex vivo Treg expansion. There 
have been numerous different reagents and 
approaches used for generating clinical Treg pro-
ducts for the use in kidney transplantation 
(Table 1) and liver and heart transplantation 
(Table 2). Tables 1 and 2 summarize completed 
and recruiting Phase I/II clinical trials in SOTx 
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and the associated Treg manufacturing protocols. 
Using the isolation methods mentioned above, 
many groups have demonstrated that high num-
bers of Tregs can be isolated and subsequently 
expanded. Of note, it is evident in Tables 1 and 2 
that there is a considerable lack of data on the 
purity and Treg number resulting from most iso-
lation protocols. This is unfortunate as it is impor-
tant to understand Treg viability, phenotype, and 
purity through isolation steps as it correlates to end 
product stability, function, as well as relevant clin-
ical observations.

Human Tregs can be expanded in several ways 
all of which are dependent on IL-2 for proliferation 
and maintenance of the Treg phenotype 
(CD4+CD25+CD127lowFoxP3+). There is variation 
among protocols, however. IL-2 is typically added 
at day zero at 1000 U/mL and replenished as 
needed.44,52 There is no standard IL-2 concentra-
tion; however, a recent review has provided 
a detailed summary of reported concentrations 
(300–1000 U/mL) used for expansion in clinical 
trials.44 The use of mTOR inhibitor rapamycin, 
an immunosuppressive drug used to prevent graft 
rejection, can also be used in clinical grade Treg 
expansion protocols.29,30,45,55,57,59,66 Rapamycin 
selectively supports the ex vivo expansion of 
CD4+CD25+FoxP3+ Tregs while limiting the pro-
liferation of contaminating non-Treg. Likewise, 
rapamycin promotes the stability and functional 
capacity of expanded Treg to suppress the prolif-
eration of both autologous and allogenic CD4+ and 
CD8+ T cells in vitro.67 This was also confirmed in 
preclinical rodent studies demonstrating that Tregs 
could be expanded ex vivo in the presence of rapa-
mycin, and rapamycin delivery with Treg ACT can 
support tolerance to SOTx in rodents.68–71 

Therefore, in cases with less than ideal Treg purity 
following isolation, it may be beneficial to expand 
Tregs in the presence of rapamycin to block pro-
liferation of unwanted CD4+CD25− cells.

Stimulating/activating strategies

T cell receptor (TCR) engagement is required for 
Treg cell differentiation and the induction of 
Foxp3.72,73 Recent studies in mice allowing the 
deletion of the Treg TCR have also revealed critical 
functions for TCR signaling in Treg lineage 

maintenance and their suppressive function.74–77 

In addition to TCR signaling, CD28 co- 
stimulation is necessary for Treg activation, prolif-
eration, and function. Early experiments using 
mice deficient for CD28 or CD80/86 found 
reduced Treg populations, decreased CD25 expres-
sion, and suggested an important role for co- 
stimulation in Treg survival, FoxP3 expression, 
and suppressor function.78,79 The lack of CD28 or 
its ligands, CD80 and CD86, decreased Treg and 
exacerbates diabetes in nonobese diabetic (NOD) 
mice.78 Additional observations in rodents and 
humans also demonstrate the importance of 
CD28 signaling for Treg proliferation.80–83 As 
such, most clinical trials have expanded nonspeci-
fic polyclonal Tregs (polyTregs) using CD3/CD28 
expander beads which provide both TCR and 
CD28 co-stimulation. There are several published 
GMP compatible methods used to ex vivo expand 
Tregs for cell therapy which have been previously 
described.5,24,44,52 The optimal way to stimulate 
Tregs remains unclear; however, there are two 
main approaches to ex vivo expand polyTregs for 
clinical trials. The most common approach to 
expand human polyTregs is to use polyclonal sti-
mulation with anti-CD3 and anti-CD28 coated 
microbeads.26, 28–31, 45,54,56,84,85 GMP grade anti- 
CD3 and anti-CD28-coated nanoparticles are 
available for clinical use from Miltenyi Biotec 
(ExpAct™ Treg kit) and Invitrogen (CTS 
Dynabeads™ CD3/CD28). These beads are typically 
added at the start of culture and are expanded over 
a period of 14–36 days. It is unclear if multiple 
restimulations are required. Of those reported, 
fold expansions have been variable and can range 
from 100 to 2000 with IL-2 alone.26,31,54,63 Tregs 
can also be activated using artificial antigen- 
presenting cells (aAPCs). These cells have been 
developed to replace natural antigen-presenting 
cells (APCs) which mediate T cell effector function. 
Using lentiviral vector technology, aAPCs can be 
generated to more closely replicate the features of 
DCs that deliver CD28 co-stimulation.86 For exam-
ple, aAPCs expressing CD64 and CD86 were used 
to expand human UCB-derived Tregs.27 These cells 
are advantageous because they do not require 
removal post expansion as cells are lethally irritated 
prior to use. K562 cells expressing CD86 and CD64 
that are loaded with soluble anti-CD3 have been 
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used in clinical trials.27,40 It has been reported that 
these aAPCs are highly effective at expanding 
Treg.27,60 For example, Brunstein et al. were able 
to achieve a 10,000-fold expansion of Tregs from 
UBC in 2 weeks using the aAPCs that expressed 
CD64 and CD86. In the presence of rapamycin, 
3000-fold expansion was achieved.87

In addition to manufacturing polyclonal Tregs 
through the process discussed above, generating 
donor-antigen-specific/reactive Tregs (darTreg) 
has been gaining traction in recent attempts to 
induce tolerance after SOTx. In comparison to 
polyTregs, darTregs are expanded in the presence 
of donor cells and exhibit donor specificity after 
alloantigen exposure by selectively targeting allor-
eactive effector T cells that are detrimental to the 
allograft.88 Generally, darTreg are generated by 
isolating recipient Tregs and culturing them with 
donor alloantigen-expressing APCs from the trans-
plant donor, such as monocyte-derived DC and 
B cells.89,90 The global Treg pool contains a small 
fraction (10–20%) of darTregs, and generating 
them in large quantities has been a barrier for 
successful implementation.5,16,21, 91–94 Despite 
manufacturing challenges due to low frequency of 
darTregs, experimental models of transplantation 
have demonstrated that donor antigen-specific 
Tregs (darTregs) are more potent than polyTregs 
in promoting allograft survival.16,71,88,95 Therefore, 
due to increased specificity for alloreactive effector 
T cells and increased potency, it is likely that fewer 
darTreg are required to induce tolerance compared 
to polyTregs.

The first report of successful drug-free tolerance 
with a donor antigen specific cell therapy product 
in patients undergoing organ transplantation was 
published by Todo et al. In this study, investigators 
isolated recipient and donor lymphocytes and co- 
cultured recipient lymphocytes with irradiated 
donor lymphocytes with monoclonal antibodies 
to CD80/86 without IL-2 or rapamycin.85 Patients 
who underwent living donor liver Tx (LDLT) were 
lymphodepleted 8–10 days post liver Tx and 
received a single infusion of the darTreg-enriched 
product. Of the 10 patients infused, 7 met the trial- 
defined endpoint of tolerance and were successfully 
weaned off immunosuppression within the study 
period.85 Overall, infusions of 100–300 million cells 
were well tolerated without significant adverse 

event and the mean number of Tregs 
(CD4+CD25+FoxP3+) infused were 24.8% of the 
CD4+cells, which is a low Treg concentration com-
pared to other clinical studies (Tables 1 and 2).85 

The investigators measured suppressive function of 
the expanded cells in vitro using the mixed lym-
phocyte reaction (MLR) and inhibited recipient 
T cell proliferation by donor antigen stimulation. 
Yet, it is unclear what cell populations in the 
darTreg-enriched product were indeed responsible 
for tolerance induction in vivo and suppressive 
function in vitro. Nonetheless, these were impress-
ive and exciting studies. As the Tregs made up 
a very small fraction of the total product, this 
would suggest that lower numbers of darTreg are 
needed to induce tolerance or at the least weaning 
of immunosuppressive regimens. Additionally, it 
suggests that possibly other regulatory cells in addi-
tion to darTregs may be beneficial, contributing to 
tolerance induction or reduction of immunosup-
pression. Todo et al.’s study has facilitated the 
development of protocols to expand antigen- 
specific or darTregs from humans.9,89,93,96,97 

Several clinical trials are testing darTregs in SOTx 
(Tables 1 and 2). For example, the ONE Study was 
a massive multicenter study that included two 
polyTreg products and two darTreg products.98

Recently, results of the Artemis Phase I/II clinical 
trial (NCT02474199) have been published. The objec-
tive of this study was to determine safety and efficacy 
of a single dose of darTreg to facilitate reduction of 
immunosuppression in patients 2–7 years post liver 
Tx. Nine participants initiated immunosuppression 
reduction and were eligible for a single darTreg infu-
sion; however, only 5 of the 9 products manufactured 
met release criteria.94 The products that were not 
infused failed release criteria due to insufficient dose 
highlighting the challenge to manufacture enough 
darTregs for clinical trials. Investigators aimed to 
infuse a total of 100–500 million darTreg. Two 
patients received >300 million and the other three 
received 100–200 million darTregs. In comparison to 
the study by Todo et al., their product manufactured 
from starting population Tregs was more pure meet-
ing release criteria of >95% CD4+, >60% FoxP3+, and 
<5% CD4−CD8+.94 Of the 5 participants who received 
darTregs, all infusions were well tolerated with no 
reported significant adverse events. Two participants 
met the primary endpoint of 75% reduction of 
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calcineurin inhibition or discontinuation of a second 
drug, but none of the participants attempted com-
plete immunosuppression withdrawal.94 Efficacy 
could not be assessed due to too few treated partici-
pants. However, the investigators’ mechanistic studies 
offer insights to darTreg function in this patient 
population and current challenges to overcome. 
Their studies suggest darTreg are dysfunctional in 
patients 2–7 years after liver Tx. Mechanistic and 
phenotypic studies suggest an upregulation in activa-
tion, exhaustion, senescence, or progressive deletion 
after liver transplantation.94 To investigate Treg 
donor reactivity after liver TX, the authors performed 
in vitro studies using blood samples from the AWISH 
study (AWISH; NTC00135694). Tregs were assessed 
longitudinally in 16 patients at pre-Tx, 6 months 
post-Tx, and 2 years post-Tx to assess darTreg and 
conventional T cell reactivity to donor antigen. 
Overall, authors showed reduced proliferation and 
selective reduction of donor reactivity in all T cells 
after liver Tx starting 6 months post liver Tx persist-
ing until 2 years after transplant.94 The differences in 
epigenetic regulation, transcription, and donor reac-
tivity of darTregs in liver Tx highlight important 
insights to the difficulties of generating successful 
Treg products and underpin challenges faced when 
manufacturing enough darTregs. Future longitudinal 
studies should investigate both darTreg and polyTreg 
transcriptional changes and donor reactivity pre- and 
post-Tx when possible, which may offer solutions to 
improve clinical manufacturing of Treg products that 
are functionally potent and persist after infusion.

Alternative strategies to improve efficacy and 
Treg in vivo persistence

Multiple clinical trials have demonstrated the 
safety and tolerability of adoptive Treg cell therapy 
after AlloHCT or SOTx.5,23,24,31,44 However, clin-
ical trials attempting to limit recipient anti-AlloAg 
responses have yet failed to translate to reduced use 
of immunosuppressants after SOTx.5,28,32,33 One 
factor potentially leading to the limited efficacy of 
Treg ACT may be due to their reduced persistence 
in vivo. Results from clinical trials demonstrate that 
Tregs expanded in culture with high doses of IL-2 
decrease rapidly in vivo and methods of tracking 
infused Tregs are limited.54,85,94,99 Thus, alternative 
methods such as administering low-dose IL-2 (ld- 

IL-2) to increase their persistence in vivo are being 
investigated. As discussed in earlier sections, Tregs 
require the growth factor IL-2 for proliferation, 
survival, and functional activity.43 Additionally, 
Treg ACT requires extensive ex vivo expansion 
with high doses of IL-2 which may affect their 
stability, phenotype, and survival once transferred 
in vivo. It is thought that using IL-2 at low doses 
in vivo in combination with adoptive Treg cell 
therapy could promote Treg survival and improve 
therapeutic efficacy. Use of IL-2 in combination 
with adoptive Treg cell therapy has not been 
approved and clinical trials are underway investi-
gating safety, dosing, and efficacy of low-dose IL-2 
and Treg infusion for GvHD and T1D.99–104 More 
recently, it has also been clinically tested in stable 
liver transplant recipients patients 2–6 years post- 
transplant.105 Unfortunately, it is clear that using 
ld-IL-2 to increase Treg persistence is not without 
its risks, as there is clear evidence for activation of 
effector cells such as cytotoxic CD8+ T cells and NK 
cells in the recipient.99,105 In the context of SOTx, 
recently published results from a clinical trial 
(NCT02949492) that used ld-IL-2 to expand endo-
genous Tregs in LTx recipients reported rejection 
episodes in 4 of 5 participants who initiated immu-
nosuppression withdrawal.105 These episodes were 
mild to moderate and tended to resolve after initi-
ating immunosuppression. One participant, how-
ever, developed T cell mediated rejection that was 
unresponsive to steroids and the individual 
required re-transplantation.105 Due to these nega-
tive outcomes, it is very unlikely that ld-IL-2 can be 
easily developed as an adjuvant to Treg ACT sup-
porting tolerance induction. As discussed below, 
however, several groups are developing IL-2 ortho-
logs to target transferred Tregs more precisely 
without impact on other immune cells responsive 
to the natural endogenous cytokine.106

Microparticles delivering chemokine CCL22

The rapid loss of infused Treg may also suggest that 
they undergo generalized and unfocused migration 
into the tissues or are lost in the absence of signals 
supporting their survival and required functions. As 
such, harnessing mechanisms that can orchestrate 
Treg ACT recruitment and function in vivo may be 
a promising new approach to improve clinical 
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outcomes. In a recent proof-of-principle study, it was 
demonstrated that poly lactic-co-glycolic acid 
(PLGA) microparticles (MP) could generate 
a chemokine gradient of C-C-Motif Chemokine 22 
(CCL22) to recruit CCR4-expressing Tregs in vivo.107 

These CCL22 MP prolonged hindlimb allograft sur-
vival and promoted donor-specific tolerance.108 

Additionally, synthetic human CCL22 MP induced 
human Treg migration in vitro demonstrating that 
this technology has the potential to improve Treg cell 
therapy efficacy by delivering chemokines, like 
CCL22, that directs them to the graft, or by providing 
other stimuli (i.e., IL-2, TGF-β) that support their 
survival or functions in the graft.

The use of IL-2, TGF-β, and rapamycin has been 
shown to favor Treg suppressive function and 
development.109 Currently, the use of low dose IL- 
2 in combination with Treg cell therapy is being 
evaluated to promote Treg persistence and endogen-
ous Treg expansion.99 A limitation to this is that this 
approach is nonspecific and can have systemic off 
target effects. Additionally, a recently published 
study found that administration of low-dose IL-2 
in liver Tx patients did increase the number of 
Tregs but failed to induce transplantation 
tolerance.105 An alternative to this would be to pro-
vide local extended release of these cytokines and 
drugs at the graft site to promote tolerance. In one 
study, Treg inducing microparticles (TRI-MP) were 
engineered to release TGF-β1, IL-2, and rapamycin 
to induce differentiation from naïve T cells.110 Using 
a rat hindlimb vascular composite allotransplanta-
tion (VCA) model, TRI-MP prolonged allograft sur-
vival without the use of immunosuppression. This 
system also enriched Treg and reduced inflamma-
tory Th1 populations. The studies above suggest that 
microparticles can be engineered to support Treg 
localization, survival, and persistence after adoptive 
transfer to prevent allograft rejection and promote 
tolerance. Microparticles delivering supportive or 
stimulatory signals are an attractive potential 
method to add value to Treg ACT by boosting the 
efficacy of a product that, to date, has shown mini-
mum impact.

Engineering IL-2 cytokine-cytokine receptors

As described earlier, low dose IL-2 in combina-
tion with adoptive Treg transfer is an approach 

currently being evaluated in clinical trials to 
promote Treg survival and persistence. 
However, low dose IL-2 may support an inflam-
matory environment consisting of activated 
CD4+ and CD8+ cytotoxic effectors as well as 
NK cells making it difficult for Tregs to persist. 
Therefore, cytokine-cytokine receptor engineer-
ing such as the IL-2 cytokine receptor complex 
on Tregs may be an innovative approach to 
induce allograft tolerance and Treg survival 
without supporting effector T cell and NK cells 
that may contribute to GvHD response.

In a murine mixed chimerism model, 
FoxP3+GFP+-BALB/c Tregs (green fluorescent 
protein under the control of the mouse Foxp3 
promotor) were transduced to express an orthogo-
nal IL-2 (oIL-2) receptor β chain (oIL-2Rβ). 
Transduced Tregs were adoptively transferred 
along with C57BL/6 bone marrow cells (BMC) 
into wild type BALB/c recipients. Recipients that 
received oIL-2Rβ Tregs and treated with oIL-2 had 
significantly improved engraftment and increased 
percentage of FoxP3+GFP+ in CD4+ T cells without 
increasing CD8+ T cells. In addition, those same 
recipients had improved acceptance of heart allo-
grafts from C57BL/6 donor mice demonstrating 
donor-specific tolerance.111

Another study used a murine major mismatch 
acute GvHD model to investigate the suppressive 
function of this Treg orthogonal IL-2/IL-2 recep-
tor complex. Briefly, irradiated BALB/c recipients 
received T cell-depleted BMC from C57Bl/6 mice 
with or without fresh C57Bl/6 FoxP3 Treg cells 
or with oIL-2Rβ Treg. On Day 2, C57Bl/6 T 
responder cells were injected to induce GvHD. 
Increased survival was observed in recipients that 
received oIL-2Rβ+ Tregs with oIL-2. 
Additionally, oIL-2 selectively expanded oIL-2Rβ 
Treg in vivo and retained their ability to migrate 
to the gastrointestinal tract and lymph nodes.112 

These preclinical data support the potential of 
using cytokine-cytokine receptor engineering to 
improve adoptive Treg therapy efficacy for the 
treatment of Tx and GvHD. These data demon-
strate the specificity of cytokine-cytokine receptor 
interactions avoiding interactions with the nat-
ural cytokine response, thus reducing potentially 
harmful off target expansion of effectors, improv-
ing allograft tolerance.
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Conclusions/future directions
Overall, the steps for human Treg isolation and ex 
vivo expansion for clinical use have been outlined 
here and in other reviews.24,44,52,113 However, it is 
clear from this discussion that there is still work 
required to get to the generation of a functionally 
therapeutic product for clinical use that matches 
the effectiveness observed in preclinical studies. 
Clinical trials using Treg-based therapeutics for 
the prevention of GvHD after HCT or rejection 
after SOTx have been described and consistently 
shown that infusion of ex vivo expanded Tregs is 
well tolerated and safe.24,44,52 Technical advance-
ments in clinical manufacturing of Treg cell pro-
ducts for ACT have improved the isolation of these 
cells, with many coming online that allow isolation 
in closed systems as part of GMP processes. This 
includes positive selection for CD25 followed by 
subsequent sorting for CD4+CD127loCD25hi using 
Miltenyi’s closed system magnetic cell separator 
(CliniMACS Plus) and sorter (MACSQuant Tyto) 

(Figure 1). Variations in the approach and reagents 
used for ex vivo expansion indicate that optimiza-
tion and standardization are still needed to enable 
consistent generation of functionally stable Tregs 
for clinical use, and are summarized in Figure 1. 
Additionally, variation in manufacturing and 
reporting characteristics of Treg cell products 
may be a barrier to effectively compare study 
results between institutions and hamper future 
product development. Therefore, efforts have 
been made in this review to outline the minimum 
information required to interpret and compare 
experimental findings.113 This may help standar-
dize future studies allowing for more effective com-
parison and reproducibility. Lastly, results from 
clinical trials have driven novel preclinical studies 
aiming to improve the clinical application of Tregs. 
Studies include developing modified cytokine- 
cytokine receptor complexes to promote in vivo 
persistence and migration to target graft sites or 
lymphatic tissues (see Figure 1).

Figure 1. Overview of clinical manufacturing of regulatory T cell (Treg) products. Tregs can be isolated from peripheral blood, umbilical 
cord blood, leukapheresis, or G-CSF mobilized peripheral blood by magnetic cell separation and/or flow cytometric sorting using GMP 
grade closed systems. Isolated Tregs are then ex vivo expanded using anti-CD3/CD28 magnetic expander beads or artificial antigen- 
presenting cells (K562 64/86 aAPCs) in the presence of interleukin (IL)-2 with or without rapamycin. AlloAg-specific Tregs can be 
generated by culturing recipient Tregs with donor AlloAg-expressing APCs. Current in vivo and ex vivo strategies are being used to 
improve Treg ACT persistence and migration. Figure created with BioRender.com.
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