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Abstract

Using solid waste in building materials is an efficient approach to achieving sustainability

goals. Also, the application of modern methods like artificial intelligence is gaining attention.

In this regard, the flexural strength (FS) of cementitious composites (CCs) incorporating

waste glass powder (WGP) was evaluated via both experimental and machine learning

(ML) methods. WGP was utilized to partially substitute cement and fine aggregate sepa-

rately at replacement levels of 0%, 2.5%, 5%, 7.5%, 10%, 12.5%, and 15%. At first, the FS

of WGP-based CCs was determined experimentally. The generated data, which included

six inputs, was then used to run ML techniques to forecast the FS. For FS estimation, two

ML approaches were used, including a support vector machine and a bagging regressor.

The effectiveness of ML models was assessed by the coefficient of determination (R2), k-

fold techniques, statistical tests, and examining the variation amongst experimental and

forecasted FS. The use of WGP improved the FS of CCs, as determined by the experimen-

tal results. The highest FS was obtained when 10% and 15% WGP was utilized as a cement

and fine aggregate replacement, respectively. The modeling approaches’ results revealed

that the support vector machine method had a fair level of accuracy, but the bagging regres-

sor method had a greater level of accuracy in estimating the FS. Using ML strategies will

benefit the building industry by expediting cost-effective and rapid solutions for analyzing

material characteristics.

1. Introduction

Several processes, including manufacturing, electricity generation, mining, agricultural pro-

duction, iron and steel metallurgy, and the creation of electronic devices, generate large

amounts of waste [1,2]. Several hazardous waste materials are combustible, corrosive,
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infectious, incendiary, and chemically volatile, and their disposal in landfills has resulted in

substantial financial losses [2–4]. Therefore, it is desirable to recycle or reuse waste materials

in building materials. Cementitious composites (CCs) are widely employed in construction

[5–8]. Numerous methods have been used by researchers to enhance CC performance [9–11].

Waste materials may be used in place of natural aggregates [12–14], fibers for reinforcement

[15–19], and cement [20–22] to improve the performance of CCs. Employing the methods,

cement and aggregate use might be reduced, conserving natural resources, and reducing CO2

emissions [23–27]. The mechanical performance of CCs has been shown to improve with the

addition of some waste materials [28,29]. As a result of its abundance, waste glass (WG) is

commonly found in landfills across the world [30–32]. Particularly, large urban areas are fac-

ing a dramatic decline in landfill space despite their populations producing ever-greater quan-

tities of municipal solid waste [33]. WG is chemically more robust than other common waste

materials like wood and plastic. Buried WG does not biodegrade for a longer period [34].

Some glasses, such as cathode ray tubes (CRTs), comprise toxic components like lead, beryl-

lium, mercury, and cadmium, infecting groundwater and soil [35]. Around 43 million tons of

CRT glass are manufactured yearly in China [36], posing a serious threat to the environment

and people’s health.

To manufacture glass, silica must be melted for hours at a high temperature [37]. The

amount of energy required for this is rather high. The temperature is held at 1500˚C for 24

hours for container glass and 72 hours for plate glass [38]. To produce 1 kg of plate glass uses

around 17 J of energy from fossil fuels and discharges roughly 0.6 kg of CO2 [39]. Glass

manufacturing consumes more than 350 PJ of energy per year in Europe, which is about 20%

of the region’s total industrial energy consumption [39]. So, it is vital to pay close attention to

how WG can be properly recycled. One frequent way that WG is reused is in the reprocessing

of glass goods. But reprocessing is complicated since glass items are made from WG that have

been cleaned, separated, and melted [40]. Another way to recycle WG is to use it in the pro-

duction of building materials. Crushed WG might be utilized in CCs as a partial cement and

aggregate replacement [41,42]. There are a number of benefits associated with using WG in

CCs. First, WG doesn’t require melting; therefore, less energy is consumed. The second perk

of WG is how simple it is to handle; specifically, there is no need to sift and clean glass. Third,

there will be a higher need for WG due to the widespread use of CCs in the building. Glass’s

hazardous components can be encased and rendered inert by CCs. WG recycling in CCs has

been shown to be the best approach in earlier research [43,44]. Conservation of natural raw

materials and simplified waste management are additional benefits of using WG as an aggre-

gate substitute in CCs. However, WG utilization as cement replacement will decrease cement

requirements and CO2 discharges [45,46].

Flexural strength (FS) is an important factor to consider when designing concrete struc-

tures, as it influences flexural cracking, deflection characteristics, brittleness ratio, and shear

strength [47]. The selection of CC’s constituents and the prediction of its output engineering

property, such as FS, is a common challenge. This is due to the fact that CC is a heterogeneous

mixture consisting of several elements [48]. To reduce the expense of doing more tests, it is

crucial to create strong and trustworthy prediction models based on the current input and out-

put data [49–51]. Appropriate prediction models also permit reductions in the number of triv-

ial input combination searches that may result in desired tangible performance [52].

Consequently, they permit substantial cost and time savings. Creating such models is difficult

due of the very nonlinear relationship between the input elements and the output concrete

strengths. In the previous few decades, major attempts have been made to apply intelligent

computing algorithms to civil engineering challenges [53]. Predicting material properties has

been done using data-driven methods [54–56]. In order to estimate material characteristics,
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researchers have developed predictive models with the ultimate objective of minimizing pre-

diction error relative to experimental data [57,58]. Artificial intelligence strategies, like

machine learning (ML), are amongst the most innovative modeling strategies for the said pur-

pose. Most of the former ML-related publications concentrated on foretelling the strength of

normal CCs [59,60], whereas just a few concentrated on predicting the features of CCs with

WG.

This research employed experimental and ML strategies to estimate the FS of CCs incorpo-

rating waste glass powder (WGP). The WG was gathered from local construction detritus,

cleansed, and ground into a powder. The CC samples were cast with different concentrations

of WGP as a fine aggregate and cement replacement (0–15%). The FS of WGP-based CC was

determined using experimental approaches at 28 days of age. Following the completion of the

experiments, the obtained data were utilized to develop ML prediction models. Support vector

machine (SVM) and bagging regressor (BR) were used to accomplish the research’s objectives.

SVM is a single ML technique, whereas BR is an ensemble ML technique [61]. Each model’s

performance was calculated using the coefficient of determination (R2), the k-fold approach,

statistical tests, and the variance in projected outcomes (errors). This research is new in that it

evaluated the FS of CCs incorporating WGP using experimental and ML approaches, involv-

ing both single and ensemble ML approaches. Material collecting, sample casting, curing, and

conducting tests require a great deal of time, money, and effort in experimentally-based inves-

tigations. The building industry will profit from the elimination of these difficulties by utilizing

innovative approaches like ML. Therefore, this research aimed to increase understanding

regarding the application of ML approaches to predict material attributes. The obtained data

from the experimental program may be utilized to train ML systems and assess material char-

acteristics. This work employed six input parameters and 117 specimens to predict the FS of

CCs incorporating WGP and evaluate the effectiveness of each ML technique.

2. Methods

2.1. Experimental strategy

Locally accessible fine aggregate and Portland cement were gathered, whilst superplasticizer

and silica fume were bought from Pakistan’s PAGEL Chemicals. The fineness modulus of fine

aggregate was 2.6, bulk density was 1230 kg/m3, and specific gravity was 2.65. WG was gath-

ered from nearby construction waste, cleaned, and mechanically ground into powder in the

lab, and then sieved through a number 200 mesh. Three kinds of mix designs were selected for

CCs, and their details are provided in Table 1. In all the mixes, the ratio of cement to sand was

kept at 1:1, the water to cement ratio was 0.25, superplasticizer dosage at 4% by mass of

cement. The only difference in the mixes was the silica fume (SF) content. In Mixes-1, 2, and

3, the SF content was 15%, 20%, and 25% by mass of cement. Additionally, WGP was substi-

tuted for cement and fine aggregate in all mixes in amounts from 0 to 15% at 2.5% increments.

All the components of CCs were blended using a mechanical mixer. The mixer pan was filled

with cement, silica fume, fine aggregate, and WGP. Half of the water containing the superplas-

ticizer was then added, and the mixer was spun for two minutes. The mixer was turned for a

further two minutes before the second half of the water was incorporated in two increments

into the mixing bowl. Four minutes were used for mixing in total. To test the FS, specimens of

40 mm x 40 mm x 160 mm were cast. For each formulation, a set of three samples was cast;

altogether, 117 samples were cast and examined. The average of three specimens tested for

each formulation was used as the FS. Following casting, the specimens were held in models for

24 hours at room temperature before being demolded and stored in water for curing. Before

testing, all the samples were cured for 28 days. The three-point load test required by ASTM
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C348-21 [62] was used for the FS test, with a loading rate of 0.1 mm/min in displacement-con-

trolled mode. Fig 1 displays pictures of the test apparatus and specimens.

2.2. Modeling strategy

ML approaches require a comprehensive range of input parameters to build the anticipated

output [63]. With the help of the experimental findings, the FS of CCs containing WGP was

Table 1. Detail of mix proportion used during the experimental work.

Mix

ID

Material

substituted

Percentage substituted

(%)

Cement (kg/

m3)

Fine aggregate (kg/

m3)

Silica fume (kg/

m3)

Water (kg/

m3)

Superplasticizer (kg/

m3)

WGP (kg/

m3)

Mix-1 - - 810 810 122 203 40.5 0

Cement 2.5 789.75 810 122 203 40.5 20.25

5.0 769.5 810 122 203 40.5 40.5

7.5 749.25 810 122 203 40.5 60.75

10.0 729 810 122 203 40.5 81

12.5 708.75 810 122 203 40.5 101.25

15.0 688.5 810 122 203 40.5 121.5

Sand 2.5 810 789.75 122 203 40.5 20.25

5.0 810 769.5 122 203 40.5 40.5

7.5 810 749.25 122 203 40.5 60.75

10.0 810 729 122 203 40.5 81

12.5 810 708.75 122 203 40.5 101.25

15.0 810 688.5 122 203 40.5 121.5

Mix-2 - - 760 760 153 191 38 0

Cement 2.5 741 760 153 191 38 19

5.0 722 760 153 191 38 38

7.5 703 760 153 191 38 57

10.0 684 760 153 191 38 76

12.5 665 760 153 191 38 95

15.0 646 760 153 191 38 114

Sand 2.5 760 741 153 191 38 19

5.0 760 722 153 191 38 38

7.5 760 703 153 191 38 57

10.0 760 684 153 191 38 76

12.5 760 665 153 191 38 95

15.0 760 646 153 191 38 114

Mix-3 - - 720 720 180 180 36 0

Cement 2.5 702 720 180 180 36 18

5.0 684 720 180 180 36 36

7.5 666 720 180 180 36 54

10.0 648 720 180 180 36 72

12.5 630 720 180 180 36 90

15.0 612 720 180 180 36 108

Sand 2.5 720 702 180 180 36 18

5.0 720 684 180 180 36 36

7.5 720 666 180 180 36 54

10.0 720 648 180 180 36 72

12.5 720 630 180 180 36 90

15.0 720 612 180 180 36 108

https://doi.org/10.1371/journal.pone.0280761.t001

PLOS ONE Study of waste glass powder in cement mortar

PLOS ONE | https://doi.org/10.1371/journal.pone.0280761 January 23, 2023 4 / 20

https://doi.org/10.1371/journal.pone.0280761.t001
https://doi.org/10.1371/journal.pone.0280761


calculated. The techniques used cement, water, fine aggregate, WGP, superplasticizer, and sil-

ica fume as input features and FS as the output. Both single and ensemble ML algorithms were

employed alongside Python code and the Spyder (version 5.1.5) from the Anaconda Navigator

program. While BR was used as an ensemble ML approach, SVM was used as a single ML

method. These ML techniques are frequently utilized to forecast desired outcomes using input

parameters. These techniques might be used to estimate the strength of CCs, temperature

effects, and durability [64,65]. For testing and training during the modeling phase, the alloca-

tion of experimental data was 30% and 70%, respectively. The R2 score of the predicted out-

come indicates how well the models operated. The R2 value suggests the level of variance; a

number near 0 denotes greater variation, whilst a value nearby 1 suggests that the experimental

results and prediction model are almost perfectly suited [66]. Additionally, ML models were

subjected to statistical, k-fold, and error analysis, like mean absolute error (MAE), root mean

square error (RMSE), and mean absolute percentage error (MAPE). Fig 2 shows the flowchart

of the modeling program. The ML approaches and validation strategies used in this work are

described in the following sub-segments.

Fig 1. Images of the experimental program: (a) Dimensions of a specimen; (b) Specimens after demolding; (c) Water

curing of specimens; (d) Testing assembly.

https://doi.org/10.1371/journal.pone.0280761.g001
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2.2.1. Support vector machine. SVM is a subset of supervised ML algorithms that are

used to assess data for classification and regression. A discrete vector, i.e., a line or plane with

the biggest feasible gap, is used to differentiate the forms of the various classifications in an

SVM technique, which represents the data as points in space. Fig 3 shows how new examples

are categorized according to which side of the vector they are located. The SVM model’s

implementation strategy is shown in Fig 4. The strength of the material is evaluated using this

technique, which takes into consideration the impact of many components. The parameters of

the SVM model are chosen using the optimization approach.

Fig 2. Sequence of ML and validation strategies adopted.

https://doi.org/10.1371/journal.pone.0280761.g002

Fig 3. Map of SVM strategy [67].

https://doi.org/10.1371/journal.pone.0280761.g003
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2.2.2. Bagging regressor. A schematic diagram of the BR method is shown in Fig 5. A

similar ensemble technique underlies the adjustment of the prediction model caused by the

inclusion of additional training data. Data from the primary set is substituted in the irregular

sampling procedure. Each new training data sample using replacement sampling may contain

identical observations. After bagging, the chance of occurrence for each component in the new

data sample is the same. The projecting force has no effect on the quantity of the training data-

set. In addition, by improving the estimation of the required outcome, the divergence may be

significantly reduced and training further models using these data samples. The mean of all

model forecasts is utilized for this ensemble. The mean of the estimations from many models

can be used as an estimate in regression [69]. To fine-tune the bagging strategy using SVM

and find the optimal output-generating value, twenty submodels are used.

2.2.3. Validation methods for prediction models. The used ML algorithms were verified

using k-fold and statistical methods. For technique evaluation, the k-fold approach of ran-

domly dividing data into 10 groups is commonly used [71]. As can be seen in Fig 6, ML models

are trained using nine classes and validated using a single class. If the errors are smaller and

the R2 value is higher, then the ML technique is more accurate. Additionally, the process needs

to be repeated ten times for the desired result to be realized. The incredibly high precision of

the model is largely due to this effort. Errors assessment was also used to statistically compare

the precision of different ML methods (MAE, RMSE, and MEPE). Eqs (1)–(3), derived from

previous studies [52,72], were used to statistically evaluate the projection accuracy of the ML

methods.

MAE ¼
1

n

Xn

i¼1
jPi � Tij; ð1Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X ðPi � TiÞ

2

n

s

; ð2Þ

Fig 4. Sequence of SVM technique [68].

https://doi.org/10.1371/journal.pone.0280761.g004
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MAPE ¼
100%
n

Xn

i¼1

jPi � Tij

Ti
; ð3Þ

where n = dataset size, Pi = projected outcomes, and Ti = actual outcomes.

3. Results and analysis

3.1. Experimental results

Fig 7 displays the FS for CC specimens WGP as a partial replacement for cement. As antici-

pated, the addition of WGP resulted in the enhancement of FS. The FS increased with a rising

WGP percentage of up to 10% in all mixes, whereas the further increase in WGP proportion

caused a decrease in FS. However, the FS of the samples with 12.5% and 15% WGP as cement

replacement were also greater than the FS of the control sample with 0% WGP. For instance,

in Mix-1 samples, the FS of CCs enhanced by 4.9%, 12.3%, 21.1%, 28.7%, 20.4%, and 11.6%

compared to the control specimen (0% WGP) with 2.5, 5, 7.5, 10, 12.5, and 15% WGP ratio,

respectively. Comparable findings were also noticed in other mixes (2 and 3), and the highest

FS was accomplished at 10% WGP proportion as cement substitute, which was nearly 32% and

Fig 5. Sequence of BR technique [70].

https://doi.org/10.1371/journal.pone.0280761.g005
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26% higher than the reference specimen in Mixes-2 and 3 specimens, respectively. The proba-

ble causes are the filling effect and the pozzolanic nature of WGP [30]. The filling effect lowers

the void ratio, causing a dense and compact structure. The higher content of SiO2 in the glass’s

composition [73] interacts with Ca(OH)2 in the mix to form improved calcium-silicate-

hydrate (C-S-H) gel, improving the characteristics of CCs [74,75]. At greater proportions of

WGP (12.5 and 15%), the FS declined due to the excess quantity of WGP incorporated into

mixes than needed for the pozzolanic activity [30] and cement dilution. Therefore, the applica-

tion of WGP up to 10% cement substitute is advantageous for attaining the highest strength.

The FS of the samples incorporating WGP as a fine aggregate substitute is displayed in Fig

8. The incorporation of WGP increased the FS at all contents in each mix, and at higher con-

tents, the FS improvement was more. For instance, the FS of samples in Mix-1 increased up to

34.3% at 15% WGP content relative to the control mix (0% WGP). A likewise improving trend

in the FS was also noticed in Mixes-2 and 3 specimens. The improvement in FS was found to

be about 36% and 31% in Mixes-2 and 3 specimens, respectively, at a 15% content as a fine

aggregate substitute. The key cause for the rise in FS may be due to the enhanced grain pack-

ing, as WGP grains were finer than fine aggregate particles [76]. Additionally, the incorpo-

ration of WGP in CCs also developed a pozzolanic reaction, which improved hydration

products like C-S-H gel and ultimately enhanced the load-carrying capacity of the sample [30].

Fig 6. Schematic diagram of the k-fold validation technique.

https://doi.org/10.1371/journal.pone.0280761.g006
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Fig 7. Influence of waste glass powder as cement substitute on FS of specimens.

https://doi.org/10.1371/journal.pone.0280761.g007

Fig 8. Influence of waste glass powder as a fine aggregate substitute on FS of specimens.

https://doi.org/10.1371/journal.pone.0280761.g008
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Therefore, WGP may be used as fine aggregate up to a 15% replacement ratio for achieving

increased strength.

3.2. Prediction models

3.2.1. Results of the SVM model. The results of the SVM method applied to the estima-

tion of the FS of CCs with varying amounts of WGP are displayed in Fig 9. Fig 9(A) depicts the

correlation amongst actual FS and estimated FS. As a result of using the SVM method, accurate

results were obtained, with little distinction among experimental and predicted values. The

experimental and projected findings correspond well, and the R2 result of 0.88 indicated that

the SVM technique for estimating the FS of CCs is adequate. The variation in experimental,

anticipated, and divergent values (errors) for the SVM algorithm is shown in Fig 9(B). The dis-

tribution of the errors was 0.13 MPa on average, while the maximum was 0.39 MPa. The

assessment of the error value distribution found that 44.4% of the values were less than 0.1

MPa, 36.1% were in the range of 0.1 to 0.2 MPa, and 19.4% were higher than 0.2 MPa. The

SVM approach correctly predicted the FS of CCs incorporating WGP, as validated by the dis-

tribution of errors.

3.2.2 Results of the BR model. Results of the BR technique applied to predict the FS of

the CCs incorporating WGP are presented in Fig 10. Fig 10(A) illustrates the correlation

amongst actual and estimated FS. As matched to the SVM technique utilized in the present

study, the BR method yielded more exact outcomes and showed the least discrepancy amongst

actual and estimated FS. The BR model has a higher R2 of 0.93, implying greater accuracy. The

BR method’s error distribution is shown in Fig 10(B). It was revealed that the error ranged

from 0.07 to 0.27 MPa, with a mean of 0.10 MPa. Analyzing the error dispersal revealed that

61.1% were lower than 0.1 MPa, 27.8% were amongst 0.1 and 0.2 MPa, and 11.1% were higher

than 0.2 MPa. Therefore, the error dispersal demonstrated that the BR approach is more exact

than the SVM that was employed. By employing SVM to fine-tune the bagging algorithm over

20 separate submodels, the BR approach is more exact than SVM since it is an induvial algo-

rithm [77].

3.3. Validation of ML models

Table 2 displays the MAPE, RMSE, and MAE results from statistical tests performed using Eqs

(1)–(3) above. The MAE for SVM and BR were found to be 0.125 MPa and 0.100 MPa. Results

showed that the MAPE for SVM was 2.5%, and for BR, it was 2.0%. The RMSE for SVM was

determined to be 0.157 MPa, whereas the RMSE for BR was 0.122 MPa. Furthermore, these

evaluations demonstrated that the BR model, with its reduced error rate, is more accurate than

the SVM. Table 3 displays the results of computing R2, MAE, and RMSE for the purpose of val-

idating the models using the k-fold approach. Fig 11 was made so that the results of k-fold

studies using both ML techniques could be compared. The SVM method has an MAE averag-

ing 0.24 MPa, with a range of 0.13 MPa to 0.53 MPa. The MAE for the BR model was 0.10

MPa to 0.41 MPa, on average. In the same way, the RMSE for the SVM model was 0.28 MPa,

whereas the RMSE for the BR model was 0.23 MPa on average. The BR model’s R2 was 0.69,

and the SVM model was 0.61 on average. According to the k-fold test, the BR model with the

smaller deviations and higher R2 is the most effective in forecasting the FS of CCs incorporat-

ing WGP.

4. Discussions

The FS of CCs with WGP as a partial substitution for cement and fine aggregate was evaluated

in this work using both experimental and modeling methodologies. There is an excessive
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volume of WG produced globally, and most of it is disposed of in landfills, where it poses

health and environmental risks to people and the atmosphere [30]. Additionally, CCs are the

most often used construction materials, and their increasing demand leads to the depletion of

natural raw materials and the release of CO2. The use of WG in CCs as a cement and fine

aggregate substitute has the potential to be an environmentally beneficial technique. Thus,

avoiding waste, conserving natural raw materials, and reducing CO2 emissions are some of the

Fig 9. SVM model: (a) Correlation among actual and estimated FS; (b) Dispersion of actual, estimated and error

results.

https://doi.org/10.1371/journal.pone.0280761.g009
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Fig 10. BR model: (a) Correlation among actual and estimated FS; (b) Dispersion of actual, estimated and error

results.

https://doi.org/10.1371/journal.pone.0280761.g010

Table 2. Statistical checks for the employed ML methods.

ML approach MAE (MPa) MAPE (%) RMSE (MPa)

SVM 0.125 2.50 0.157

BR 0.100 2.00 0.122

https://doi.org/10.1371/journal.pone.0280761.t002
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aspects due to which the use of WG in CCs will lessen their negative effects on the environ-

ment. Therefore, this research aimed to expand our understanding of WGP’s role in CCs by

integrating experimental and ML-based modeling techniques. Different percentages of WGP

were used to substitute cement and fine aggregate in the casting of CC samples (0–15%) with a

2.5% increment. The experimental findings showed that adding WGP enhanced FS. As a

cement substitute, a WGP concentration of 10% yielded the highest FS, up to 32% more rela-

tive to the reference mix. Amongst the potential reasons are the filling effect and the pozzolanic

reactivity of WGP. The matrix is dense and compact due to the filling effect, which decreases

the void ratio. A higher percentage of SiO2 in glass’s composition combines with Ca(OH)2 in

the matrix to develop improved C-S-H gel, which increases the material’s characteristics

[74,75]. Since more WGP was used than required for the pozzolanic process and cement was

diluted, the FS decreased with higher WGP concentrations (12.5% and 15%) as a cement

replacement [30]. To get the highest possible strength, it is recommended to utilize WGP as a

cement replacement at a concentration of up to 10%. When WGP was used to replace fine

aggregate in CCs, the FS was up to 36% greater than in the control mix at 15% replacement.

Table 3. Results of k-fold evaluation for the employed ML models.

K-fold SVM BR

MAE RMSE R2 MAE RMSE R2

1 0.13 0.22 0.71 0.12 0.22 0.35

2 0.17 0.24 0.32 0.28 0.25 0.93

3 0.35 0.46 0.57 0.21 0.12 0.44

4 0.17 0.16 0.63 0.41 0.19 0.85

5 0.21 0.22 0.78 0.17 0.22 0.85

6 0.19 0.24 0.57 0.14 0.27 0.87

7 0.53 0.64 0.55 0.16 0.23 0.67

8 0.16 0.18 0.80 0.20 0.23 0.82

9 0.24 0.26 0.35 0.26 0.31 0.26

10 0.21 0.18 0.88 0.10 0.28 0.86

https://doi.org/10.1371/journal.pone.0280761.t003

Fig 11. Outcomes of k-fold evaluation.

https://doi.org/10.1371/journal.pone.0280761.g011
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WGP being finer than finer aggregate may have improved particle packing, which in turn led

to a higher FS [76]. WGP was also shown to enhance hydration products like C-S-H gel and

the material’s FS by a pozzolanic interaction with cement [30]. Therefore, in order to achieve

optimum strength, WGP can be used as a fine aggregate substitute at a percentage of up to

15%. Although WGP shows potential, more study is needed to determine its value at higher

replacement rates.

The ML models were executed on the organized experimental data. When attempting to

estimate the FS of WGP-based CCs, both a single ML technique (SVM) and an ensemble tech-

nique (BR) were utilized. Both approaches were evaluated for their exactness in predicting out-

comes. The R2 for the BR model was 0.93, which was higher than the R2 for the SVM (0.88).

Lower error values were found for the BR model when compared with SVM, confirming its

superior accuracy. Nevertheless, the SVM model’s prediction was also accurate and in agree-

ment with the experimental data. It has been established via previous research that the BR

approach is more accurate compared to the individual ML methods in predicting the strength

characteristics of various materials [77–80]. For example, Alsharari et al. [77] forecasted the

compressive strength of cement mortar using BR and SVM ML techniques. According to

reports, the performance of BR methods was found to be superior to the SVM in estimating

the compressive strength of cement mortar. The success of an ML strategy is highly reliant on

the input variables and data sample used to execute methods [52], making it difficult to define

and propose the optimal ML method for forecasting outcomes in different research areas.

When comparing single ML methods to ensemble ML approaches, it’s important to note that

the ensemble ML algorithms frequently use the weak learner by building submodels that are

trained on the data sample and adjusted to increase the R2 value. As a result, the ensemble ML

models produced more precise results than the individual. The construction industry may

profit from this type of research because it will facilitate the development of efficient methods

for assessing material attributes quickly and cheaply.

5. Conclusions

The purpose of this study was to study the flexural strength (FS) of cementitious composites

(CCs) incorporating waste glass powder (WGP) by using both experimental and ML method-

ologies. The FS of samples was calculated via experiments, and the resulting data sample was

utilized to build ML prediction models. Support vector machine (SVM) and bagging regressor

(BR) are two machine learning (ML) techniques that were used to make predictions about the

FS. The findings of this study are:

• The experiments’ results showed that adding WGP might improve the FS of CCs. When

used as a cement substitute, WGP increased FS by up to 32% when used at a 10% concentra-

tion. Both the filling effect and the pozzolanic feature of WGP have been anticipated as

potential explanations.

• At 15% replacement, FS was 36% greater than the reference sample when WGP was utilized

as a fine aggregate substitute in CCs. The pozzolanic nature of the glass and the fact that

WGP was finer than finer aggregate both have the potential to explain the improved FS.

• Based on the results of the ML models, it was discovered that the SVM model was accurate

with an R2 of 0.88, while the BR technique was more precise with an R2 of 0.93 in predicting

the FS of CCs incorporating WGP.

• Statistical and k-fold evaluations verified the effectiveness of the used model. Improved R2

and lower error rates were indicators of how well ML models performed. SVM and BR
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models were found to have MAPEs of 2.5% and 2.0%, respectively. The MAPE values dem-

onstrated that the BR model provided the most accurate forecasts of FS.

• Sustainable development is aided by the use of recycled glass in building materials because it

prevents the waste glass from being dumped, conserves natural raw materials, generates

cost-effective materials, and reduces CO2 emissions.

• The construction industry may benefit from the adoption of cutting-edge techniques, such

as ML because it will speed up the development of more cost-effective and time-efficient

ways for determining material properties.

This study was limited to investigating the effect of using WSP on the flexural strength of

the CCs. However, for the potential engineering applications of the material, future research is

directed to fully explore the other aspects as well, such as compressive and split tensile strength

and durability. Additionally, the strength of CCs can also be affected by other factors, such as

the water-to-binder ratio, curing conditions, the quality of raw materials, and environmental

effects (temperature and humidity), so it will be necessary to develop a dataset containing

these input variables in the future for ML modeling.
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