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ABSTRACT
A survival tree can classify subjects into different survival prognos-
tic groups. However, when data contains high-dimensional covari-
ates, the two popular classification trees exhibit fatal drawbacks.
The logrank tree is unstable and tends to have false nodes; the
conditional inference tree is difficult to interpret the adjusted P-
value for high-dimensional tests. Motivated by these problems,
we propose a new survival tree based on the stabilized score
tests. We propose a novel matrix-based algorithm in order to
tests a number of nodes simultaneously via stabilized score tests.
We propose a recursive partitioning algorithm to construct a sur-
vival tree and develop our original R package uni.survival.tree
(https://cran.r-project.org/package=uni.survival.tree) for implemen-
tation. Simulations are performed to demonstrate the superiority of
the proposed method over the existing methods. The lung cancer
data analysis demonstrates the usefulness of the proposed method.
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1. Introduction

A classification tree is a tree-like model developed by a sequence of binary classifications
(called splits) of the samples. A classification tree consists of internal nodes of the binary
splits (branches) and terminal nodes of the classified groups (leafs). One of the major pur-
poses of classification trees is to predict the outcome for a sample by identifying the most
appropriate group. The tree provides a graphical tool for pediction, which is especially
useful for clinicians/physicians to predict the disease outcomes for their patients.

Breiman et al. [5] described the classificatiion tree as a non-linear regression model,
which becomes a popular idea in statistics and machine learning community. In the sta-
tistical literature, the deviance and the two-sample test are the two most commonly used
measures to find the optimal spliting rules. See Everitt and Howell [21] for the overview of
the classification tree for continuous and discrete outcomes. For survival outcomes, which
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are typical outcomes for fatal diseases, the two most commonly used measures are the
significance tests based on the logrank statistic and Cox regression analysis.

The earliest works of Ciampi et al. [9,10] used a logrank test for classifications, including
the applications to non-Hodgkin’s lymphoma patients and breast cancer patients. While
the literature shows a large number of criteria to replace the logrank test [4,31,38], the
classification tree based on the logrank test remains the simplest for computation and
interpretation. However, the practical application of a tree is feasible only by the software
packages.

So far, the R package ‘rpart’ (Therneau and Atkinson [39]) is one of the most popular
and well-developed tools to construct trees, along with the graphical add-on R package
‘partykit’ (Hothorn et al. [27]). These powerful packages allow various response types,
including continuous, binary, and survival responses. For survival responses, significance
tests under the conditional Cox model are employed for selecting the optimal splits. The
resultant tree is called ‘conditional inference tree’ (Hothorn et al. [25,26]), which is often
abbreviated as ‘ctree’. Illustrations of the ctree are found in the well-known textbook of R
(Hothorn and Everritt [24]).

High-dimensional covariates often arise while developing a survival prognostic predic-
tionmethodwith gene expressions [17,19,41,42]. Such data posemany challenges for users
of a survival tree.When one applies the R package ‘rpart’ to high-dimensional gene expres-
sion data, no covariate is deemed significant in the usual scaling of P-values (e.g. 0.01 and
0.05) due to the adjustment for multiple tests. It should be emphasized that the usual scal-
ing of P-values (e.g. 0.01 and 0.05) for gene screening remains useful without adjustment
(e.g. Beer et al. [3]; Chen et al. [7]; Zhang et al. [44]). It is also too time-consuming to
find the optimal tree in the presence of a number of covariates. Therefore, the univari-
ate score tests have been suggested to select significant covariates [19,34,35,42], which do
not require model fitting and are workable for the commonly used P-value thresholds. A
predictor constructed from the selected genes is useful for predicting survival in lung can-
cers [3,7], ovarian cancer [20], and other cancers [30,8] for the usual scaling of the P-value
threshold, such as 0.05, 0.01, and 0.001.

Motivated by the computational efficiency and interpretability (of P-value) in the
univariate score tests, this article introduces a new tree construction algorithm of clas-
sifying survival data with the high-dimensional covariates. This proposed method differs
from the conditional tree based on the multivariate Cox-regression (Hothorn et al. [25])
that is implmented in the existing R packages. However, the methods are similar in its
principle to use ‘P-value’ as the threshold for determining the final tree. The proposed
method also differs from the tree constructed by the logrank tests (called the logrank
tree). We argue that the logrank tests are occasionally unstable and invalid for finding
the best split in high-dimensional and small sample settings. The key novelty in the
proposed method is the stabilization technique originally proposed byWitten and Tibshi-
rani [42] for high-dimensionalmultiple tests. The stabilized score test is aminor correction
to the logrank test, which however produces a large influence on a tree via multiple
tests.

This article is constructed as follows. Section 2 reviews the background of the research.
Section 3 proposes a new survival tree method. Section 4 includes the simulation stud-
ies. Section 5 contains a real data analysis. Section 6 concludes the article. Software
implementation is given in Appendix.
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2. Background

This section reviews the methods for classification trees for survival data. In order to moti-
vate our newly proposed method, we point out some defects of the existing classification
tree methods.

2.1. Notations

Let {(ti, δi, xi); i = 1, 2, . . . , n} be a survival dataset, where ti = min{Ti,Ui} is survival or
censoring time such that survival time Ti and censoring time Ui are random variables, δi
is the censoring indicator (δi = 1 if ti is survival time, or δi = 0 if ti is censoring time),
xi = (xi1, . . . , xip)′ is a p-dimensional vector of covariates, and n is the number of sam-
ples. Define a hazard function h(t|wij) = −dlog P(Ti > t|wij)/dt, the instantaneous risk
of death at t given the covariate information wij. The wij can be either {xij > c} or {xij ≤ c}
for a cut-off value c.

2.2. Survival trees

Survival trees are supervised classification algorithms to develop prognostic models based
on observed survival outcomes. A tree constructed from survival data can classify patients
into different prognostic groups according to their risk of death. With a survival tree,
physicians and clinicians can intuitively classify their patients to identify their survival
prognoses.

A survival tree is constructed by an algorithm called ‘recursive partitioning’. It is
an algorithm to sequentially partition the samples into subgroups based on the data
{(ti, δi, xi); i = 1, 2, . . . , n}. To construct a tree, we define a node by the split of the sam-
ples into two subgroups: {i; xij ≤ c} and {i; xij > c}, where c is a cut-off-value. The choices
for the covariate j and the value of c are determined by maximizing the prognostic differ-
ence between two subgroups. The set {1, 2, . . . , n} is called a parent node (or root node).
Two sets of partitioned samples are called child nodes (Figure 1). A tree arises by recur-
sively creating children from parents until some stopping criterion is met. Terminal nodes
are the nodes without children. Obviously, different trees arise from different measures of
the prognostic difference of the two child nodes.

2.3. Logrank tree

The logrank test has been the most commonly used way to measure the difference of
the two groups in terms of survival prognosis. For constructing a survival tree, Ciampi

Figure 1. A split of a parent node by a covariate x·j and a cut-off value c.
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Figure 2. Unbalanced sample allocation: one sample in Group 0 and other samples in Group 1.

et al. [10] proposed the logrank test as a criterion for splitting a parent node into two child
nodes. Since then, it has been routinely utilized for constructing a survival tree [4,31,38].
The logrank treeminimizes the P-value for testingH0 : h(t|x·j ≤ c) = h(t|x·j > c) for each
node in the tree. The recursive partitioning is terminated when the P-value gets larger than
a pre-specified threshold.

However, the test results of the logrank test may lose the statistical meaning when the
two child nodes have unusual sample allocations, the cases frequently occur in a tree con-
struction algorithm for high-dimensional covariates. Here we give an example to describe
the invalid results for the logrank test due to unbalanced sample sizes.

Suppose that one sample is allocated to Group 0 and other n − 1 to Group 1 (Figure 2).
In this setting, the Z-value for testing the two groups’ difference is

z = (Observed − Expected)√
Var

=
(
1 − 1

n

)
/

√
n − 1
n2

= √
n − 1,

and the P-value= Pr(|Z| > z)where Z ∼ N(0, 1). Thus, the P-value<0.05 if n ≥ 5. How-
ever, such a small P-value may not indicate the true difference of the two groups. More
generally, if one group contains the earliest k deaths, and the other group contains the
remaining samples, the Z-value is

z = (Observed − Expected)√
Var

=
{
k −

(
k
n

+ · · · + 1
n − k + 1

)}
/

√
k(n − k)

n2
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√
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Again, it is likely to get the P-value <0.05 if n ≥ 5. The false P-values generally arise in
small samples, not restricted to the above cases.

In order to avoid the abovementioned problems in the logrank tree, Leblanc and Crow-
ley [31] applied a permutation test.However, the permutation test is not a realistic approach
for high-dimensional covariates due to its extremely high computational cost. Amore com-
mon approach is to set theminimumnumber of samples in each terminal nodes in order to
insure that the sample sizes in {i; xij > c} and {i; xij ≤ c} are greater than a specfied num-
ber (e.g. 10). However, the sample size itself does not have statistical meaning, difficult
to interpret, and unclear by censoring. Thus, the choice of the sample size is often subjec-
tively or arbitrary chosen by a user. Or, a user may try different choices before getting a tree
that he/she wants. A bit more systematic way is to prune the tree after a large tree is con-
structed under a very small sample size threshold. This strategy typically needs to choose a
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cost function and perform an additional cross-validation to optimize the prediction accu-
racy, which is extremely time-consuming for high-dimensional covariates. Our stragegy to
correct the logrank test is different from these complex or unrealistic approaches.

2.4. Stabilized score test

It is well-known that the logrank test is related to a score test under the Cox model
hj(t|wij) = h0j(t)exp(βjwij), where wij = I(xij > c), and h0j(·) is the baseline hazard func-
tion. Let Ri = {�; t� ≥ ti} be the risk set at time ti. For testing H0j : βj = 0 vs.H1j : βj �= 0,
the score statistic and its variance are derived from the log-partial likelihood �j(βj) under
βj = 0,

�j(βj) =
n∑

i=1
δi

⎡
⎣βjwij − log

⎧⎨
⎩∑

�∈Ri
exp(βjw�j)

⎫⎬
⎭

⎤
⎦

Sj = ∂�j(βj)

∂βj
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=
n∑

i=1
δi

⎡
⎣wij −

∑
�∈Ri

w�j/
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for j = 1, . . . , p. The Z-value of the test is zj = Sj/V

1/2
j , which is equivalent to the logrank

test. Hence, the score and logrank tests share the same problem under unusual sample
allocations.

Witten and Tibshirani [42] stabilized the Z-value by using a small constant d0 ≥ 0 such
that

zd0j = Sj/(V
1/2
j + d0).

The value d0 is regarded as a shrinkage parameter: a larger value d0 shrinks the Z-value
more toward zero (Table 1). The value d0 = 0 corresponds to the original score statistic or
the logrank statistic. Since V1/2

j /(V1/2
j + d0) converges in probability to one, the asymp-

totic distribution of zd0j is equivalent to that of the logrank test. This means that a P-value
can be computed with the reference to the standard normal distribution as in the logrank
test.

Table 1 shows that the stabilized Z-value mitigates the problem of the logrank test
under the unbalanced sample allocation. Emura et al. [19] developed the compound.Cox R
package that implements the computation of the stabilized Z-values in multiple tests. The
function uni.score(.) in this package can efficiently computemanyZ-values of the stabilized
score test.

2.5. Conditional inference tree (ctree)

The ctree of Hothorn et al. [25] performs a recursive patition according to the tests for the
hazard ratio via the conditional Cox model given the status of their ancesters. They select
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Table 1. Z-values of the two-sample tests when the earliest k death occurs in one group.

k Z-value∗ n = 10 n = 50

Logrank test (= score test) 1 2.000 3.000 7.000
2 2.065 3.320 8.027

Stabilized score test with d0 = 0.01 1 1.951 2.903 6.533
2 2.034 3.256 7.708

Stabilized score test with d0 = 0.1 1 1.600 2.250 4.083
2 1.791 2.775 5.677

∗zd0j = Sj/(V
1/2
j + d0), where d0 ≥ 0. The value d0 = 0 corresponds to the logrank test.

a covariate xj and its cut-off value c such that the conditional test for H0 : h(t|x·j ≤ c) =
h(t|x·j > c) leads to the greatest significance. The most important advantage, as advocated
in Hothorn et al. [25], is that the statistically meaningful measure – the P-value, can con-
trol the tree size without the sample size contraint and the pruning process. However, the
interpretational difficulty arises when the dimension p is large (Section 5).

3. Proposedmethod

This section proposes a new method for constructing a survival tree based on the stabi-
lized score test. Recall that the stabilized score test mitigates the problem of the logrank
test under unbalanced samples between two splitting groups (Section 2.4). Hence, the new
algorithm is intended to improve upon the logrank tree. Moreover, we explain how this
algorithm is efficiently performed for the purpose of constructing a survival tree.

3.1. Algorithm to find the optimal split

A tree is contructed by recursively partioning a parent node into two chidren by finding
the optimal split. Hence, it is essential to develop an efficient algorithm to test a number of
hypotheses for all the possible splits. Below, we explain how efficiently the stabilized score
tests are performed.

We wish to decide an optimal split for testing

H0j : h(t|w·j = 0) = h(t|w·j = 1) vs. H1j : h(t|w·j = 0) �= h(t|w·j = 1),

where w·j = I(x·j > c), j = 1, 2, . . . , p. It is then necessary to search over all possible
covariates x·j’s and their cut-offs by testing a number of hypotheses. Below, we propose
an efficient computing method for performing multiple tests and finding the optimal split.

Let c1 < c2 < · · · < cm be the m ordered values such that c1 is the smallest value
and cm is the largest value of xij’s. Thus, all xij’s are scaled into c1 ≤ xij ≤ cm so that
c1, c2, . . . , cm−1 are the possible cut-off values for all the covariates, giving binary splits
of {i; xij ≤ ck} vs. {i; xij > ck} for k = 1, 2, . . . ,m − 1. We then define a matrix of n ×
p(m − 1) by⎡
⎢⎢⎢⎣
I(x11 > c1) I(x11 > c2) · · · I(x11 > cm−1) · · · I(x1p > c1) I(x1p > c2) · · · I(x1p > cm−1)

I(x21 > c1) I(x21 > c2) · · · I(x21 > cm−1) · · · I(x2p > c1) I(x2p > c2) · · · I(x2p > cm−1)
...

I(xn1 > c1) I(xn1 > c2) · · · I(xn1 > cm−1) · · · I(xnp > c1) I(xnp > c2) · · · I(xnp > cm−1)

⎤
⎥⎥⎥⎦
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The (i, j) element of this matrix is denoted by wij, i = 1, 2, . . . , n, and j = 1, 2, . . . ,
p(m − 1). Then, for a model hj(t|wij) = h0j(t)exp(βjwij), we perform a test forH0j : βj =
0. The univariate score statistic and its variances are

Sj =
n∑

i=1
δi(wij − S(1)

ij /S(0)
ij ), Vj =

n∑
i=1

δi(S
(2)
ij /S(0)

ij − (S(1)
ij /S(0)

ij )
2
),

where S(r)
ij = ∑

�∈Ri w
r
�j for r ∈ {0, 1, 2}. For d0 > 0, we obtain a Z-value zd0j =

Sj/(V
1/2
j + d0) forj = 1, 2, . . . , p(m − 1). Finally, the optimal split is determined by

argmaxj{|zd0j |}.
To find the optimal split, it is necessary to perform high-dimensional tests on p(m − 1)

covariates, which is computationally expensive. A naive method is to use the ‘for loop’
to compute them. However, consider a k-node tree having to compute over k · p(m − 1)
tests. Then, one requires a huge computational burden due to triple loops for k, p, and m.
To overcome the problems of high-dimensional score tests, we extend the matrix-based
computation technique of Emura et al. [19] to a tree algorithm. In order to apply their
method, we first prepare the stacked matrices:

× (m − 1) × (m − 1)︷︸︸︷ ︷︸︸︷

X =

⎡
⎢⎢⎢⎣
x11x11 · · · x11

...
... x1px1p · · · x1p

...
... · · · ...

xn1xn1 · · · xn1
...

... xnpxnp · · · xnp

⎤
⎥⎥⎥⎦ .

C =

⎡
⎢⎢⎢⎣
c1c2 · · · cm−1

...
... c1c2 · · · cm−1

...
... · · · ...

c1c2 · · · cm−1
...

... c1c2 · · · cm−1

⎤
⎥⎥⎥⎦ .

Then, we define the binary split indicator matrixW = I(X > C).
We define a vector of score statistics and a vector of their variances as

S = δ′(W − S(1)/S(0)),V = δ′(S(2)/S(0) − (S(1)/S(0)) × (S(1)/S(0))),

where δ = (δ1, . . . , δn)′ and

S(r) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

S(r)
11 S

(r)
12 · · · S(r)

1(p(m−1))

S(r)
21 S

(r)
22 · · · S(r)

2(p(m−1))

...

S(r)
n1 S

(r)
n2 · · · S(r)

n(p(m−1))

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, r ∈ {0, 1, 2}.

Thus, the vector of Z-statistics is S/(V1/2 + d01). Here, the operators × and / are applied
in the component-wise manner.
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Above operations should be done on the vector S and V instead of computing Sj and
Vj one-by-one through the loop for j = 1, 2, . . . , p(m − 1). For R users, one first prepares
W, and then applies it to the uni.score(,d0= ) function in the compound.Cox package. The
output gives a vector of Z-values of dimension p(m − 1). The following example illusrate
how this idea works.

Example 3.1: (a toy dataset of n = 10)
We give an example of using the proposed computing method. Consider a dataset of

size n = 10:

ti δi xi1 xi2 xi3 xi4 xi5
1 0 2 1 2 4 4
2 0 1 3 2 3 1
3 1 2 3 3 1 1
4 0 3 2 3 2 4
5 1 4 2 3 3 4
6 0 3 1 2 4 3
7 1 4 1 4 1 3
8 1 4 2 2 2 2
9 0 1 4 1 3 2
10 1 1 4 1 2 4

A split indicator matrix defining all the possible splits is shown as follows:

We put this ‘W’ matrix into the function uni.score(.) in the compound.Cox package, which
produces the vector of Z-values and P-values of the score tests:
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We see that I(x5 > 1) leads to the greatest significant since the P-value of the score test
is the smallest, serving as the optimal split.

To see the effect of the stabilized score test, we set d0 = 0.1. Then, the greatest signifi-
cance is shown to be I(x3 > 2). Thus, the optimal split has been changed by stabilization.

Remark 3.1: The proposed algorithm is suitable to deal covariates having the same scale
(the example above). However, clinical covariates, such as tumor size, gender, and can-
cer stages, may have different scales. The simplest way to unify the scales is to transform
all covariates into quantile levels, e.g. quartile levels, 1, 2, 3, or 4 (∼25th, 25th∼50th,
50th∼75th, or 75th∼ percentile). A factorial covariate has to be transformed into either
an ordinal covariate or dummy variables. A variable taking 0 and 1 has to be changed into
1 and 4 to conform this scale. In practice, the choice of c1 < c2 < · · · < cm may not need a
largem. Clinical interpretations of the cut-off values c1, c2, . . . , cm−1 may also be relevant.

3.2. Algorithm to construct a survival tree

We have suggested our optimal splitting strategy by minimizing the P-value for each split.
After recursively splitting nodes, one needs to stop splitting when certain conditions are
met. We suggest our stoping rule to be ‘P-value’, unlike a commonly used rule based on
the number of samples in a node (or uncensored samples in a node). We believe that P-
values are statistically more meaningful than sample sizes. Especially for censored data,
the sample size carries little information. For instance, a node with 10 uncensored samples
is more informative than a node with 10 censored samples. If a tree is determined by the
sample size criterion, it has to perform an additional pruning process. Furthermore, users
have little sense to determine how a sample size is large or small. On the other hand, they
may agree that ‘P < 0.05’, ‘P < 0.01’, and ‘P < 0.001’ are reasonable ‘evidence’ to have a
split for a node. In summary, our survival tree adopts a single spliting/stoping criterion, the
P-value, without restricting the node sizes or pruning a tree. This results in a very simple
algorithm with an interpretable tree.

To develop our tree-construction algorithm, the initial step is to:
Step 0: Set a P-value threshold, denoted as 0 < P < 1 (e.g. P = 0.05), and a shrink-

age parameter d0 > 0. Define a current (parent) node by all the samples in the dataset
{1, 2, . . . , n}.
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We propose the following recursive partitioning to construct a survival tree:
Step 1: If the current node has n ≤ 2, set it as a terminal node. For n > 2 in the

current node, calculate the Z-value zd0jk for testing {i; xij ≤ ck} vs. {i; xij > ck} for all possi-
ble splits (j, k)’s. Find (j∗, k∗) = argminj,k{|Pd0j,k |}, where Pd0j,k = Pr(|Z| > |zd0j,k |). Set Pj∗k∗ =
Pr(|Z| > |zd0j∗,k∗|).

Step 2: If Pj∗k∗ < P, create two child nodes by spliting the current node into {i; xij∗ ≤
ck∗} and {i; xij∗ > ck∗}: go back to Step 1, replacing the current node with the child nodes.
If Pj∗k∗ ≥ P, stop the algorithm and define the current node as the terminal node.

Remark 3.2: If the samples in the current node are all censored, one has Pd0j,k = 1 due to
zd0jk = 0 for all possible splits (j, k)’s. Thus, this node becomes a terminal node no matter
how the sample size is large. If the current node has a high proportion of censored samples,
it is likely to be a terminal node. However, we stick to the P-value for the stopping rule
without referring to the censored proportion. This is because the P-value contains every
information necessary to judge the decision on the binary split.

3.3. Selection of d0

We suggest minimizing the Akaike Information Criterion (AIC) to choose d0 for a given
P-value threshold. The AIC of a tree can be computed from a Cox model having the ter-
minal nodes as factorial covariates (computed by the AIC(.) function in R). If the tree
has unbalanced samples in the terminal nodes, the Cox model may not converge. Thus,
the value of d0 is optimized among those models making the Cox model converges.
As d0 increases, the likelihood tends to decrease while the number of terminal nodes
decreases. The AIC achieves a good balance between the convergence, goodness-of-fit, and
the model complexity. We do not recommend cross-validation that requires a high cost of
computation.

Different values of d0 can produce the same AIC value because there are a limited num-
ber of trees coming from all the values of d0. In our data example, the values d0 = 0,
d0 = 0.01, d0 = 0.1, and d0 = 0.2 were enough to produce all possible trees. Among them,
d0 = 0.01 was chosen as the best choice while d0 = 0 and d0 = 0.1 did not make their Cox
models converge.

3.4. Survival risk prediction

A proposed survival tree can be used for prediction for a new sample not included in the
training dataset. At each inner node, a positive Z-value (zd0j > 0) implies that the group
of {xj > cj} has a higher risk of death than {xj ≤ cj} does. Conversely, a negative Z-value
(zd0j < 0) implies that the group of {xj ≤ cj} has higher risk of death than {xj > cj} does.
Thus, the signs of the Z-values in inner nodes determines the order of the death risks
among the nodes.

We denote the ranks of the terminal nodes by R ∈ {1, 2, . . . , k}, where k is the number
of terminal nodes in a tree. For instance, a terminal node has the highest risk R = k if it is
judged ‘higher risk’ at all inner (ancestral) nodes. Similarly, the node of the lowest risk is
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assigned for R = 1. To determine all other intermediate ranks, we impose a rule: any child
node judged higher risk than the other child cannot be reversed by further splits.

The prediction for a new sample is performed by allocating the rank of the sample, and
then calibrating the survival probability based on the samples in the corresponding node
(e.g. by the Kaplan-Meier estimator). In the numerical analyses of this article, we define the
left node to be the higher risk group and the right node to the lower risk group. In this way,
all the terminal nodes are ordered by their risks from the highest risk (the leftmost node)
to the lowest risk (the rightmost node). The tree becomes further informative by adding
the Kaplan-Meier survival plot made by the samples in each terminal node.

The prediction performance of a tree can be assessed through the assigned ranks of risk.
If test samples are available (in addition to training samples), one can compute the pre-
dicted risk ranks for all the test samples. Then, one can evaluate the concordance between
the predicted risk ranks and the survival outcomes for all the samples in the test dataset.We
adopt the c-index that is easily computed from censored data through the concordance(.)
function in the survival package [40].

4. Simulations

Monte Carlo simulations were conducted to assess the performance of the proposed
method and the existingmethods (logrank tree and ctree) under high-dimensional covari-
ates. The simulation consists of several steps: generating training data, constructing a tree,
generating testing data, and evaluating the performance of the tree.

Since the evaluation of classification trees involves a few different aspects, we chose the
following criteria:

(i) Selection ability: We examine if the tree contains a reasonable proportion of infor-
mative nodes. The tree may have inner nodes that are falsely chosen (false positive).
We use the ‘precision’ defined as the proportion of the inner nodes whose split uses
informative covariates (true positive). A larger value of the precision corresponds to
a better selection ability.

(ii) Classification ability: We examine if the tree has a good classification ability. We use
the likelihood ratio (LR) test for the equivalence of the classified groups based on
the testing data. We use the P-value obtained from Cox regression treating terminal
nodes as factors. A small P-value corresponds to a better classification ability.

(iii) Prognostic ability: We examine if the tree has an ability to correctly assign the prog-
nositic risk ranks for the testing data. We adopt the c-index that is easily computed
from censored data through the concordance(.) function in the survival package.

4.1. Simulation designs

Data were simulated as follows. We generated p = 100 discrete-valued gene expressions
with

x′
i = (

×q︷ ︸︸ ︷
xi1, . . . , xiq,

×q︷ ︸︸ ︷
xiq+1, . . . , xi2q,

×(100−2q)︷ ︸︸ ︷
xi2q+1, . . . , xi100),
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β = (

×q︷ ︸︸ ︷
β , . . . ,β ,

×q︷ ︸︸ ︷
−β , . . . ,−β ,

×(100−2q)︷ ︸︸ ︷
0, . . . , 0 ),

We considered a sparse setting (q = 10) with β = 0.5 or 1, and a non-sparse setting
(q = 30) with β = 0.05 or 0.1. The intra-cluster correlation of gene expressions was 0.8 for
the first two clusters of size q, and 0 for the last cluster of size 100 − 2q (Emura et al. [17]).
We first generated continuous gene expressions yij ∼ Unif (−1.5, 1.5) from the R function
X.pathway(., rho1 = 0.8, rho2 = 0.8) in the compound.Cox package. We then discretized
them by the two scenarios:

Balanced covariates:

xij =

⎧⎪⎪⎨
⎪⎪⎩
1 if − 1.5 ≤ yij < −0.75,
2 if − 0.75 ≤ yij < 0,
3 if 0 ≤ yij < 0.75,
4 if − 0.75 ≤ yij ≤ 1.5.

Unbalanced covariates:

xij =
⎧⎨
⎩
1 if − 1.5 ≤ yij < −0.5,
2 if − 0.5 ≤ yij < 0.5,
3 if 0.5 ≤ yij ≤ 1.5.

(1)

For the latter, we randomly selected j ∈ {2q + 1, . . . , 100} and replace xij with 4. Figure 3
is an example for q = 5, where j ∈ {11, . . . , 100} are randomly chosen for replacement.

Given the gene expressions, we generatedTi from aCoxmodel h(t|x′
i) = h0(t) exp(x′

iβ)

with h0(u) = 1. We also generated Ui ∼ Unif (0, 1), and set ti = min{Ti,Ui} and δi =
I{Ti ≤ Ui}. The censoring percentage is around 50∼56%. Thus, we generated training
data {(ti, δi, xi); i = 1, . . . , n} to develop trees under P-value thresholds of 0.01 and 0.005
(the conditional inference tree uses the adjusted thresholds (e.g. the adjusted value for 0.01
is 1 − (1 − 0.01)100 ≈ 0.633)). We also generated independent and identically distributed
test samples in order to measure prediction accuracy. All simulations were based on 100
repetitions, where each repetition develops a tree and tests its prediction performance.

SupplementaryMaterials include additional stimulations where the data were generated
from the continuous gene expressions (without discretization). We observe that the effect
of discretization is minimal.

4.2. Simulation result

Tables 2 and 3 compare the performance of the proposed tree, the logrank tree, and the
ctree.

If the covariates are balanced, the proposed tree and the logrank tree give almost iden-
tical performance in terms of the classification ability (LR test) and prognostic ability
(c-index). While the ctree gives the lowest c-index, the classification ability is often the
best. In fact, all the trees performed competitively well so that no clear-cut conclusion is
derived to judge the best tree.

If the covariates are unbalanced, the performance of all the trees gets lower while the
proposed tree exhibits a modest advantage over the logrank tree in terms of the LR test
and the c-index. The improved results come from the fact that the proposed tree avoids
false nodes by stabilizing the test results for unbalanced samples. This is exactly what we
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Figure 3. Simulating unbalanced covariates (upper) and maps from xij to xij (lower).

expected. However, the improvement under non-sparse setting is weaker than that under
the sparse setting (Table 2 vs. Table 3). Thismeans that the variance stabilization is effective
specifically for the sparse setting.

We learn that the sizes of the tree (No. terminal nodes) are remarkably different among
the three methods. In principle, a smaller tree is preferred to a larger tree if they have the
same prediction performance. We observe that the logrank tree gives the largest tree while
the ctree gives the smallest tree. In this respect, the ctree provides the most parsimonious
model. However, the tree seems to be too small. Indeed, the low c-index for the ctree likely
indicates the failure to have informative nodes in a tree. The proposed method gives an
intermediate tree size.

Under the sparse setting (Table 2) the precision is usually less than 50% for all trees.
Hence, the majority of the nodes are falsely selected. Nonetheless, the proposed tree has
higher precision than the logrank tree. This improvement is due to the conservative tests
results of the proposed tree relative to the logrank tree. The ctree should have the highest
precision due to the smallest number of terminal nodes in a tree; however, we were unable
to calculate the precision from the output.

Based on the above findings, we conclude that the proposed method effectively selects
nodes from high-dimensional and unbalanced covariates. The proposed tree has a better
prognostic ability than the ctree and a more precise selection ability than the logrank tree.
However, under the balanced covariates, the performance of the all the trees are equally
well.

5. Data analysis

This section applies the proposed method to the lung cancer data to illustrate how a
survival tree is constructed, comparing the results with other tree-based methods and
model-based methods.
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Table 2. Simulation results comparing the fourmethods under the sparse setting (100 replications). The
sample size is n = 100 and the censoring percentage is around 50%∼ 56%. The score tests are stabilized
by d0 = 0.01 and 0.1.

Split criterion: P-value< 0.01 Logrank Score 0.01 Score 0.1 ctree

β = 1 Balanced
covariates

No. terminal nodes 18.48 18.03 13.05 3.66

Precision% 42.8 44.7 54.3 –
LR test: log10(P) −11.14 −11.22 −12.03 −12.51

c-index 0.797 0.798 0.798 0.770
Unbalanced
covariates

No. terminal nodes 23.16 22.36 14.30 3.40

Precision% 25.7 27.3 44.0 –
LR test: log10(P) −9.16 −9.50 −10.93 −9.22

c-index 0.759 0.765 0.784 0.742
β = 0.5 Balanced

covariates
No. terminal nodes 17.93 17.58 12.51 3.18

Precision% 37.0 38.7 46.4 –
LR test: log10(P) −7.87 −7.96 −8.42 −8.90

c-index 0.768 0.770 0.767 0.737
Unbalanced
covariates

No. terminal nodes 21.56 21.11 13.92 2.93

Precision% 21.6 23.0 35.1 –
LR test: log10(P) −5.52 −5.56 −6.96 −6.30

c-index 0.710 0.714 0.743 0.701

Split criterion: P-value < 0.005 Logrank Score 0.01 Score 0.1 ctree

β = 1 Balanced
covariates

No. terminal nodes 16.64 16.12 11.02 3.51

Precision% 46.1 48.2 63.6 –
LR test: log10(P) −11.43 −11.69 −12.17 −12.26

c-index 0.796 0.797 0.796 0.765
Unbalanced
covariates

No. terminal nodes 21.50 20.21 12.03 3.16

Precision% 26.7 29.0 50.9 –
LR test: log10(P) −9.24 −9.59 −11.17 −8.78

c-index 0.758 0.763 0.782 0.736
β = 0.5 Balanced

covariates
No. terminal nodes 15.94 15.23 10.27 3.05

Precision% 40.0 42.7 54.2 –
LR test: log10(P) −7.94 −8.16 −8.57 −8.51

c-index 0.768 0.769 0.765 0.731
Unbalanced
covariates

No. terminal nodes 19.78 19.23 11.42 2.71

Precision% 22.5 24.1 40.9 –
LR test: log10(P) −5.63 −5.60 −6.98 −5.91

c-index 0.710 0.713 0.738 0.689

Note: No. terminal nodes = the number of terminal nodes in a tree; Precision = the number of the true splits in a tree
divided by the number of splits in a tree. LR test: log10(P) = the logarithmic value of the P-value of the LR test for testing
the equality of the terminal nodes: log10(0.01) = −2.0 and log10(0.001) = −3.0.

5.1. The lung cancer data

We consider the lung cancer data of Chen et al. [7] consisting of 125 lung cancer patients.
Each patient has gene expressions from his/her tumor, coded as 1, 2, 3, or 4 (∼25th,
25th∼50th, 50th∼75th, or 75th∼ percentile). The endpoint is overall survival (i.e. time-
to-death due to any reason). During the follow-up, 38 patients died and other 87 patients
were censored. In Chen et al. [7], the 125 patients were separated into 63 training and
62 testing samples. The difference between the training and testing sets was not found by
significance tests [22].
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Table 3. Simulation results comparing the four methods under the non-sparse setting (100 replica-
tions). The sample size is n = 100 and the censoring percentage is around 50%∼ 56%. The score tests
are stabilized by d0 =0.01 and 0.1.

Split criterion: P-value< 0.01 Logrank Score 0.01 Score 0.1 ctree

β = 0.1 Balanced
covariates

No. terminal nodes 17.47 16.93 12.21 3.52

Precision% 0.751 0.766 0.799 –
LR test: log10(P) −9.48 −9.51 −9.82 −9.75

c-index 0.786 0.786 0.786 0.751
Unbalanced
covariates

No. terminal nodes 18.60 17.95 11.98 3.47

Precision% 0.559 0.573 0.686 –
LR test: log10(P) −7.79 −7.86 −8.01 −6.68

c-index 0.749 0.749 0.752 0.713
β = 0.05 Balanced

covariates
No. terminal nodes 16.95 16.44 11.32 2.81

Precision% 0.667 0.685 0.702 –
LR test: log10(P) −5.30 −5.44 −5.42 −5.46

c-index 0.725 0.726 0.723 0.682
Unbalanced
covariates

No. terminal nodes 16.87 16.08 10.93 2.32

Precision% 0.469 0.489 0.532 –
LR test: log10(P) −3.31 −3.28 −3.30 −2.640

c-index 0.663 0.663 0.663 0.612

Split criterion: P-value< 0.005 Logrank Score 0.01 Score 0.1 ctree

β = 0.1 Balanced
covariates

No. terminal nodes 15.76 15.34 10.56 3.34

Precision% 0.768 0.789 0.851 –
LR test: log10(P) −9.450 −9.520 −9.950 −9.490

c-index 0.785 0.785 0.785 0.746
Unbalanced
covariates

No. terminal nodes 16.36 15.54 9.68 3.16

Precision% 0.576 0.594 0.749 –
LR test: log10(P) −7.830 −7.730 −8.060 −6.320

c-index 0.747 0.747 0.750 0.705
β = 0.05 Balanced

covariates
No. terminal nodes 14.71 14.16 9.16 2.61

Precision% 0.681 0.700 0.751 –
LR test: log10(P) −5.280 −5.370 −5.530 −5.200

c-index 0.724 0.724 0.723 0.675
Unbalanced
covariates

No. terminal nodes 13.70 13.08 8.31 2.18

Precision% 0.474 0.495 0.569 –
LR test: log10(P) −3.220 −3.210 −3.230 −2.550

c-index 0.658 0.658 0.660 0.606

Note: No. terminal nodes = the number of terminal nodes in a tree; Precision = the number of the true splits in a tree
divided by the number of splits in a tree. LR test: log10(P) = the logarithmic value of the P-value of the LR test for testing
the equality of the terminal nodes: log10(0.01) = −2.0 and log10(0.001) = −3.0.

We use the subset of the data containing 97 gene expressions as available in the Lung
object in the compound.Cox R package [19]. Available are survival time (time to either
death or censoring) in months, censoring indicator (1 = death, or 0 = censoring), index
for training sample (TRUE = training sample, or FALSE = testing sample), and genes
named by their symbols, VHL, IHPK1, . . . , RPL5. We shall construct survival trees based
on the training samples (n = 63), and validate their performance by the testing samples
(n = 62).
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Figure 4. Kaplan-Meier estimates for the two separated groups by the logrank test (left panel) and sta-
blized score test (right panel) based on the training samples of n = 63. The P-value of the difference is
computed by the logrank test.

5.2. Results: the root node

We illustrate the advantage of the stabilized score test over the logrank tree owing to unbal-
anced samples. Figure 4 shows how the logrank test optimally splits the n = 63 samples
into{ANXA5 ≤ 1} vs. {ANXA5 > 1}.

In Figure 4, we see that the Kaplan-Meier plots for the two groups are not convincingly
separated due to the unbalanced sample sizes. On the other hand, the stabilized score tests
gave {IRF4 ≤ 3} vs. {IRF4 > 3} as the best split. Indeed, the stabilized test gives a more
convincing separation between the low and high risks (Figure 4).

5.3. Results: survival trees

From the n = 63 training sample, survival trees were developed from the following
methods:

(I) The logrank tree (using the score tests with d0 = 0),
(II) The proposed tree (using the stabilized score tests with d0 = 0.01 chosen by AIC),
(III) The conditional inference tree (ctree).

In (I) and (II), we set the stopping criterion of P = 0.01. Other choices of Pwere also exam-
ined (see Supplementary Materials for details). In (III), the choice of P shall be explained
later.

(I) The logrank tree

The root node splitted into{ANXA5 ≤ 1} and {ANXA5 > 1} (Figure 5). Starting from
the root node, the splitting process was recursively continued. The tree consisted of six
inner nodes (including the root node) and seven terminal nodes.
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Figure 5. The logrank tree constructed by the stopping criterion (P = 0.01).

The Kaplan-Meier survival plots for the seven terminal nodes show that the prognosis
groups are correctly ordered from the highest risk group (the leftmost node) to the lowest
risk group (the rightmost group). One major concern is the too small sample size (n = 1)
for the highest risk group (Figure 5).

(II) The stabilized score (proposed) tree

The tree based on d0 = 0.01 (Figure 6) has the smallest AIC value among all the possible
d0 ≥ 0. The root node was {IRF4 ≤ 3} and {IRF4 > 3} (Figure 6). This split mitigates the
major concern of the logrank tree. Except for the root node, the inner nodes are similar to
those of the logrank tree.

The Kaplan-Meier survival plots for the six terminal nodes are consistent with the risk
groups, correctly ordered from the highest risk group (the leftmost node) to the lowest risk
group (the rightmost group).

(III) Conditional inference tree by the R function ctree(.)

The ctree under a threshold P = 0.01 was performed (by ctree(,control = ctree_control
(alpha = 0.01, where alpha is the significance level for the splits). Consequently, the out-
put returned the null tree consisting of only one terminal node of all samples since
none of the splits reached the significance level of 0.01. However, this conclusion is
not reasonable since the covariates should have some predictive ability for survival out-
comes as previously reported [7,15,17,19]. To understand this phenomenon, one should
note that the P-value threshold in ctree(.) is the Bonferroni adjusted value PAdj = 1 −
(1 − P)p, where p is the number covariates and P is the non-adjusted P-value for indi-
vidual tests (Hothorn et al. [26]). Since p = 97 and P = 0.01, we set the adjusted P-
value threshold PAdj = 1 − (1 − 0.01)97 = 0.62. However, the resultant ctree still had
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Figure 6. The stabilized score (proposed) treewith the shrinkageparameterd0 = 0.01 and the stopping
criterion (P = 0.01) based on the lung cancer data (n = 63).

only two terminal nodes. Larger values of PAdj yielded more reasonable trees with 3
terminal nodes (0.64 ≤ PAdj ≤ 0.67, Figure 7a) and 4 terminal nodes (0.67 < PAdj ≤
0.90, Figure 7b). See Supplementary Materials for our detailed process of choosing
PAdj.

Kaplan-Meier survival plots in Figure 7 do not exhibit a clear separation between the
risk groups. However, it turns out that they have some prognostic ability when applied
to the test samples. The split between {DUSP ≤ 3} and {DUSP > 3} appears in the root
node, which is the most significant split in the tree. However, the attached P-value to this
split is ‘P = 0.505’, showing no evidence to separate the two groups in terms of survival
prognosis. Thus, the input and output of the P-value thresholds are difficult to interpret,
contradicting to the predictive performance.While the problem can be solved by adjusting
the P-value, users may not know how to do it.

5.4. Validation results

We validated the prediction performance of the developed trees by the test samples
of n = 62. For all the test samples, we predicted their risk groups using one of the
trees. We then calculated the c-index, a concordance measure between the predicted
risk ranks and the actual survival outcomes (Section 3.4). Higher values in the c-index
means better prediction performance, and values less than 0.5 mean no prediction
ability.

Table 4 shows the c-index for the five different trees. All the trees have similar values
of the c-index (0.564∼0.584). With these small differences in the performance, it is not
reasonable to select the best tree based on the largest c-index. The c-index values all not far
from 0.5 are reasonable considering the small training samples (n = 63), more than half of
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Figure 7. The conditional inference tree (ctree) based on the lung cancer data (n = 63). (a) Stopping
criterion: 0.64 ≤ PAdj ≤ 0.67 (b) Stopping criterion: 0.67 < PAdj ≤ 0.90.
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Table 4. Predictive performance (c-index) for the eleven methods based on the lung cancer data.

Method Prediction formula c-index

Logrank tree See Figure 5 0.566
Score tree (d0 = 0.01) See Figure 6 0.564
Score tree (d0 = 0.1) Not shown 0.567
ctree (0.64 ≤ PAdj ≤ 0.67) See Figure 7(a) 0.569
ctree (0.67 < PAdj ≤ 0.90) See Figure 7(b) 0.584

CC (Wald)
( − 1.09 × ANXA5) + (1.32 × DLG2) + (0.55 × ZNF264)
+(0.75 × DUSP6) + (0.59 × CPEB4) + ( − 0.84 × LCK)

+( − 0.58 × STAT1)
0.560

CC (score)

( − 3.36 × ANXA5) + (3.11 × DLG2) + (2.81 × ZNF264)
+(2.71 × DUSP6) + (2.53 × CPEB4) + ( − 2.51 × LCK)
+( − 2.45 × STAT1) + (2.37 × STAT2) + (2.35 × RNF4)

+(2.23 × IRF4)

0.570

Copula (Wald)
(0.05 × ANXA5) + (0.96 × DLG2) + (0.53 × ZNF264)
+(0.41 × DUSP6) + (0.42 × CPEB4) + ( − 0.34 × LCK)

+(0.01 × STAT1)
0.580

Copula (score)

(0.05 × ANXA5) + (0.96 × DLG2) + (0.53 × ZNF264)
+(0.41 × DUSP6) + (0.42 × CPEB4) + ( − 0.34 × LCK)
+(0.01 × STAT1) + (0.43 × STAT2) + (0.06 × RNF4)

+(0.30 × IRF4)

0.580

CS (Wald)
( − 0.58 × ANXA5) + (0.95 × DLG2) + (0.20 × ZNF264)
+(0.55 × DUSP6) + ( − 0.25 × CPEB4) + ( − 0.52 × LCK)

+( − 0.23 × STAT1)
0.570

CS (score)

( − 0.61 × ANXA5) + (0.89 × DLG2) + (0.16 × ZNF264)
+(0.58 × DUSP6) + ( − 0.36 × CPEB4) + ( − 0.50 × LK)
+( − 0.13 × STAT1) + (0.47 × STAT2) + (0.30 × RNF4)

+( − 0.01 × IRF4)

0.600

Note: CC = compound covariate; Copula = copula method; CS = compound shrinkage; Wald = genes are selected by
the Wald tests; score = genes are selected by the score tests. See [19] for details.

which were censored, and a number of possibly uninformative genes (p = 97). However,
we notice that the tree structures are different, especially between the proposed tree and
the ctree. In fact, this phenomenon is typical if prediction formulas are derived from a large
number of predictors. That is, there could be a number of prediction schemes all yielding
the same performance in prediction.

Table 4 also shows the c-index for the six linear predictors as previously reported in
Emura et al. [19]. Again, the c-index for these predictors are similar to those for the trees.
However, we notice that trees’ discrete predictors (ranking of 1, 2, . . . ) cannot be compa-
rable to linear predictors’ continuous predictors. Hence, this comparative c-index values
may actually demostrate the advantage of the trees over the continuous predictor. The
continous predictors usually need to be further splitted to yield clinically interpretable sub-
groups (e.g. good prognosis groups vs. poor prognosis group). Thus, we have validated all
the trees by showing comparable predictive ability to the previously reported benchimark
ability.

5.5. Conclusion of the data analysis

While we have validated all the trees (logrank tree, stabilized score tree, and ctree), the
best one could not be selected by thier prediction performance. To discuss the best tree
among the five trees, we search for the clinical interpretations for the trees. The proposed
tree had an important gene ‘IRF4’ (Interferon Regulatory Factor) that is a strongly effective
gene as a diagnostic and prognostic marker for human non-small cell lung cancer. Medical
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researchers pointed out that the gene ‘IRF4’ is upregulated in this cancer (Alvisi et al. [1]),
that is, a larger value of ‘IRF4’ leads to a higher risk for lung cancer patients. This evidence
demonstrates the clinical advantage of the proposed tree over other trees. Besides, the gene
‘ANXA5’ selected by the logrank tree and all other existing predictors does not have a clear
interpretation since it may not be a predictive gene of lung cancer. Instead, it is a prognostic
marker of cervical cancer, and head and neck cancer (Kang et al. [29]).

In summary, we have demonstrated the advantage of the proposed method (the sta-
bilized score tree) over the logrank tree, the ctree, and other linear predictors in terms
of the clinical relevance. However, all the methods exhibited similar numerical perfor-
mance for prediction. Indeed, all the existing trees and prediction methods are highly
sophisticated so that they all reached maximum levels in terms of quantitative prediction
abilities.

6. Conclusions

We have proposed a new tree-based classification method motivated by some difficulties
in the two most popular methods: the logrank tree and conditional inference tree. Moti-
vated by the unusual detection of the survival difference by the logrank test, we stabilized
the variance when computing the Z-value. This idea was previously proposed by Witten
and Tibshirani [42] for testing a large number of covariates. The adaptation of their idea
to a survival tree is a very reasonable approach, yet it has not been considered. We also
have developed a computationally efficient method to find the optimal split among a large
number of candidate splits. This extends the technique of Emura et al. [19].

Our simulations have demonstrated the improved precision and classification/
prognostic ability of the proposed method over the existing methods. Specifically, the pro-
posedmethod is advantageous when a number of unbalanced covariates tend to yield false
positive nodes in the logrank tests. This is exactly the case where the stabilized score tests
work better than the logrank tests. However, this advantage diminishes when the false
positive rate is reduced in the presence of a large number of informative covariates (the
non-sparse setting).

By applying the proposed tree to the lung cancer data, we have demonstrated the advan-
tage of the proposedmethod (the stabilized score tree) over the logrank tree, the ctree, and
other continuous predictors in terms of the clinical relevance. However, all the methods
exhibited similar performance for prediction.

The critical assumption made on survival data is that censoring mechanism is inde-
pendent of survival time. The so-called ‘independent censoring assumption’ needs to be
assumed in order to have valid results on the logrank test and score tests. In clinical survival
data, some patients may drop out from the medical follow-up study due to their poor
health, violating the independent censoring assumption [11,15,16]. Under such dependent
censoring schenarios, the singificance of the tests could be false. Thus, in a classifica-
tion tree, the treatment of survival data with dependent censoring is an important issue
as discussed by Moradian et al. [36]. They suggested a new measure of the binary split-
ting criterion by adjusting for dependence between survival time and censoring time by a
copula-graphic estimator; see [18,32,33] for the applications of the copula-graphic estima-
tor to estimate survival difference. Recently, Emura and Hsu [18] studied the performance
of the two-sample test under copula-based dependent censoring models. A measure that
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is free from the specification of a copula could also be considered under a competing risks
framework [6]. A test based on the Fine-Gray model may also be considered by treating
dependent censoring as a competing risk [2]. More explorations are necessary to deal with
dependent censoring.

The so-called survival forest is a re-sampling version of a survival tree, which has gained
popularity in recent years [25,28,36]. The extension of the proposed tree to develop a
survival forest is a promissing future work. While there could be several advantages for
survival forests over survival trees, we believe that survial trees are easier to use in clinical
practice due to its computational and conceptual simplicity.

The logrank test remains the most popular nonparametric method to detect the sur-
vival difference between two groups due to its simple computation and interpretation. The
stabilized score test can be regarded as a minor correction to the logrank test to mitigate
some unusual cases, keeping essentially the same computation, interpretation, and asymp-
totic distribution as the logrank test. One could achieve an improved tree for early or late
survival difference from the null via weighted logrank tests [23]. The stabilization test is
applicable to the weighted logrank statistics by simply correcting its variance estimate. This
is a relevant generalization of the proposed stabilized tree especially when users focus on
early or late survival benefit.

We are reluctant to use deviance-based measures that need a likelihood function under
some parametric models. However, we note that deviance-based trees are common in
continous, binary, and count data, under the framework of the generalized linear model
(GLM). Similarly, we have not considered entropy-based measures that needs a specific
criterion, such as AIC, BIC, and Gini-index. For continous (normally distributed) data,
Yanagawa and Tajiri [43] suggested the AIC-based criterion as an alternative to the two-
sample problem under small sample sizes. As for the correction to the small sample
problems of the logrank tests in survival data, bootstrap and permutation methods are
commonly used altervatives (Leblanc and Crowley [31]; Ditzhaus and Pauly [12]). There
are growing interest in using the Mann–Whitney type effect for measuring survival differ-
ence under the independent censoring scenario [13,14,37] and the dependent censoring
scenario [18,6]. These computationally expensive methods may provide some rooms for
improvement.
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Appendix. Computer software

We made our original R package ‘uni.survival.tree’ to implement the proposed methods. Presently,
there are seven functions in this package.Due to the space limitation,we focus on themost important
function ‘uni.tree(.)’ that produces a survival tree given a survival dataset {(ti, δi, xi); i = 1, 2, . . . , n}.
We also explain the function ‘risk.classification(.)’ that is useful for predicting the risk of death given
a tree made by uni.tree(.) and test samples. We also briefly explain two functions for generating data,
which was used in the simulations.

We use the following styles for inputting the dataset (similar to the compound.Cox R package),

• t.vec: a vector (t1, t2, . . . , tn),
• d.vec: a vector (δ1, δ2, . . . , δn),
• X.mat: a matrix with the i-th row xi = (xi1, . . . , xip) for i = 1, . . . , n,
• P.value: the P-value threshold (0 < P < 1),
• d0: the shrinkage parameter d0 > 0 that stabilizes the score test,
• score: =TRUE for the score test; =FALSE for the logrank test.

The dataset of n = 10 in Example 3.1 is used for illustration under P = 0.05. The code below creates
t.vec, d.vec, and X.mat, and apply them to the uni.tree(.) function.

The output shows all the nodes created. The output ‘node_status:’ tells us whether the node is
‘inner’ or ‘terminal’. First, we identify two inner nodes in the above output, corresponding to the
root node and Node 2 in Figure 8. Their P-values are less than 0.05, indicating that these nodes
have their child nodes. Next, we identify three terminal nodes in the above output, corresponding to
Nodes 1, 3, and 4 in Figure 8. The P-values for the terminal nodes are all greater than 0.05, indicating
that these nodes have no child. The output ‘Risk score’ can be used to assign the rank of death risk.
The largest value ‘1’ corresponds to the highest risk group (Node 1, Rank = 3) and the smallest
value‘−1.1’ corresponds to the lowest risk group (Node 3, Rank = 1).

Figure 8. A survival tree constructed by using the data of Example 3.1.
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To predict the risk of death for test samples, one has to identify the group that the samples belong
(Section 3.4). The test samples are those who do not belong to the dataset. Nonetheless, we illustrate
the predicted risk of death for all the same patients in the training dataset of n = 10. Inputting the
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‘x.mat’ to the function risk.classifiaction(.), we identify the ranks (1 = low risk; 2 = medium risk;
3 = high risk) for 10 patients as follows:

For example, the first sample has the rank 1 (low risk). The low risk group has five samples (1,
6, 8, 9, and 10). With the ranks assigned to all the patients, one can compute the c-index between
the predictor (ranks) and outcomes using the concordance(.) function. The c-index evaluates the
prediction performance of a tree. Testing samples have to be prepared to calculate the c-index.

To generate the gene expressions used in the simulation desgns, we made our original R func-
tions X.pathway_discrete.balanced(.) and X.pathway_discrete.imbalanced(.) in the uni.survival.tree
package. These functions are variants of X.pathway(.) function from the compound.Cox package
(Emura et al. [17,19]). We show some example made by these two function. One needs to input the
intra-cluster correlation 0.8 for the first two clusters and others (n = 10, p = 15, q1 = 5, q2 = 5)
into X.pathway_discrete.balanced(.). The output is discrete valued:

X.pathway_discrete.imbalanced(.) shows the imbalanced covariates for the last five columns:
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