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Abstract 

Background  To develop a pipeline for automatic extraction of quantitative metrics and radiomic features from lung 
computed tomography (CT) and develop artificial intelligence (AI) models supporting differential diagnosis between 
coronavirus disease 2019 (COVID-19) and other viral pneumonia (non-COVID-19).

Methods  Chest CT of 1,031 patients (811 for model building; 220 as independent validation set (IVS) with positive 
swab for severe acute respiratory syndrome coronavirus-2 (647 COVID-19) or other respiratory viruses (384 non-
COVID-19) were segmented automatically. A Gaussian model, based on the HU histogram distribution describing 
well-aerated and ill portions, was optimised to calculate quantitative metrics (QM, n = 20) in both lungs (2L) and four 
geometrical subdivisions (GS) (upper front, lower front, upper dorsal, lower dorsal; n = 80). Radiomic features (RF) of 
first (RF1, n = 18) and second (RF2, n = 120) order were extracted from 2L using PyRadiomics tool. Extracted metrics 
were used to develop four multilayer-perceptron classifiers, built with different combinations of QM and RF: Model1 
(RF1-2L); Model2 (QM-2L, QM-GS); Model3 (RF1-2L, RF2-2L); Model4 (RF1-2L, QM-2L, GS-2L, RF2-2L).

Results  The classifiers showed accuracy from 0.71 to 0.80 and area under the receiving operating characteristic curve 
(AUC) from 0.77 to 0.87 in differentiating COVID-19 versus non-COVID-19 pneumonia. Best results were associated 
with Model3 (AUC​ 0.867 ± 0.008) and Model4 (AUC​ 0.870 ± 0.011. For the IVS, the AUC values were 0.834 ± 0.008 for 
Model3 and 0.828 ± 0.011 for Model4.

Conclusions  Four AI-based models for classifying patients as COVID-19 or non-COVID-19 viral pneumonia showed 
good diagnostic performances that could support clinical decisions.
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Key points

•	 Radiomic features automatically extracted from com-
puted tomography were used for artificial intelligence 
(AI) modelling.

•	 Four coronavirus disease 2019 (COVID-19) AI clas-
sifiers were implemented with different number and 
type of features.

•	 These classifiers performed well on both test set and 
independent dataset.

•	 Higher performances were associated to models 
based on radiomic features.

•	 An automatic pipeline could be implemented for 
real-time COVID-19 versus non-COVID-19 pneu-
monia classification.

Background
More than 2 years after the onset of the pandemic, cor-
onavirus disease 2019 (COVID-19) from severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) still 
represents a daily reality for many healthcare systems. 
National vaccination campaigns have greatly reduced the 
severity and mortality of the disease [1, 2]; however, to 
date, it is impossible to predict how the virus will evolve, 
with what consequences, and in what time frame.

Chest computed tomography (CT) remains a rele-
vant tool for COVID-19 diagnosis and management [3], 
with the most frequent findings including ground-glass 
opacities, with areas of crazy paving pattern and consoli-
dations in the advanced stages, showing bilateral, periph-
eral, and basal distribution [4, 5]. This appearance is 
typical but shows large overlap with the findings of other 
pulmonary diseases, especially pneumonia from non-
COVID-19 viral agents [6]. The differential diagnosis is 
crucial because the contagiousness of COVID-19 makes 
it necessary to take actions to prevent the spread of the 
virus and planning the appropriate clinical strategy.

Given the limits of qualitative pattern assessment, 
quantitative analysis of CT images has become increas-
ingly important. For example, histogram analysis of HU 
distribution in CT images allows to calculate quanti-
tative metrics and quantify the extent of pulmonary 
involvement and the amount of spared, well-aerated lung 
parenchyma [7]. The interest for radiomics [8], the high-
throughput automated extraction and analysis of a large 
number of quantitative features from medical imaging, 
has exponentially grown as well, especially with the wide-
spread diffusion of models based on artificial intelligence 
(AI). Indeed, since the beginning of the pandemic crisis 
in 2020, these techniques have been largely applied to 
chest radiographs and CT images of COVID-19 patients 
to build various predictive classifiers [9–13].

In particular, many authors pointed out the promis-
ing role of AI models in differentiating COVID-19 from 
other types of pneumonia [14–17]. However, most of 
these models were developed using a limited number of 
cases or heterogeneous data, for example, including bac-
terial pneumonias or healthy subjects, which can ease 
the classification task [18–20]. Moreover, the classifi-
ers focused on viral-only pneumonias were mostly built 
using single-slice manual segmentations and required 
also to contour individual lesions. This is not suitable 
for clinical application since it would need a real-time 
and automatic analysis, for example, to provide support 
in case rapid COVID-19 tests are not promptly available 
(e.g., during night shifts) or yield equivocal results.

Therefore, in this study, we developed a pipeline for 
quantitative analysis of CT images that included both 
automatic segmentation and AI-based classifiers to dis-
tinguish between COVID-19 and other types of viral 
(non-COVID-19) pneumonia. We used a large CT data-
set to develop multiple AI models implementing differ-
ent typologies and numbers of features extracted with 
distinct quantitative approaches. Hence, a comparative 
performance analysis was performed to select the most 
promising solution for clinical support.

Methods
This retrospective study was approved by the local ethics 
committee. The need for informed consent was waived 
owing to the retrospective design of the study. All analy-
ses were performed using data of anonymised patients on 
a workstation with the following characteristics: HP Z8 
G4 workstation with a 2.30 GHz processor with 64 cores, 
187 GiB memory, and NVIDIA Quadro RTX 6000/8000 
graphics card.

Clinical data and imaging
This study was performed using chest CT images of 1,031 
patients with real-time polymerase chain reaction posi-
tive for SARS-CoV-2 (647 COVID-19 patients: 458 males, 
71%; median age 67 years, interquartile range 23 years) or 
other types of viral pneumonia (384 non-COVID-19: 236 
males, 61%; median age 66 years, interquartile range 20 
years), with a CT scan performed within 15 days of sero-
logical evidence of infection. All acquisitions were per-
formed in a single hospital with the same patient setup 
(supine, arms over the head, breath hold) and with the 
same protocol (unenhanced chest CT) using four dif-
ferent scanners (Brilliance 64, Philips, Amsterdam, the 
Netherlands; Somatom Definition, Somatom Definition 
Edge, Somatom Sensation, Siemens Healthineers, Erlan-
gen, Germany).

Even if some differences between CT systems 
are unavoidable, the equivalence of the acquisition 
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protocols from a dosimetric point of view and the 
reconstruction algorithms was preliminarily evalu-
ated. For both COVID-19 and non-COVID-19 dataset, 
more than 90% of CT images were acquired on Siemens 
scanners and reconstructed with standard kernels for 
lung parenchyma. The median values (25th, 75th per-
centiles) of CT dose index (CTDI) for non-COVID-19 
and COVID-19 acquisitions were 7.1 (5.8, 8.4) and 6.7 
(5.4, 8.7) mGy, respectively. Furthermore, only recon-
structed series with slice thickness of 3 mm or lower 
and with high-resolution reconstruction kernels were 
considered providing equivalent clinical image quality.

COVID-19 CT images were acquired between March 
2020 and March 2021, with 75% of patients belonging 
to the “second wave” (October to November 2020). A 
total of 811 patients from the database (496 COVID-
19 and 315 non-COVID-19) were randomly chosen 
for model building, while the others 220 (151 COVID-
19 and 69 non-COVID-19, respectively) were used as 
independent validation set (IVS).

All non-COVID-19 CT images were acquired 
between January 2015 and October 2019. All infor-
mation about demographic data, scanner models, and 
acquisition protocols are reported in Tables S1, S2, and 
S3 in supplementary materials.

Quantitative CT pipeline
Segmentation of CT images and preprocessing
All CT images were exported from the local pic-
ture archiving and communication system and from a 
research Virtual Network Archive to a dedicated work-
station. The images were segmented through the lung-
mask (v0.2.9) [21] Python package, by exploiting the 
R231CovidWeb U-net convolutional network trained 
with additional COVID-19 data. The accuracy of this 
tool for automatic segmentation was preliminarily 
assessed by an experienced radiologist who assigned a 
5-point qualitative score to the segmentations obtained 
from the IVS (220 chest CT scans). The software 
employed was able to automatically identify the left 
and right lungs. For each CT images, the lung masks 
were then divided into 4 geometrical subdivisions (GS) 
using a dedicated program developed with JavaScript 
macros operating in the ImageJ [22] environment. A 
superior-inferior subdivision was obtained calculat-
ing the central slice corresponding to the 50th percen-
tile of total lung volume. A ventral-dorsal subdivision 
was obtained calculating the line crossing the centroid 
of left and right lungs in the central slice. Finally, CT 
images and the corresponding lung masks were resliced 
into stacks using the reslice option within ImageJ tool 
and a bi-cubic interpolation: for quantitative metrics 

(QM, see section “Quantitative metrics and Gaussian 
model extension for well-aerated volume estimation 
of the lung (WAVE)”, the CT slice thickness was set to 
3 mm, while for radiomic features (RF, see dedicated 
section below) an isotropic voxel size of 1.15 mm3 was 
used. This value was selected as it matched with aver-
age voxel dimension in CT images with 3 mm of slice 
thickness.

Quantitative metrics and Gaussian model extension 
for well‑aerated volume estimation of the lung (WAVE)
Based on our previous work [7], we calculated the WAVE 
in two different ways: by integrating histogram data 
points using fixed threshold in the range ([-950, -700] HU 
[23–25], WAVE.th) and by applying the Gaussian model 
(WAVE.f ).

In this work, we refined the Gaussian model of the lung 
from the histogram of CT numbers in segmented images. 
Briefly, well-aerated lung parenchyma can be described by 
a Gaussian function fitted over the histogram points around 
the first peak, which is usually located in a range that goes 
from -1,000 to -700 HU [26]. WAVE.f is calculated by inte-
grating the Gaussian function over the histogram data 
points. In this way, in CT images (or its GS) for each histo-
gram, we can define three distributions: “total lung,” “aerated 
lung,” and “diseased tissues.” The latter is calculated as the 
difference between HU histogram data points (“total lung”) 
and Gaussian function representing the “aerated lung.”

A custom software developed in Python3 language 
[www.​python.​org] calculates the relative histogram dis-
tributions of the HU in the two lungs (2L) and the 4 GS: 
lower front, upper front, lower dorsal, and upper dorsal. 
In order to overtake the limitation for the applicability of 
the Gaussian fit to the histogram data discussed in the 
previous work, some improvements were implemented.

First, an algorithm for the selection of the histogram 
data points to be fitted was optimised to assure that the 
fitted function correctly represents the WAVE.

Subsequently, an iterative loop was implemented: if 
in one or more lung regions the histogram peak repre-
senting the healthy parenchyma was not clearly discern-
ible or when the Gaussian model was not applicable, the 
results of the Gaussian fit obtained in the other regions 
were used to extend the model for “aerated lung” where 
initially failed. Moreover, if the fit was not applicable in 
the 2L nor in all the GS or the iterative loop failed, the 
Gaussian function was replaced by histogram data points 
between -950 and -700 HU (included).

First-order QM (i.e., average HU, percentiles, skewness, 
and kurtosis) for the “total lung” and “diseased” paren-
chyma histograms (“ill” QM) were calculated for each CT 
image in 2L (n = 20) and 4 GS (n = 80).

http://www.python.org
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Two additional clinical QM were added providing 
information about the WAVE gradient in the lungs:

where VolumeX is the volume of the considered GS, UF 
is the upper front lung region, UD is the upper dorsal 
region, LF is the lower front region, and LD is the lower 
dorsal region. The complete list of QM is reported in sup-
plementary materials, Table S4.

Radiomic analysis
RF were extracted in 2L from CT images of the lung 
using the PyRadiomics Python tool (v3.1) [27]. All RF of 
the first-order statistics (RF1, n = 19) and those of second 
order (RF2, n = 40) derived from the grey-level co-occur-
rence matrix (GLCM, n = 24) and grey-level size zone 
matrix (GLSZM, n = 16) were extracted using a range of 
HU from -1,020 up to 180 HU. A bin width of 5 HU was 
chosen for RF1, while three different values were used to 
extract GLCM (bin width = 5, 25, 50) and GLSZM (bin 
width = 25, 100, 200) (Table 1).

Upper

Lower
=

WAVE.thUF∗VolumeUF+WAVE.thUD∗VolumeUD

WAVE.thLF∗VolumeLF+WAVE.thLD∗VolumeLD

Front

Dorsal
=

WAVE.thUF∗VolumeUF+WAVE.thLF∗VolumeLF

WAVE.thUD∗VolumeUD+WAVE.thLD∗VolumeLD

ML model building for classification of COVID‑19 versus 
non‑COVID‑19
RF1, QM, and RF2 were used to develop four multilayer 
perceptron (MLP) classifiers, which differ for the num-
bers and type of metrics used as input (see Table  2), to 
discriminate images of patients with COVID-19 from 
non-COVID-19 interstitial pneumonia. The models (type 
of metrics, total number of features) were the following: 
Model1 (RF1 in 2L, n = 20), Model2 (QM in 2L and 4 
GS, n = 102), Model3 (RF1 + RF2 in 2L, n = 141), and 
Model4 (RF1 in 2L + QM in 2L and 4 GS + RF2 in 2L, n 
= 241).

In addition, patient age and patient sex were consid-
ered as additional features in each model.

All the classifiers were built with TensorFlow 2.0 
(v2.4.0) [www.​tenso​rflow.​org] through the following 
steps, briefly described below, in a pipeline developed in 
Python language:

1.	 Least absolute shrinkage and selection operator 
(LASSO) [28] (Least Absolute Shrinkage and Selec-
tion Operator) regression for relevant features selec-
tion

2.	 MLP neural network using early stopping and hyper-
parameters tune to find the right combination of 

Table 1  Radiomic features extracted

Number of first-order statistics (RF1) and GLCM and GLSZM (RF2) features extracted with PyRadiomics tool together with range of Hounsfield unit (HU), bin width, 
number of bins used, and the resulting total number of features extracted for each type. GLCM Grey-level cooccurrence matrix, GLSZM Gray-level size zone matrix, HU 
Hounsfield unit, RF1 First-order radiomic features, RF2 Second-order radiomic features

Number of 
features

Range (HU) Bin width Number of bins Total 
number of 
features

RF1 First-order statistics 19 -1,020 180 5 240 19

RF2 GLCM 24 -1,020 180 5, 25, 50 240, 48, 24 72

GLSZM 16 -1,020 180 25, 100, 200 48, 12, 16 48

Table 2  Main properties and results of each artificial intelligence model

Principal characteristics of each model developed. The type of features, the number of initial radiological features, and the final relevant radiological features after 
LASSO regression used for building each classifier are reported together with results of accuracy and AUC obtained in the test set. Mean and standard deviation 
values of results were calculated after a 4-fold cross-validation iterated ten times. aPatient age and sex were added as clinical metrics in all models. AUC​ Area under 
the receiving operating characteristic curve, 2L Two lungs, GS Geometrical subdivisions, QM Quantitative metrics, RF1 First-order radiomic features, RF2 Second-order 
radiomic features

Model Type of features Number of radiological 
featuresa

Number of relevant 
radiological featuresa

Test set
Accuracy (mean ± 
standard deviation)

Test set
AUC (mean 
± standard 
deviation)

Model1 RF1 (2L) 21 10 0.713 ± 0.004 0.768 ± 0.032

Model2 QM (2L and 4 GS) 102 26 0.724 ± 0.006 0.800 ± 0.026

Model3 RF1 + RF2 (2L) 141 24 0.776 ± 0.003 0.867 ± 0.008

Model4 RF1 + QM (2L and 4 GS) 
+ RF2 (2L)

241 32 0.796 ± 0.005 0.870 ± 0.011

http://www.tensorflow.org
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hyperparameters that maximises the model perfor-
mance

3.	 k-fold cross-validation for performance estimation
4.	 Repetition of k-fold cross-validation

Scikit-learn (v0.24.2) Python package [www.​scikit-​
learn.​org] was used for the implementation of the LASSO 
penalised regression algorithm via the LASSO class.

MLP neural networks were built using binary 
cross-entropy as loss function and Nadam (stochastic 
gradient descent with Nesterov momentum) as opti-
miser. The training/test split was set to be 75/25%, 
and an early stopping algorithm to avoid overlearn-
ing was implemented with a validation split equal to 
0.2. An hyperparameter algorithm (hyperopt) based 
on a Bayesian optimisation was used to find the best 
parameters for the model itself.

After finding the best hyperparameters for the 
classifiers, we used a k-fold cross-validation (pro-
vided by scikit-learn) to evaluate the performance of 
each model: dataset was shuffled making sure that 
the divisions of the train test were always deter-
ministic and then split into four folds (k = 4). The 
following metrics were used to evaluate the per-
formances of each model: accuracy and area under 
the receiver-operating characteristic curve (AUC) 
value. For a more robust assessment of each model, 
k-fold cross-validation was independently iterated 
ten times to have a final value of the performance. 

Average and standard deviation of performance 
metrics were calculated.

To exclude possible bias due to demographical data 
or different reconstruction kernels, we implemented 
three dedicated models: demographic-model, based on 
all training data using only sex and age and Model3-
B70 and Model4-B70 based on the same RF and QM 
of Model3 and Model4, considering only CT images 
reconstructed with the same B70 kernel (COVID-19, n 
= 237; non-COVID-19, n = 285).

The best models were then applied to the IVS based 
on 220 patients, and specificity and sensitivity were 
calculated considering COVID-19 as positive and non-
COVID-19 as negative. Significance of the differences 
between ROC curves of the models was tested using 
the DeLong test.

Results
Automatic segmentation
The quality of segmentation obtained with this automatic 
tool resulted excellent (score = 5, i.e., segmentation cor-
responding to the ideal result for the reader) in 194/220 
(88%) of the cases or good (score = 4, i.e., segmenta-
tion with small imperfection negligible for the reader) in 
15/220 (7%) of the cases. Even if some limited inaccura-
cies were detected (11/220, 5%), no manual corrections 
were performed because the effects on subsequent analy-
sis were considered irrelevant, according to our previous 
study [29]. An example of the automatic segmentation for 

Fig. 1  Example of axial slices of computed tomography of patients with COVID-19 (a) and another type of non-COVID-19 viral pneumonia, i.e., 
parainfluenza type 4 virus (b). The results of automatic segmentation for the lungs are displayed as a red superimposed contour

http://www.scikit-learn.org
http://www.scikit-learn.org
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COVID-19 and non-COVID-19 CT images is reported in 
Fig. 1.

Relevant features
The number of relevant features for each model after 
LASSO regression is reported in Table  2 (the complete 
list of relevant metrics is reported in supplementary 
materials, Table S5).

The models were implemented with an increasing com-
plexity of number and typology of features. The LASSO 
reduced the numbers of redundant features: the higher 
was the radiological initial features, the higher was the 
resulting reduction due to the presence of more corre-
lated features.

Classifier performances
The performances of four MLP models on the test set 
(811 patients) are shown in Fig. 2. Model1, based on only 
ten relevant RF1features, showed poorer performance 
when compared to the others, especially as AUC values 
(0.768 ± 0.032, mean ± standard deviation). An increase 
in accuracy was observed in Model2 by adding the QM 
based on the Gaussian model of the lung calculated in 
2L and the 4 GS (AUC = 0.800 ± 0.026). On the other 
hand, a greater increase in performances was observed 
by adding second-order features to Model1 (i.e., Model3 
= Model1 + RF2), with an AUC of 0.867 ± 0.008. The 
highest number of relevant radiological features was 

associated with Model4; they were a subset of those from 
Model3 and Model4.

Figure 3 shows the AUC curves of demographic model, 
Model3 and Model3-B70, and Model4 and Model4-B70. 
It is evident that demographic data alone are not suffi-
cient to obtain a good classification (AUC​ = 0.54). On the 
other hand, both models built with a subset of CT images 
with the same kernel (Model3-B70 and Model4-B70) 
were not significantly different (p > 0.071, DeLong test) 
from the original models based on the entire training set 
(Model3 and Model4).

Since Model3 and Model4 showed the higher perfor-
mances on test set, they were both applied to the IVS to 
validate their consistency in the classification task.

The results of the application of AI models to the IVS 
(220 CT images) are shown in Table  3 and in Fig.  4. In 
both cases, AUC values moved from 0.87 (test set) to 0.83 
(IVS). The differences between ROC curves of these two 
models were not significative (p = 0.896, DeLong test).

A common property of the two models was that speci-
ficity and sensitivity were greater than 0.75 in all cases, 
as can be seen in the diagonals of the confusion matrices 
shown in Fig. 5.

Discussion
The goal of this work is to develop AI models for classi-
fication of CT images of patients with different types of 
viral pneumonia to support clinical decisions.

Fig. 2  Receiving operating characteristic (ROC) curve of all models for classification of viral pneumonia (COVID-19 versus non-COVID-19) on the 
test set (811 computed tomography images). For each model, the mean ROC curve obtained with fourfold cross-validation iterated ten times is 
represented. The mean and standard deviation of the area under the curve (AUC) values are reported
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For this purpose, an automated pipeline for quan-
titative analysis and extraction of radiomic features 
from CT images of the chest was implemented and 
optimised.

The interest in developing AI models applied to 
COVID-19 is growing worldwide [30]. For instance, 
Harmon et  al. [31] and Jin et  al. [32] proposed deep 
learning-based algorithms for COVID-19 detection on 
CT images. In both studies, the classification task was 
between a sample of patients positive for SARS-CoV-2 
infection and a control group composed of patients 
with various other clinical conditions including cancer 
staging, emergency care, and pneumonias from bacte-
ria or influenza, with reported AUC values greater than 
0.90.

In a more challenging scenario, Bai et  al. [18] 
described the performance of human readers in 

distinguishing different types of viral pneumonia, with 
an accuracy ranging between 60 and 83% [18]. In this 
study, a high specificity (up to 1.00) but a moderate 
sensitivity as low as 0.67 were reported.

This suggests the need for a reliable and rapid classi-
fication tool able to provide a prompt response in front 
of patients with suspected respiratory infection. In this 
sense, an automated, “real-time” AI system could iden-
tify COVID-19 patients early on, allowing appropriate 
precautions and clinical decision to be taken even if the 
laboratory test is not available and widening the clinical 
view of the disease condition.

Wang et al. [17, 33] proposed a method for the classifi-
cation of different types of viral pneumonia and COVID-
19 based on radiomics features extracted from the lung 
and lesion manually segmented on CT images. In these 
studies, higher values of AUC are linked to the models 
built with lesion segmentations (AUC = 0.87). Despite 
the promising results, the single slice manual segmenta-
tion is a time-consuming approach unfeasible in the eve-
ryday clinical practice and does not allow a predictive 
proposal of disease in real time.

Cardobi et  al. [34] extracted RF using PyRadiomics 
tool from automatic lung segmentations and developed 
a model to distinguish CT images of COVID-19 patients 
from other interstitial pneumonias with AUC values of 
0.77. However, the limited number of CT scans employed 
in this work (n = 115) and the lack of independent vali-
dation raise some caveats to its clinical implementation.

Fig. 3  Receiving operating characteristic (ROC) curve of Model3, Model4, demographic model, Model3-B70, and Model4-B70. For each model, the 
mean ROC curve obtained with fourfold cross-validation iterated ten times is represented. The mean ± standard deviation of the area under the 
curve (AUC) values are reported

Table 3  Performances of Model3 and Model4 on the 
independent validation set

Performance metrics obtained for the application of the two best models 
(Model3 and Model4) to the independent validation set (220 CT images). In the 
table are reported sensitivity, specificity, accuracy, and AUC. A threshold of 50% 
to the predicted value was applied to discriminated COVID and non-COVID 
patients. AUC​ area under the receiving operating characteristic curve

Sensitivity Specificity Accuracy AUC​

Model3 0.788 0.783 0.786 0.834

Model4 0.788 0.754 0.777 0.828
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We developed four AI models based on different sets of 
QM and RF with AUC values ranging from 0.77 to 0.87.

The four models were developed by considering dif-
ferent approaches with increasing complexity and num-
ber of features. As expected, the greater the number of 

radiological features, the higher the results in terms of 
specificity, sensitivity, accuracy, and AUC.

Although age and sex were found to be relevant features 
following LASSO regression in all models, adding imaging 
features to the models significantly improved the AUC value.

Fig. 5  Confusion matrices of the two best models (Model3 and Model4) applied to the independent validation set (220 patients)

Fig. 4  Receiving operating characteristic (ROC) curve and area under the curve (AUC) values of the two best models (Model3 and Model4) applied 
on the independent validation set. IVS Independent validation set
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The best models were associated to a higher number 
of extracted features, i.e., Model3, based on 24 useful/
independent features selected with LASSO optimisation 
from 141 different initial metrics, and Model4, based on 
32 useful/independent features selected with LASSO 
optimisation from a set of 241 different metrics. Even 
if PyRadiomics tool allows to extract several classes of 
second-order features, differently from other works [10, 
11, 17, 32, 33], we selected a priori the classes we thought 
were more suitable for our classification task, i.e., GLCM 
and GLSZM. In fact, GLCM class includes the most 
commonly implemented features across the radiomic 
applications of texture analysis: as they describe the voxel 
relationships within an image, they could help to dis-
tinguish between different lung parenchymal patterns 
[35–37]. On the other hand, the GLSZM and its derived 
features describe areas with uniform grey levels in terms 
of size and intensity, which could be able to identify dif-
ferent types of lung lesions between viral pneumonias.

Furthermore, in the absence of reference values for 
second-order features extraction, three different combi-
nations of bin were used. The choice was based on the 
HU distribution of viral pneumonia as a compromise 
between the noise contribution and the loss of texture 
information [38]. Indeed, different features were relevant 
with different bin number used for extraction (Table S5 
supplementary materials).

The equivalence of models based on all the training set 
with those based on homogeneous images, i.e., recon-
structed with the same kernel (Fig.  3), may have multi-
ple explanations. First, the reconstruction kernel used, 
although nominally different, all belong to the same class 
for the evaluation of lung parenchyma. Second, RF2 that 
can be highly dependent on the reconstruction kernel 
and image noise were extracted after an isotropic rescal-
ing. This operation, applied on a volume as large as the 
entire lung parenchyma, reduces the noise in the images 
without affecting the signal that RF2 can detect.

We also considered a geometric classification by divid-
ing the lung volume into 4 GS because it is well reported 
that COVID-19 lesions show predominant involve-
ment of the lower and dorsal portion of the lung [39]. In 
Model4, obtained from all types of RF and QM, the rel-
evant features were found to be a subset of both QM (in 
2L and 4 GS) and RF, showing the usefulness of different 
methodological approach of metrics calculation.

Independent validation results provided equivalent 
performances between Model3 and Model4 (AUC of 
0.833 and 0.828, respectively; p = 0.896). Model3 requires 
a simple isotropic voxel reslice operation and is based on 
radiomic features that can be extracted with an open-
source package; however, they do not have a clear bio-
logical correlate, so they cannot be directly interpreted. 

On the contrary, Model4 requires more elaborate pre-
processing for the geometric partitioning of masks and 
an independent code for applying the Gaussian model of 
the lung, but it allows to calculate clinically interpretable 
quantitative metrics. As shown, the two models differ in 
the applicability of the methods and the interpretability 
of the results. For implementation in clinical practice, 
we consider the applicability of a model more impor-
tant than the interpretability of its features, as well as the 
smaller number of included features which reduces the 
risk of overfitting. However, the present work only aimed 
to build an optimised pipeline for automatic segmenta-
tion and quantitative analysis of chest CT, comparing 
different possible approaches for the AI modelling. For a 
more appropriate interpretation of the classifier perfor-
mance, future developments should involve comparison 
with the performance of human readers and decision 
curve analysis [40] to verify whether Model3 actually pro-
vides added value in supporting clinical practice.

Notably, in this work, we used a segmentation algo-
rithm whose result proved consistent with the task of our 
interest. The application of the entire pipeline developed 
in this work, which also includes automatic segmenta-
tion, has led to promising results in terms of diagnostic 
accuracy without any human intervention. In addition, 
the time for running the entire pipeline (Fig. 6) for a sin-
gle CT series is less than 1 min using the workstation.

This work also has some limitations. The model was 
developed by using COVID-19 CT scans acquired 
between March 2020 and March 2021; any radiological 
differences ascribable to different and successive vari-
ants of SARS-CoV-2 may not be properly accounted for. 
However, given the protective role of SARS-CoV-2 vac-
cination [41, 42], it can be assumed that CT scan will 
be increasingly reserved to patients with moderate-to-
severe lung involvement who are more likely to show 
the “typical” bilateral parenchymal infiltrates, in over-
lap with other viral pneumonias.

Another limitation lies in the inclusion of chest CT 
scans within 15 days from molecular evidence of SARS-
CoV-2 infection; therefore, it is possible that some 
of the selected patients had mixed pneumonia, even 
though the large dataset used should have minimised 
the impact of this occurrence. Finally, although valida-
tion with independent data was performed, more con-
sistent results would be obtained with the use of CT 
images from other hospitals. Moreover, the number 
of images used for training is not equally distributed 
between the two categories; thus, the scenario assumed 
here is of a higher prevalence of COVID-19 cases com-
pared to the other types of viral pneumonia. If epide-
miological conditions would change significantly, this 
imbalance could constitute a bias.
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In conclusion, four MLP classifiers have been imple-
mented in Python language to classify patients with 
COVID-19 and non-COVID-19 viral pneumonia using 
QM and features extracted from chest CT images. The 
results showed that all classifiers performed well on the 
test set, indicating overall good performances in the 
diagnostic task. When applied to independent valida-
tion set, the two best models provided good perfor-
mances and equivalent results despite the differences of 
the interpretability of their metrics and of the applica-
bility of their methods.
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