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MiXcan: a framework for cell-type-aware
transcriptome-wide association studies with
an application to breast cancer

Xiaoyu Song 1,2 , Jiayi Ji1,2, Joseph H. Rothstein2,3, Stacey E. Alexeeff4,
Lori C. Sakoda 4, Adriana Sistig3, Ninah Achacoso4, Eric Jorgenson 4,5,
Alice S. Whittemore6,7, Robert J. Klein 1,3, Laurel A. Habel4, Pei Wang 1,3,8 &
Weiva Sieh 1,2,3,8

Human bulk tissue samples comprise multiple cell types with diverse roles in
disease etiology. Conventional transcriptome-wide association study approa-
ches predict genetically regulated gene expression at the tissue level, without
considering cell-type heterogeneity, and test associations of predicted tissue-
level expression with disease. Here we develop MiXcan, a cell-type-aware
transcriptome-wide association study approach that predicts cell-type-level
expression, identifies disease-associated genes via combination of cell-type-
level association signals for multiple cell types, and provides insight into the
disease-critical cell type. As a proof of concept, we conducted cell-type-aware
analyses of breast cancer in 58,648 women and identified 12 transcriptome-
wide significant genes using MiXcan compared with only eight genes using
conventional approaches. Importantly, MiXcan identified genes with distinct
associations in mammary epithelial versus stromal cells, including three new
breast cancer susceptibility genes. These findings demonstrate that cell-type-
aware transcriptome-wide analyses can reveal new insights into the genetic
and cellular etiology of breast cancer and other diseases.

Transcriptome-wide association studies (TWAS) aim to identify genes
that are associated with disease through their genetically regulated
gene expression (GReX) levels1,2. Conventional TWAS approaches such
as PrediXcan1 predict tissue-level GReX using models trained on tran-
scriptomic and genomic data from bulk tissue samples, and test
associations between the predicted tissue-level GReX and disease. By
reducing the multiple testing burden from millions of variants to
thousands of genes, TWAS can improve the power of genome-wide
association studies (GWAS) while providing biological insights into the
genes and regulatory mechanisms underlying disease. However,

conventional TWAS approaches do not account for cell-type hetero-
geneity of bulk tissue samples, which can reduce the accuracy of GReX
predictionmodels and obscure disease associations, particularly when
the most mechanistically relevant cell type for the disease is a minor
cell type in the tissue3.

Breast carcinoma is a common and highly heritable cancer that
arises from epithelial cells, which line the ducts and lobules that pro-
duce milk during lactation4,5. Human mammary tissue has highly
variable cell composition. Visualized on mammography, breast com-
position can range from extremely dense (light), reflecting a high
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proportion of fibroglandular tissue, to almost entirely fatty (dark),
reflecting a high proportion of adipose tissue6,7. Whereas higher
mammographic density is associated with increased risk of breast
cancer, a higher amount of nondense fatty tissue is associated with
decreased risk, indicating disparate roles of the different cellular
components of mammary tissue in carcinogenesis8–10. Breast cancer
susceptibility loci identified by prior GWAS11–13 and TWAS14–16 approa-
ches that do not account for cell-type heterogeneity explain only a
fraction of the familial relative risk. Disentangling the distinct effects of
gene expression in mammary epithelial cells from other cell types
through cell-type-aware analysis could lead to new gene discoveries
and biological insights.

To our knowledge, no statistical methods currently exist for
conducting cell-type-aware TWAS using GWAS data. Single-cell sorting
and transcriptome profiling are costly, and large reference panels with
both single-cell transcriptomic and genomic data are not yet widely
available for training robust GReX prediction models. Recent studies
of bulk tissue transcriptomic data have used computational estimates
of cell-type enrichment,whichare correlatedwith their proportions, to
evaluate cell-type-specific effects. The Genotype-Tissue Expression
(GTEx17) consortium estimated cell-type enrichment scores in bulk
tissue samples using xCell18 and tested for interactions between gen-
otype and xCell scores in linear regression models of gene expression
to identify interaction expression quantitative trait loci (ieQTL)19. The
breast was among the human tissues with themost ieQTLs, specifically
involving mammary epithelial cells and adipocytes19, highlighting the
potential for new methods that harness cell-type-specific genetic reg-
ulation of expression to improve the power of breast cancer TWAS.
Methods that integrate bulk tissue data with single-cell reference
profiles to estimate cell-type-level gene expression have also been
proposed to study cell-type-specific disease associations20,21. However,
these methods all require transcriptomic data from the disease-
relevant tissue and cannot be applied to existing GWAS datasets to
perform TWAS in large populations.

Here we present MiXcan, a new statistical framework for con-
ducting cell-type-aware TWAS using GWAS data. MiXcan builds cell-
type-level GReX prediction models through decomposition of bulk
tissue data, identifies disease-associated genes via combination of
signals from cell-type-level association analyses of multiple cell types,
and provides insight into the cell type responsible for the disease
association. We show that MiXcan improves the tissue-level GReX
prediction accuracy compared with conventional approaches in an
independent bulk-tissue validation set, and reliably predicts epithelial
cell GReX in a single-nucleus RNA sequencing (snRNAseq) dataset.
Simulation studies show that MiXcan controls the type I error, and
provides higher power than conventional TWAS approaches when
disease associations are driven by a minor cell type (e.g. mammary
epithelial cells) rather than the predominant cell type in a tissue, or
have opposite directions in different cell types. We apply MiXcan to

conduct the first cell-type-aware TWAS of breast cancer risk in 31,716
cases and 26,932 controls, and report three new susceptibility genes
(ZNF703, TMEM245, and PSG4) with evidence of distinct associations in
mammary epithelial versus stromal cells that were not detected by
prior TWAS nor GWAS. These findings provide a proof a concept that
cell-type-aware TWAS can reveal new insights into the genetic and
cellular etiology of breast cancer and other diseases.

Results
MiXcan framework
We developed the MiXcan framework for conducting cell-type-
aware TWAS (Fig. 1). To build GReX prediction models, MiXcan
requires specification of the cell type of interest and a prior esti-
mate of its proportion in bulk tissue training samples with tran-
scriptomic and genomic data. The cell type of interest for a given
disease may be selected based on prior biologic knowledge, and its
proportion estimated from the transcriptomic data using existing
deconvolution methods and reference panels21–23. For cell types
without large reference panels or direct proportion estimates, a
cell-type enrichment score can be estimated from the bulk tissue
transcriptomic data using xCell18. MiXcan can utilize xCell or other
enrichment scores as a prior to estimate the cell-type proportion
(see “Methods”). MiXcan then decomposes the bulk tissue gene
expression level into its cell-type levels and uses joint penalized
regression to model the association of genetic variants (SNPs) with
gene expression for each cell type. The regression coefficients (SNP
weights) are compared to determine whether the GReX prediction
models for each gene are cell-type-specific (different weights in
different cell types) or nonspecific (sames weights across cell
types). Simulation studies (below) show that MiXcan prediction
models are robust to misspecification of the cell-type proportion,
which can result from inaccurate estimates24–26.

To conduct cell-type-aware TWAS, MiXcan uses the predicted
GReX to test the following composite null and alternative hypotheses:

H0: There is no association between the predicted GReX and the
disease in any cell type.
HA: There is an association between the predicted GReX and disease
in at least one cell type.

Genes with cell-type-specific GReX prediction models are first
associated with disease within each cell type, and then the signals are
combined across cell types using the Cauchy-based p-value combina-
tion method27. Genes with nonspecific GReX prediction models are
tested for their association with disease in one step. Significant asso-
ciations are identified using an appropriate threshold to control the
family-wise error rate (FWER) or false discovery rate (FDR). For sig-
nificant genes with cell-type-specific GReX models, the cell-type-level
results are compared to provide further insight into the cell type(s)
likely to be responsible for the disease association.

Gene Expression
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Input Predicted Weights

Step 1: (Optional) Estimation
of cell-type composition via
the decomposition of
transcriptomic data.

Step 2: Cell-type-level GReX
prediction model for each
gene.
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prediction models.
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Fig. 1 | MiXcan framework. MiXcan estimates cell-type composition using transcriptomic data, builds cell-type-specific and nonspecific GReX prediction models,
identifies disease-associated genes in any cell types, and provides insight into the cell type responsible for the disease association.

Article https://doi.org/10.1038/s41467-023-35888-4

Nature Communications |          (2023) 14:377 2



While the MiXcan framework is general, its performance depends
on the cell types under consideration and the available training data.
As the number of cell types increases, the number of parameters
increases and the accuracy of the model decreases. At present, given
the limited sample sizes of transcriptomic and genomic datasets
available for most human tissues through public repositories such as
GTEx, it is practical to consider only two categories of cells using
MiXcan and to focus on the cell type of greatest interest for the disease
under investigation versus the other cell types. As breast carcinoma is
known to arise from epithelial cells, we developed MiXcan epithelial
and stromal (nonepithelial) cell models using bulk mammary tissue
transcriptomic and genomic data available for 125 European ancestry
(EA) women in GTEx v8.

Prediction performance
The accuracy of MiXcan and PrediXcan GReX prediction models
trained using GTEx v8 data for 125mammary tissue samples from EA
women was initially evaluated in an independent dataset of 103
tumor-adjacent normal mammary tissue samples from EA women in
The Cancer Genome Atlas (TCGA). MiXcan estimates of the epi-
thelial cell proportions were highly correlated with the xCell18 epi-
thelial cell enrichment scores (used as a prior), with Pearson
correlations (r) of 0.90 and 0.89 in normal mammary tissue samples
from EA women in GTEx (N = 125) and TCGA (N = 103), respectively
(Supplementary Fig. 1). However, MiXcan estimates of the epithelial
cell proportion were more highly correlated with the expression
levels of 126 genes included in the xCell epithelial cell gene sig-
nature (median r of 0.54 in GTEx and 0.60 in TCGA samples) than
were the xCell enrichment scores themselves (median r of 0.36 in
GTEx and 0.39 in TCGA samples) indicating that MiXcan can
improve cell proportion estimation from its prior (Supplemen-
tary Fig. 1).

MiXcan estimated cell-type-specific prediction models for 5473
(84.7%) and nonspecific prediction models for 988 (15.3%) of 6461
genes that had mammary tissue-level prediction models available in
PredictDB28 (Fig. 2). The tissue-level GReXwas computedusingMiXcan
estimates of the cell-type proportion and predicted cell-type-level
GReX values. Themedian correlation of predictedGReX andmeasured
mammary tissue expression levels for the 6461 genes in the TCGA
validation set was significantly higher for MiXcan compared with Pre-
diXcan (median r of 0.41 vs. 0.10; p value < 2.2 × 10−16) models trained
using the same dataset of 125 GTEx EA women. The prediction accu-
racy for the 5473 genes with cell-type-specific models in MiXcan was

significantly better than PrediXcan (median r of 0.43 vs. 0.12;
p < 2.2 × 10−16), whereas the prediction accuracy for the remaining 988
genes with nonspecific models in MiXcan was the same as PrediXcan
(median r of 0.08 vs. 0.08; p value=1). These results indicate that
allowing for cell-type-level GReX prediction models increases the
prediction accuracy for genes with evidence of cell-specific genetic
regulation, and does not decrease the prediction accuracy for other
genes compared with standard approaches for predicting tissue-
level GReX.

To examine potential sources of the gain in prediction accuracy,
three additional approaches were compared with MiXcan and Pre-
diXcan (Supplementary Fig. 2). The median correlation of predicted
GReX with measured mammary tissue-level expression for all 6461
genes in the TCGA validation set was slightly higher for PredictDB
(r = 0.12) elastic-net models trained using 337 GTEx EA men and
women on the entire genome compared with PrediXcan (r = 0.10)
trained using 125 EA women indicating modest gains from the
inclusion of 212 EA men in the training dataset. Accounting for cell
composition using penalized regression models including interac-
tions of SNPs with the xCell epithelial cell score (xCell Interaction;
r = 0.20) or MiXcan cell proportion (MiXcan0; r = 0.38) led to sub-
stantial gains in prediction accuracy. Symmetric estimation of cell-
type-level prediction models employed in MiXcan (r = 0.41) further
improved performance compared with standard interaction models
that employ asymmetric penalization for the two cell types. Impor-
tantly, whereas standard interactionmodels require estimates of cell-
type composition, which often are unavailable for the tissue of
interest in GWAS of human diseases, MiXcan prediction models can
be applied directly to GWAS genotype data to perform cell-type-
aware TWAS.

Finally, to evaluate the prediction accuracy of MiXcan at the cell-
type level, we compared the predicted epithelial cell GReX with mea-
suredmammary epithelial cell snRNAseq data available for three GTEx
women of European, Asian, and African ancestry29. We found that
genes (n=100) predicted tohave the largestGReXdifferences basedon
the SNP genotypes in each pair of women also had significantly dif-
ferent measured snRNAseq levels in their mammary epithelial cells
(p value range: 0.01 to 3.3 × 10−7), as expected (Fig. 3). The observed
snRNAseq differences were significant despite the potentially poorer
prediction accuracy of MiXcan models in women of Asian and African
ancestry who were not represented in the training dataset. These
snRNAseq results support the robustness of the cell-type level GReX
predictions obtained using the MiXcan approach.

Fig. 2 | Validation of tissue-level GReX predictions in an independent bulk
mammary tissue dataset. The correlation of tissue-level GReX predictions using
MiXcan or PrediXcan with measured gene expression levels in adjacent normal
mammary tissue samples from 103 European ancestrywomenwith breast cancer in
TCGA were computed for (a) all 6461 genes with MiXcan and PrediXcan models
trained using mammary tissue samples from 125 European ancestry women in

GTEx, (b) 5473 geneswith cell-type-specificMiXcanmodels, and (c) 988 geneswith
nonspecific MiXcan models. Differences between the correlations for MiXcan and
PrediXcan were compared using the two-sided Wilcoxon signed-rank test. Boxplot
bounds show the lower, median, and upper quartiles; whisker lengths are 1.5 times
the interquartile range; and points beyond the whiskers are outliers. Source data
are provided as a Source Data file.
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Simulation studies
Type I error and power. To evaluate type I error and power of MiXcan
association tests, datasets were simulated (see “Methods”) under a
broad range of realistic settings for the associations of genetic variants
with gene expression (SNP-Exp) and gene expression with disease
(Exp-Disease). MiXcan predicted GReX with higher accuracy than
PrediXcan in the presence of cell-type heterogeneity of SNP-Exp
associations, whilemaintaining comparable accuracy in the absence of
cell-specific effects (Supplementary Fig. 3), consistent with results in
the independent TCGA validation dataset (Fig. 2).

The type I error was well controlled for MiXcan and PrediXcan
under all simulated data scenarios (Fig. 4 col. 1). When SNP-Exp asso-
ciations were homogeneous in the two cell types (Fig. 4a), the power
was similar for MiXcan and PrediXcan whether the Exp-Disease asso-
ciations were homogeneous or heterogeneous across cell types. Dif-
ferences in the mean gene expression level between the two cell types
that were not determined by SNP-Exp associations (Fig. 4a, b) did not
impact the power of MiXcan and PrediXcan indicating robustness to
differential expression that is not regulated by genetic variants.

When SNP-Exp associations were heterogeneous in the two cell
types (Fig. 4b–d), the relative power of MiXcan and PrediXcan
depended on the mechanisms of the Exp-Disease and SNP-Exp asso-
ciations. PrediXcan was generally more powerful than MiXcan when
the Exp-Disease association was either homogeneous across cell types
(Fig. 4 col. 2) or present only in the major cell type (Fig. 4 col. 3).
However, MiXcan was generally more powerful than PrediXcan when
the Exp-Disease association was present only in the minor cell type
(Fig. 4 col. 4) or had opposite directions in the two cell types
(Fig. 4 col. 5).

As the strength of the SNP-Exp association increased in the same
cell type as the Exp-Disease association, the power increased for both
PrediXcan and MiXcan (Fig. 4c col. 4; Fig. 4d col. 3). However, as the
strength of the SNP-Exp association increased in a different cell type
from the Exp-Disease association, the power decreased for PrediXcan
but not MiXcan (Fig. 4c col. 3; Fig. 4d col. 4). When the Exp-Disease
association had opposite directions in the two cell types, the power
was U-shaped for PrediXcan but increased for MiXcan as the strength
of the SNP-Exp association increased in either cell type (Fig. 4c-d col.
5). Similar patterns were observed when type I error and power were
evaluated in relation to the expression heritability in the two cell types
insteadof the strength of SNP-Exp associations (Supplementary Fig. 4).
These patterns show that different association signals in the two cell
types can cancel each other out in PrediXcan, which averages their
effects, but are aggregated across cell types in MiXcan thereby pre-
serving power to detect associations due to the minor cell type or that
differ across cell types.

In addition to providing valid tissue-level association tests, MiX-
can provides information for each cell type separately. Simulation
studies showed that the type I error was well controlled for MiXcan
cell-type-level tests when no Exp-Disease association was present in
any cell type (Supplementary Fig. 5 col. 1). When SNP-Exp associations
were homogeneous across cell types (Supplementary Fig. 5a), MiXcan
generally estimated nonspecific GReX prediction models which yield
the same disease-association test results for all cell types. Thus,
cell-type-level inferences can only bemade in the heterogeneous SNP-
Exp setting (Supplementary Fig. 5b–d), when MiXcan estimates cell-
type-specific GReX prediction models. When the Exp-Disease associa-
tion was present in both cell types in the same or opposite directions
(Supplementary Fig. 5 cols. 2 & 5), the power of the cell-type-level tests
was similar when the SNP-Exp associations had similar magnitude
(regardless of direction) and increased as the magnitude of the SNP-
Exp association increased. When the Exp-Disease association was
present in only one cell type (Supplementary Fig. 5 cols. 3-4), thepower
was always highest in this cell type, but the association signal was
shared to some degree with the uninvolved cell type. This correlation
of the cell-type-level results arises from the joint estimation of the SNP
weights for the cell-type-level GReX prediction models in MiXcan.
Therefore, we recommend using the combined p-value for all cell
types to make inferences regarding whether GReX is significantly
associated with disease in any cell type in the tissue, and the cell-type-
level results to compare the evidence that different cell types are
involved for significant genes.

Finally, we evaluated the impact of the sample size of the training
dataset on the type I error and power of MiXcan association tests in
simulation studies (Supplementary Fig. 6). As the training dataset
increased from 100 to 300 samples, the power of association studies
with 3000 samples increased while the type I error remained well
controlled. Prediction models trained using only 100-150 samples
provided reasonable power for gene identification.

Performance under model misspecification. MiXcan decomposes
bulk tissue expression levels into two components using an esti-
mate of the cell-type proportion bπ for the cell of interest. First,
we evaluated the performance of MiXcan under misspecification
of bπ (Fig. 5a). In simulation studies using a broad range of biased
and noisy estimates of bπ, the type I error was consistently well
controlled. The power of MiXcan also was generally maintained
when bπ was misspecified, and compared favorably with PrediXcan
when the Exp-Disease association was in the minor cell type or
had opposite directions in the two cell types. Second, we eval-
uated the performance of MiXcan when a latent third cell type
was present that had different SNP-Exp associations from the

Fig. 3 | Validation of MiXcan epithelial cell GReX predictions using mammary
epithelial cell snRNAseq data. Measured mammary epithelial cell snRNAseq
levels for three GTEx women of White, Asian, and African-American (AA) ancestry
were compared for six sets of 100 genes predicted to have the largest GReX dif-
ferences in each pair of women. Distributions of the observed differences in the

measured snRNAseq levels are shown for the 100 genes predicted to have the
largest positive (blue) and negative (yellow) GReX differences for the (a) White −
Asian, (b) White −AA, and (c) AA−Asian women. Dashed lines show themedian of
each distribution, and departures from zero were evaluated using the one-sided
Wilcoxon signed-rank test. Source data are provided as a Source Data file.
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other cell types (Fig. 5b). We simulated a tissue with three cell
types comprising 40%, 50% and 10% of the tissue, respectively,
and assumed that MiXcan decomposed the tissue into cell type 1
versus a mixture of cell types 2 and 3. The type I error was con-
sistently well controlled in the presence of a latent third cell type,
and the power of MiXcan remained higher than PrediXcan when
the Exp-Disease association was in cell type 1 (corresponding to
the minor cell type in correctly specified models) or in opposite
directions in cell types 1 vs. 2 and 3. The latent third cell type
reduced the power of both PrediXcan and MiXcan when the Exp-
Disease association was present in the most common cell type or
homogeneous across all cell types. Third, we evaluated the
impact of Exp-Disease associations in a latent third cell type on
study power (Fig. 5c). Similar to the performance under correctly
specified models, PrediXcan was more powerful mostly when Exp-
Disease associations exist in cell type 2 (the most common cell

type), and MiXcan was more powerful mostly when Exp-Disease
associations exist in cell type 1 (the minor cell type of interest) or
in opposite directions in cell types 1 and 2.

Cell-type-aware TWAS of breast cancer
As a proof of concept, we appliedMiXcan to conduct the first cell-type-
aware TWAS of breast cancer in a publicly available dataset of 58,648
EA women (31,716 cases and 26,932 controls) from the DRIVE GWAS
(Discovery, Biology, and Risk of Inherited Variants in Breast Cancer)
who were genotyped using the OncoArray30. Transcriptome-wide sig-
nificance was determined using the Bonferroni-corrected threshold of
7.7 × 10−6 to account for the 6461 genes tested, and suggestive asso-
ciations were determined using the Benjamini-Hochberg false dis-
covery rate (FDR) of 0.10. MiXcan identified 12 significant genes
(p value < 7.7 × 10−6) (Table 1, Fig. 6) and 82 suggestive genes
(FDR <0.10) (Supplementary Data 1) whose predicted GReX in

Fig. 4 | Simulation studies to evaluate the type I error andpower ofMiXcanand
PrediXcan to detect associations of GReX with disease at the tissue level. Bulk
tissue samples (N = 300) for training GReX prediction models and independent
studies (N = 3000) for testing disease associations were simulated under a range of
realistic data scenarios. Gene expression levels were modeled by u = b0 +b1x + eu in
the minor cell type, v =b2x + ev in the major cell type, and y =πu + (1−π)v at the
tissue level, where π denotes the minor cell-type proportion, b0 denotes the mean
difference of the gene expression levels in the two cell types, and b1 and b2 denote
the weights for the association of SNPs X with gene expression levels in the minor

and major cell types, respectively. The disease D was modeled by logit
P(D = 1) = η0 + η1u + η2v where η1 and η2 denote the associations of the gene
expression levels with disease in the two cell types, respectively. (a) Homogeneous
SNP-Exp associations (b1 =b2) in the two cell types, varying the mean difference in
gene expression levels between the two cell types (b0). Heterogeneous SNP-Exp
associations (b1 ≠b2) in the two cell types, varying the: (b) mean difference in gene
expression levels between the two cell types (b0); (c) magnitude of the SNP-Exp
association in the minor cell type (b1); and (d) magnitude of the SNP-Exp associa-
tion in the major cell type (b2). Source data are provided as a Source Data file.
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mammary tissue were associated with breast cancer risk. In compar-
ison, PrediXcan (trained using the same 125 EA femalemammary tissue
samples as MiXcan) identified only 8 significant genes (p value <
7.7 × 10−6), and 31 suggestive genes (FDR < 0.10). The inflation factor
obtained using the BACON v1.26 Bayesian method to estimate the
empirical null distribution was 1.01 for MiXcan and 1.03 for PrediXcan,
indicating well-controlled type I error31.

Four significant genes (CH17-437K3.1, SLC4A7, L3MBTL3, and
RCCD1) were identified by both MiXcan and PrediXcan (Table 1).
MiXcan estimated nonspecific prediction models for these genes,
yielding the same results as PrediXcan. All four genes were near (<500
kb) breast cancer SNPs previously identified by GWAS11, and two genes
(L3MBTL3 and RCCD1) alsowere reported by prior breast cancer TWAS
(Supplementary Data 1)14,15,32. Follow-up analyses in a larger sample of
228,951 EA women (122,977 cases and 105,974 controls) in the Breast
Cancer Association Consortium (BCAC) and DRIVE studies using
GWAS summary statistics11 and S-PrediXcan33 models for mammary
tissue confirmed that the tissue-level GReX for all four genes were
significantly (p value < 7.7 × 10−6) associated with breast cancer risk.

Eight geneswere identifiedbyMiXcanbut not PrediXcan (Table 1).
MiXcan estimated cell-type-specific GReX prediction models for all
eight of these genes (Supplementary Data 2). Six of these genes
(MRPS30, SETD9, ADGRV1, ZNF703, PRR33, and PSG4) showed different
directions of association with breast cancer in epithelial vs. stromal
(nonepithelial) cells. InMiXcan the signals from the twocell typeswere
aggregated, whereas in PrediXcan they canceled each other out
reducing the tissue-level signal. Notably, for ADGRV1 and PRR33, no
SNPs in the training dataset were predictive of tissue-level GReX
because of the mixture of the different cell-type effects, and

consequently the PrediXcan association analysis could not be per-
formed. Twogenes (TMEM245 andCDYL2) showed the samedirections
of association, with stronger effects in epithelial vs. stromal cells.
These results indicate that MiXcan may be more powerful than Pre-
diXcan in the presence of cell-type heterogeneity of GReX and when
the disease association is present in a minor cell type, e.g. mammary
epithelial cells, rather than the predominant cell type in the tissue.

Importantly,MiXcan uniquely identified three novel breast cancer
susceptibility genes (ZNF703, TMEM245, and PSG4) that were not pre-
viously implicated by breast cancer GWAS11–13 nor TWAS14–16,32 (Table 1).
For ZNF703, GReX was associated with increased breast cancer risk in
stromal cells (p value=2.4 × 10−9) and decreased risk in epithelial cells
(p value=2.7 × 10−7). Because adipocytes are the predominant stromal
cell type in mammary tissue, we also performed follow-up analyses
using the S-PrediXcan subcutaneous fatmodel and discovered a highly
significant (p value=2.1 × 10−20) association of ZNF703 with increased
breast cancer risk in the four-fold larger BCAC/DRIVE dataset, con-
sistent with the MiXcan stromal cell results in the DRIVE data only. For
TMEM245 and PSG4 the signal was stronger in epithelial cells, which are
a minor cell type in mammary tissue andmay explain why their tissue-
level GReX was not significantly associated with breast cancer risk.
MiXcan also identified two breast cancer genes (ADGRV1 andCDYL2) at
previously reported GWAS loci11 that had different associations in
epithelial and stromal cells and were not detected in prior TWAS.

Four genes (SRGAP2C, CASP8, ALS2CR12, and STXBP4) were iden-
tified by PrediXcan but not MiXcan (Table 1). There was high correla-
tion between the predicted tissue-level GReX of CH17-437K3.1 (also
identified by MiXcan) and SRGAP2C at 1p11.2 (r =0.95) and CASP8 and
ALS2CR12 at 2q33.1 (r = –0.97) indicating that these associations may
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represent only two independent loci. All four genes identified by Pre-
diXcan onlywere located nearbreast cancer SNPs previously identified
by GWAS11, and three genes (CASP8, ALS2CR12, and STXBP4) also were
reported by prior breast cancer TWAS (Supplementary Data 1)15,32.
Associations of themammary tissue-level GReXwith breast cancer risk
were found for all four genes in S-PrediXcan analyses of the BCAC/
DRIVE data, as expected. MiXcan estimated cell-type-specific GReX
prediction models for these four genes (Supplementary Data 2), and
different associations with breast cancer risk in epithelial and stromal
cells that did not reach statistical significance in part because of the
larger number of model parameters compared with PrediXcan. How-
ever, the cell-type-specific MiXcan results for STXBP4 suggest that
stromal cells (estimated effect=0.18; p value = 2.1 × 10−4) may play a
more important role than epithelial cells (estimated effect = –0.06; p
value=0.41) in driving the positive association of tissue-level GReXwith
breast cancer risk.

Finally, we compared the TWAS results using MiXcan and Pre-
diXcan with publicly available PredictDB28 elastic-net models trained
using GTEx mammary tissue data for 212 EA men in addition to 125 EA
women (Supplementary Fig. 7). There was substantial overlap of the
genes detected by PrediXcan and PredictDB as expected, although
PredictDB detected a larger number of genes perhaps because the
larger training dataset enabled more accurate prediction models for
genes that have similar expression patterns in male and female mam-
mary tissue. However, the etiology and pathobiology of male breast
cancer is distinct from female breast cancer34. Thus, prior TWAS of
breast cancer in EA women15,32 also trained PrediXcan models using
mammary tissue samples (n=67) from EA women only, as we did here
using a larger number of EA women from GTEx. Cell-type-specific
TWAS usingMiXcan identified five genes (ADGRV1, ZNF703, TMEM245,
CDYL2, and PSG4), including three novel breast cancer susceptibility
genes, that were not identified by either PrediXcan or PredictDB.

Discussion
MiXcan is a new statistical framework for conducting cell-type-aware
TWAS using GWAS data. In contrast to standard TWAS methods,

MiXcan builds cell-type-level prediction models for the genetically
regulated component of gene expression and performs association
tests taking into consideration the signals frommultiple cell types. We
have shown that MiXcan improves the prediction accuracy of GReX at
both the tissue and cellular levels in independent validation datasets,
and improves the power to detect disease associations that are driven
by a minor cell type or are heterogeneous between cell types com-
pared with standard approaches. We applied MiXcan to perform
thefirst cell-type-aware TWASof breast cancer risk and identified three
new susceptibility genes (ZNF703, TMEM245, and PSG4) with evidence
of distinct associations inmammary epithelial versus stromal cells that
were not detected by prior GWAS11–13 nor TWAS14–16,32. These findings
provide a proof of concept that cell-type-aware TWAS can reveal novel
insights into the genetic and cellular etiology of human diseases.

Several recent studies have explored context-specificTWAS35–37. Li
et al. proposed a tissue-specificity-aware TWAS framework that uses
prior knowledge of trait-related tissue types for accurate detection of
single-tissue and cross-tissue TWAS35. Feng et al. proposed to derive
cross-tissue expression features using sparse canonical correlation
analysis, and then combine expression-outcome associations across
single- and cross-tissue features for powerful detection36. Thompson
et al. proposed CONTENT to go one step further and model both
shared and tissue-specific components of gene expression in bulk
multi-tissue data for model construction37. This approach can also be
used for modeling shared and cell-type-specific components in single-
cell RNAseq data37. These recently developed TWAS methods model
associations at the same resolution of the data, such as modeling
tissue-level associations for bulk profiling data and cell-type-level
associations for single-cell data, and thus do not provide higher-
resolution (single cell) understanding of disease using lower-
resolution (bulk tissue) data as does MiXcan.

Recent studies have also explored methods for performing cell-
type-level association analyses when the tissue-level data are available
for all study participants19,38–42. Luo et al. evaluated cell-type-specific
associations between DNA methylation and traits40, but this method
did not involve prediction models and methylation data are required
for all subjects. Liu et al. built tissue-level GReX prediction models,
inferred cell types from the predicted GReX, and looked for associa-
tions of the inferred cell-type proportions with disease rather than
constructing a TWAS framework for identifying genes42. In this study,
MiXcan enables cell-type-aware TWAS in large populations using
existing GWAS datasets that do not have transcriptomic and cell
composition data from the disease-relevant tissue. MiXcan evaluates
the composite null hypothesis that there is no association between the
GReX in any cell type with the disease, which tolerates decomposition
uncertainty toprovide robust cell-type-aware analysis using bulk tissue
samples. By carefully modeling cell-type-level expression, MiXcan is
more powerful thanPrediXcanwhendisease associations aredriven by
a minor cell type or have opposite directions in different cell types.
However,when the association ofGReXwith disease is similar in all cell
types or driven by the major cell type, then conventional TWAS
approaches using more parsimonious tissue-level GReX prediction
models that assume cell-type homogeneity can be more powerful.
Thus, these two TWAS approaches are complementary, and additional
cell-type-aware analyses are especially valuable for diseases where cell-
type heterogeneity and a minor cell of origin are hypothesized, as for
breast carcinoma and many other human diseases.

To construct cell-type-level GReXpredictionmodels,MiXcanuses
a scaled xCell18 cell-type enrichment score in the training data as prior
information. While estimates from other approaches20,21,23,43–45 can also
be used as priors, xCell is among the most widely used. Building upon
the priors, MiXcan fits mixture models for the expression levels of the
epithelial cell signature genes in the training data to improve estima-
tion of the cell-type proportion. By incorporating better estimates of
the cell-type proportion, and penalizing all cell types equally, MiXcan
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Fig. 6 | Transcriptome-wide association studies of breast cancer. MiXcan iden-
tified 12 genes and PrediXcan identified 8 genes that were significantly associated
with breast cancer risk at p value < 7.7 × 10−6, applying a Bonferroni correction for
the 6461 genes tested in 31,716 breast cancer cases and 26,932controls of European
ancestry from the DRIVE study. Source data are provided as a Source Data file.
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improves the accuracy of the GReX prediction models, as well as the
power and type I error of the downstreamassociation tests. Compared
with standard interaction models that include interaction effects
between cell-type enrichment scores and genetic variants19, an
important advantage of MiXcan is that the predicted values corre-
spond to the cell-type-specific GReX, which are directly interpretable
and biologically meaningful. Moreover, standard interaction models
require cell composition information, which is often unavailable for
the tissue of interest, whereas MiXcan prediction models can be
applied directly to GWAS data without transcriptomic or cell compo-
sition data to interrogate genetic associations within the disease-
relevant tissue and cell type context.

MiXcan has several limitations. First, although the MiXcan fra-
mework is generalizable, the model building procedure requires
hypotheses regarding the disease-related cell types and tissue. The
predictionmodels for this cell-type-aware TWAS of breast cancer were
developed specifically for human mammary tissue with a focus on
distinguishing epithelial and stromal (nonepithelial) cells, which have
distinct roles in breast carcinogenesis8–10. Second, the current MiXcan
framework decomposes a tissue into two cell-type components only.
TheMiXcan framework can be extended naturally tomodel more than
two cell types. However, given limited sample sizes of the available
training datasets, themodel performance becomes quite variable with
additional cell types due to the rapidly increasing dimension of the
parameter space and complexity of the numerical optimization. As
larger training sets with bulk tissue transcriptomic and genomic data
become available, a careful evaluation of its analytical performance
can be performed for additional less common cell types. Third, paired
single-cell RNAseq and genomic datasets are presently very limited,
and the validation ofMiXcan epithelial cell predictions was performed
for a small set of genes using epithelial cell snRNAseq data available for
only three women in GTEx. Human single-cell transcriptome profiling
efforts46,47 are currently underway, andwill enable further evaluationof
the performance of MiXcan in larger datasets. Future studies can also
investigate integrating single-cell transcriptome profiles into MiXcan,
for example to improve estimation of cell composition in bulk tissue
samples23,45 or to provide an initial estimate of SNP weights, which
could be used to tune separate penalty terms for different SNPs in
adaptive elastic-net models48.

Human mammary tissue has variable cell composition and
numerous eQTLs with distinct effects in epithelial cells and adipo-
cytes, which are a major stromal cell type in the breast19. Cell-type-
aware TWAS using MiXcan mammary tissue models applied to
publicly available GWAS data identified three new breast cancer
susceptibility genes that were associated with disease risk through
their GReX in normal mammary epithelial or stromal cells. ZNF703
(zinc finger protein 703) is an oncogene that is commonly amplified
in luminal B breast tumors, and has been shown to regulate genes
involved in proliferation, invasion, and an altered balance of pro-
genitorstemcells49–51.Toourknowledge,commongermlinevariants
in ZNF703have notpreviously been implicated inbreast cancer risk.
OurfindingthatgeneticupregulationofZNF703 innormalmammary
stromal cells (predominantly adipocytes) was associated with
increased breast cancer risk in 58,648 women was confirmed by a
highly significant (p-value=2.1 × 10−20) association of tissue-level
GReX predicted using S-PrediXcan subcutaneous fat models in
228,951 EA women, which has not previously been reported to our
knowledge. Notably, the mammary tissue-level results for ZNF703
did not reach transcriptome-wide significance, underscoring the
importance of accounting for cell-type heterogeneity to elucidate
disease etiology.TMEM245 (transmembraneprotein 245) is the host
gene for microRNA 32, which has been shown to promote pro-
liferation and suppress apoptosis of breast cancer cells52. Relatively
little is known about PSG4 (pregnancy specific beta-1-glycoprotein
4), amember of the carcinoembryonic antigen gene family thatmay

play a role in regulation of the innate immune system53. Future stu-
dies are needed to provide experimental validation of the breast
cancer genes identified in this study and better understand the cel-
lular mechanisms underlying the associations.

In conclusion, the MiXcan framework enables cell-type-aware
TWAS using prediction models that allow for differences across cell
types in the disease-relevant tissue. MiXcan mammary tissue models
are available at https://github.com/songxiaoyu/MiXcan54 and can be
applied to GWAS genotype data to identify genes associated with
complex traits through theirGReX in epithelial or stromal cells.MiXcan
software is also freely available to facilitate training prediction models
for other tissues and cell types, and conducting cell-type-aware TWAS.
MiXcan prediction models had excellent performance in independent
validation datasets, and identified new breast cancer susceptibility
genes in the first cell-type-awareTWASof breast cancer. These findings
provide a proof of concept that cell-type-aware TWAS are feasible
using existing bulk tissue training datasets and GWAS data, and can
lead to the discovery of new disease genes and cellular mechanisms.
Future research is needed to developMiXcanmodels for other human
tissues and cell types, extend the MiXcan framework to GWAS sum-
mary statistics, and explore alternative modeling and inference
strategies2,55,56. These research directions will enable the broad appli-
cation of cell-type-aware TWAS to improve our understanding of the
genetic and cellular mechanisms underlying human diseases.

Methods
MiXcan framework
We first summarize PrediXcan1, an established tissue-level TWAS fra-
mework, and then present the MiXcan cell-type-aware TWAS frame-
work. Let yi denote themeasured expression level of a gene in the bulk
tissue sample i∈ (1, . . . ,N), xi denote the genetic variants (e.g. SNPs)
used in model training, and zi denote the non-genetic covari-
ates (e.g. age).

PrediXcan tissue-level TWAS framework. PrediXcan uses a linear
additive model to characterize the gene expression level:

yi =a+xT
i b+ zTi c+ ei, ð1Þ

where ei ~N(0, σ2) is themodel error, xT
i b is the genetically determined

component of gene expression, and zTi c is the non-genetically
determined component. This model can be estimated with the
elastic-net method57, which maximizes the following penalized log-
likelihood function:

ðba, bb,bc, bσÞ= argmax
Xn
i = 1

�ðyi � a� xT
i b� zTi cÞ

2

2σ2 � 1
2
logðσ2Þ

 !
� λðPðbÞ+ PðcÞÞ,

ð2Þ

where Pð�Þ=α∣∣ � ∣∣2l2 + ð1� αÞ∣∣ � ∣∣l1 is the elastic-net penalty function
with the mixing parameter α∈ (0, 1). In PrediXcan, α is set at 0.5 and λ
is selected via 10-fold cross validation.(CV)58 The estimated SNP
weights bb canbe used topredict theGReXbybyj = ~xT

j
bbwhere ~xj denotes

the SNP genotypes of the GWAS subject j∈ (1, . . . ,M). Then, the
association of byj with the phenotype (e.g. disease status) dj can be
evaluated using a generalized linearmodel gðdjÞ=η0 +byjη1, where g(. )
is a link function. The null and alternative hypotheses,H0: η1 = 0 vs.HA:
η1 ≠0, test whether the GReX at the tissue level is associated with the
phenotype.

MiXcan cell-type-level GReX prediction model. MiXcan extends
upon PrediXcan to enable cell-type-aware TWAS. In this section, we
build the prediction models for the cell-type-level GReX. In the next
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section, we develop strategies for applying these predictionmodels in
disease-association studies.

Human bulk tissue samples from solid tissue (e.g. mammary
tissue) comprise amixture of cells of different types. Let πi and 1 − πi

be the proportions of the cell type of interest (e.g. epithelial cells)
and all other cell types (e.g. stromal cells) in the ith tissue sample,
respectively. We assume the observed bulk tissue expression level
of a given gene yi is a linear combination of expression levels in the
cell types. Introducing two latent variables ui and vi to denote the
unobserved average gene expression levels in the epithelial and
stromal cells, respectively, we have:

yi =πiui + ð1� πiÞvi: ð3Þ

We model both ui and vi using the linear additive models:

ui =au +x
T
i bu + z

T
i c+ eui, and vi =av +x

T
i bv + z

T
i c+ evi, ð4Þ

where eui ∼Nð0, σ2
uÞ and evi, ∼Nð0,σ2

vÞ are the model errors. In Eq. (4),
the intercepts au and av and genetic parameters bu and bv differ
between cell types, allowing for different mean expression levels and
cell-type-specific effects of genetic variants on gene expression. A
shared parameter c is used for the non-genetic component zi to
simplify the model as the non-genetic variables are not necessarily
used in downstream analyses.

The proportion of epithelial cellsπ = {π1, . . . ,πN} is a feature of the
tissue samples, which can be jointly estimated using multiple genes,
whereas Θ= ðau,av,bu,bv, c,σ

2
u,σ

2
vÞ are features of each gene for

investigation. Therefore, we present a step-wise procedure to first
estimateπ usingmultiple epithelial signature genes, and then estimate
the cell-type-level effects Θ for each gene.

Estimation of π. The notation in the sections above focuses on
individual genes, and here we introduce additional notation to
describe the joint modeling of multiple genes. LetWN ×G = fwg

i g be the
observed expression of G epithelial signature genes in N tissue sam-
ples; and SN ×G = fsgi g and TN ×G = ftgi g be the unobserved gene expres-
sion levels in epithelial and stromal cells, respectively. Similarly as in
Eq. (3), we have:

wg
i =πis

g
i + ð1� πiÞtgi , g = 1, :::,G, i= 1, :::,N: ð5Þ

Leveraging primarily the mean differences of signature genes in
epithelial and stromal cells for estimating π, we model the marginal
distributions of individual genes and omit the complex gene-gene
correlations for computationally efficient estimation, as supported by
our previous work59. Specifically, we assume:

sgi ∼Nðμg
Si,σ

g
SiÞ, and tgi ∼Nðμg

Ti,σ
g
TiÞ:

Across all G genes, the parameters include Γ = ffΓgggGg = 1,
where Γg = ðμg

S ,μ
g
T , σ

g
S ,σ

g
T Þ.

In parallel, we also take advantage of a prior cell-type proportion
estimate hi based on existing tools (i.e. rescaled xCell18 enrichment
scores). We link the prior estimates hi to the true πi using a Beta dis-
tribution such that hi ~Beta(πiδ, (1 −πi)δ) for some positive parameter
δ. We have E(hi) =πi and var(hi) =πi(1−πi)/(δ + 1) such that hi is an
unbiased estimator of the true πi with variation.

We then join these twomodels for parameter estimationand solve
the following maximization problem:

ðπ̂,Γ̂ ,δ̂Þ= argmax
Γ ,π,δ

XN
i= 1

XG
g = 1

lðΓ ,πi∣w
g
i Þ+ lðπi,δ∣hiÞ

" #
, ð6Þ

where
PG

g = 1 lðΓ ,πi∣w
g
i Þ and l(πi, δ∣hi) are the log-likelihood of the

observed gene expression profile and cell proportion estimate of

the ith sample, respectively. This optimization problem is solved
using an Expectation-Maximization (EM) algorithm similar to that in
Petralia et al.59

To enhance the robustness of the estimation, we implement a
bagging strategy to estimate the parameters with randomly selected
bootstrap samples, and aggregate multiple estimates by calculating a
tail truncated mean. This bagging strategy further stabilizes the esti-
mates, and may also be used to investigate the consistency of π
estimation.

Estimation ofbuandbv. Given bπ, we next estimate bu and bv in Eq.
(4). Since ui and vi areunobserved,we integrate Eqs. (3) and (4) to have:

yi = bπiðau +x
T
i bu + z

T
i c+ euiÞ+ ð1� bπiÞðav +x

T
i bv + + zTi c+ eviÞ: ð7Þ

This equation can be rearranged as:

yi =av + bπiðau � avÞ+xT
i bv + bπix

T
i ðbu � bvÞ+ zTi c+ ϵi, ð8Þ

where ϵi = bπieui + ð1� bπiÞevi. A simple strategy for estimating bu and bv

is to apply elastic-net regression to Eq. (8). Specifically, the elastic-net
regularization is put on (bv,bu −bv, c)—the dependence of expression
levels on genetic variants and covariates—but not on (av, au − av) —the
meanexpression levels in the two cell types.We refer to this strategy as
MiXcan0.

One issue with MiXcan0 is that the two cell components in the
mixturemodel are not treated in a symmetricmanner. In other words,
the penalization on bu and bv differs: bv is shrunk towards zero, while
bu is shrunk towards bv. This asymmetric penalization results in dif-
ferent models if the order of the two components is switched. To
address this issue, we introduce bci = bπi � 0:5 and rewrite Eq. (8) as:

yi =
au +av

2
+bciðau � avÞ+xT

i
bu +bv

2
+bcixT

i ðbu � bvÞ+ zTi c+ ϵi: ð9Þ

When fitting elastic-net regression to Eq. (9), we include penalties on
ðbu +bv

2 , ðbu � bvÞ,cÞ, which impose the same degree of regularization
onbu andbv: the penalty on

bu +bv
2 regularizes the overall sparsity of the

genetic effects, while the penalty on bu −bv encourages similarities
between the two components. We refer to this strategy as MiXcan.

Note, when fitting elastic-net regressions inMiXcan0 andMiXcan,
we do not consider the varying variances of ϵi as π̂i takes different
values. This is because the residual variance structure has limited
impact on the coefficient estimates, especially for regularized regres-
sion. In a trade-off between extensive computational costs (allowing
varying residual variances) and minimal sacrifice of estimation accu-
racy (assuming constant variance), we chose the latter and take
advantage of the fast implementation of elastic-net regression in the
glmnet package.

Model Aggregation. In the predictionmodels, the term bbu � bbv is
of particular importance: a non-zero value suggests that the depen-
dence structure between genetic variants and expression levels is cell-
type-specific. Therefore, it is critical to know the selection robustness

of bbu � bbv.We employ aprocedure similar to stability selection60 for its

evaluation. Specifically, for models that select non-zero bbu � bbv, we
generate B bootstrap samples (e.g. B = 200), perform ordinary least

square analysis on the pre-selected variables, and recordddiff ðbÞb = bbðbÞ
u �bbðbÞ

v for b = 1, . . . ,B. Onlywhen the 95%confidence interval (CI) forddiffb
excludes 0 do we employ cell-type-specific prediction models (infer-
red using the complete data set). Otherwise, nonspecific models that
have the same predictionweights for the two cell types will be used, as
in Eq. (2) of PrediXcan.
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Association analysis with cell-type-level prediction models. The
model building procedure in MiXcan selects cell-type-specific predic-
tion models for some genes and nonspecific models for other genes.
Cell-type-specific prediction models estimate different SNP weights in
the two cell types (bbu ≠

bbv) resulting in different predicted GReX from
the same genotype data ~xj (j∈ (1, ...,M)), such that ~yuj = ~xTj

bbu and
~yvj = ~xTj

bbv. These cell-type-specific GReX levels cannot be combined
into tissue levels in GWAS datasets that lack cell-type proportion
estimates, requiring a novel statistical framework for association ana-
lysis. One natural idea is to infer cell-type-specific associations by
directly associating the phenotype djwith ~yuj and ~yvj , either separately,
such that gðdjÞ=η0 +ηu~yuj and gðdjÞ=η00 +ηv~yvj , or jointly, such that
gðdjÞ= η0 + ηu~yuj + ηv~yvj . As ~yuj and ~yvj are predicted from the same
genotype data with prediction weights jointly learned using the bulk
tissue data in MiXcan, they may capture leaked information from each
other. As a result, if an association exists in one cell type, analysis in the
other cell type may also capture this association, resulting in an infla-
ted type I error for inferring associations in each cell type. To avoid this
inflation, we propose a composite hypothesis test to test whether
association exists in any cell types in the tissue:

H0: There is no association in any cell type in the tissue vs.
HA: There is an association in at least one cell type in the tissue.

This composite null is robust against information leakage, as the
leaked values under the null are not associatedwith the phenotype. To
perform the test, we first associate dj with ~yuj and ~yvj , separately if the
ð~yuj ,~yvjÞ are highly correlated (e.g. r = ±1), or jointly otherwise. Then, we
propose to aggregate the resulting p values pu and pv for ~yuj and ~yvj
using Cauchy combination27. The Cauchy combination provides valid
test for correlated p-values, and in this setting the test statistic can be
written as:

TCauchy = tanfpið0:5� puÞg+ tanfpið0:5� pvÞg, ð10Þ

where pi is themathematical constant approximately equal to 3.14159.
The combined p-value for the tissue is approximated by:

ptissue ≈ 1=2� farctanðTCauchyÞgpi: ð11Þ
The ptissue tests whether association exists in any cell type in the

tissue. Unlike PrediXcan that tests associations averaged across all cell
types, the ptissue in MiXcan accumulates signals from different cell
types. Note that pu and pv are building blocks of TCauchy and the
resulting ptissue is between pu and pv. After the tissue-level hypothesis
test, pu and pv can provide information on the cell type(s) driving the
association. For example, pu << pv indicates that a significant ptissue is
primarily driven by epithelial cells.

Some genes have nonspecific models with the same estimated
SNP weights and predicted GReX in the two cell types (bbu =

bbv). While
association analyses can follow the same strategy described above for
cell-type-specific models, it is equivalent to performing a single tissue-
level association analysis as in PrediXcan. Finally, in transcriptome-
wide studies, ptissue from genes with cell-type-specific prediction
models andp-values fromgeneswith nonspecificmodels can be jointly
used to adjust for multiple testing, and infer transcriptome-wide sig-
nificant discoveries.

Build MiXcan prediction models using GTEx mammary
tissue data
MiXcan gene expression prediction models were developed using the
GTEx v8 genotype and gene expression data for mammary tissue
samples from 125 European ancestry women (dbGaP accession num-
ber phs000424.v8.p2 <https://www.ncbi.nlm.nih.gov/projects/gap/
cgi-bin/study.cgi?study_id=phs000424.v8.p2>). PredictDB (http://
predictdb.org) provides tissue-level expression prediction models

trained on 337 men and women of European ancestry with mammary
tissue data available in GTEx v8. PredictDB included mammary tissue
elastic-netmodels for a total of 6461 genes that were well predicted by
genetic variants (176,983 SNPs). An additional 1,715 SNPs were inclu-
ded in PredictDBmammary tissueMASHRmodels61. For thepurposeof
comparison to PrediXcan as a proof of concept, we developed cell-
type-level prediction models for these 6461 genes using all 178,698
SNPs in the PredictDB mammary tissue database. MiXcan cell-type-
level prediction models were developed for mammary epithelial cells,
the cell of origin for breast carcinoma, and stromal (non-
epithelial) cells.

π estimation. The epithelial cell proportion πi was estimated
using 126 epithelial cell signature genes18 available in the training
dataset of 125 GTEx female mammary tissue samples. We first com-
puted xCell gene set enrichment scores for epithelial cells and63 other
cell types using the curated set of cell signature genes for each cell
type18 and the bulk tissue transcriptomicdata for each sample.We then
re-scaled the xCell epithelial cell enrichment score to range from0 to 1
for use as a prior estimate of the cell-type proportion inMiXcan. Theπi

estimation was performed using 100 bootstrap samples (80% random
draw with replacement). The final estimate was computed by exclud-
ing themost extreme 5% of bootstrap estimates in each of the two tails
and averaging the remaining estimates.

Prediction model. Using bπ, we modeled the cell-type-level
expression levels for each of the 6461 genes using MiXcan with tun-
ing parameter λ selectedby tenfold CV.We adjusted for covariates that
were used in GTEx eQTL analyses including age, platform, PCR,
genomic principal components (PC) 1-5, and PEER factors 1–1562. For
genes with bbu ≠

bbv, we performed ordinary least squares regression on
the pre-selected variables for 200 bootstrap samples, and calculated
the 95% bootstrap CI of bbu � bbv. If the 95% CI excluded 0, we used cell-
type-specific models with parameters estimated using the full data;
otherwise, we used nonspecific models that were the same as Pre-
diXcan. The average computation time for training models for 1000
genes using 125 samples on a single CPU core was 11min (standard
deviation, 2.8 minutes).

EvaluateMiXcan prediction accuracy in independent TCGAdata
We evaluated the prediction performance of MiXcan in an inde-
pendent dataset of 103 European ancestry female breast cancer
patients with adjacent normal tissue samples from TCGA63,64. To
minimize the study effect, we re-processed the TCGA gene
expression data using methods analogous to those used to pro-
cess the GTEx expression data (https://gtexportal.org/home/
documentationPage). Briefly, we required genes to have Tran-
scripts Per Kilobase Million (TPM) >0.1 in at least 20% of samples,
and at least six reads in at least 20% of samples, resulting in a set
of 25,702 out of 25,849 total genes that met these quality control
(QC) requirements. Expression data were then normalized using
the trimmed mean of M values method (TMM)65 as implemented
in the R package edgeR v3.16.566, and the results were quantile-
normalized to a standard normal distribution with mean=0 and
variance = 1. Comparison of these normalized gene expression
levels showed no systematic differences between the GTEx and
TCGA data (Supplementary Fig. 7). To process the genotype data,
we removed all indels, monomorphisms, and ambiguous pairs
(e.g. A/T, C/G). SNPs with >5% missing genotypes or Hardy-
Weinberg equilibrium (HWE) test p value < 1e–05 were also
removed. The remaining SNPs were aligned to build 37 coordi-
nates, and imputation was performed on the TOPMed imputation
server67. A total of 97% (54,663 out of 56,531) and 97% (52,031 out
53,876) SNPs used in MiXcan and PrediXcan prediction models,
respectively, were available for analysis.

We estimated the epithelial cell proportion in the TCGA
samples as described above, and used this estimate to combine
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the predicted cell-type-level GReX from epithelial and stromal
components into the tissue level. To evaluate predication accu-
racy, we computed the Pearson correlation between the pre-
dicted and observed tissue-level gene expression, and compared
the results with the predicted tissue-level expression using Pre-
diXcan. The observed bulk tissue expression levels showed sig-
nificantly higher correlation with the tissue-level GReX predicted
by MiXcan compared with PrediXcan. To investigate the sources
of the improved performance, we compared five approaches for
predicting tissue-level GReX:

• Existing PredictDB elastic-net models (PredictDB)
• PrediXcan trained on the same dataset as MiXcan (PrediXcan)
• Prediction model including interactions between SNPs and the

xCell enrichment score (xCell interaction)
• Prediction model including interactions between SNPs and the

MiXcan cell-type proportion (MiXcan0)
• Cell-type-level prediction models with symmetric penalization

(MiXcan).

These comparisons evaluated incorporating cell-type composi-
tion, use of the MiXcan cell-type proportion estimate, and symmetric
penalization of the twocell types in predictionmodels, aswell as use of
a larger training set including both men and women in PredictDB. It is
worth noting that “MiXcan0" and “xCell interaction" models are not
applicable to GWAS datasets that lack cell-type composition informa-
tion for the tissue of interest, and are included here only for the pur-
pose of understanding the sources of improved prediction
performance for MiXcan.

Evaluate MiXcan epithelial cell prediction accuracy in
snRNAseq data
We evaluated the performance of MiXcan epithelial cell prediction
models using snRNAseq data for normal mammary epithelial cells and
paired genomic data available for threewomenof European, Asian and
African ancestry from GTEx v929. Details of the snRNAseq data gen-
eration and processing were provided in29. The preprocessed log
count expression profiles for a total of 5990, 2324 and 1456 nuclei,
including 2292 (38%), 2180 (94%) and 1327 (91%) epithelial cell nuclei,
from the European, Asian and African ancestry woman, respectively,
were downloaded from https://gtexportal.org/home/datasets. Mam-
mary epithelial cell snRNAseq data were available in all three women
for 4751 genes withMiXcan predictionmodels. To enable comparisons
between women, the snRNAseq levels were averaged for each gene
and quantile normalized to a standard normal distribution within each
woman to reduce the impact of noise, skewness and outliers.

To evaluate prediction accuracy, MiXcan epithelial cell prediction
models were applied to the genotype data for each woman, and the
between-woman difference in the predicted GReX for each gene was
computed to identify the two sets of 100 genes predicted to have the
largest positive or negative differences in mammary epithelial cell
expression in each pair of women. The Wilcoxon signed-rank test was
used to test whether the observed snRNAseq differences for genes
predicted to have the largest GReX differences between women were
significantly different from zero, as expected.

Simulation studies
To evaluate the type I error and power of MiXcan association tests, we
performed extensive simulation studies under a broad range of rea-
listic models for the associations of genetic variants with gene
expression (SNP-Exp) and gene expression with disease (Exp-Disease).
Mimicking real data, in each simulation, we generated a training
dataset for building the GReX prediction models, and a GWAS dataset
for testing the associations of GReX with disease. Without loss of
generality, non-genetic covariates were excluded from simulations to
allow direct evaluation of the predicted GReX.

For the training dataset, we simulated 300 bulk tissue samples
with observed SNP genotypes and tissue-level gene expression. We
assumedeach tissue i∈ (1, . . . , 300)was amixtureof two cell types and
that the minor cell type (cell type 1) comprised an average of 40% of
the tissue, with proportion πi ~Beta(α = 2, β = 3). We further simulated
the genotypes of 50 neighboring SNPs xi = {x1i, . . . , x50i} using the
genome simulator R package sim1000G, with its default reference
genome region (chromosome 4) and minor allele frequency (MAF)
range 0.05–0.50. For the expression levels in the two cell types ui and
vi, we considered a linear additive model such that ui = b0 +b1xi + eui
and vi =b2xi + evi where eui, evi ~N(0, 1). The parameter b0 determined
the mean expression difference in the two cell types under xi =0, and
b1 and b2 determined the association patterns between the SNPs X and
gene expression level Y in theminor andmajor cell types, respectively.
Then, the tissue-level gene expression was a weighted average of the
expression levels in the two cell types: yi =πiui + (1 −πi)vi.

We considered two SNP-Exp settings: Homogeneous SNP-Exp
Association (b1 =b2) and Heterogeneous SNP-Exp Association (b1 ≠b2).
Under the Homogeneous SNP-Exp setting, we randomly selected one
genetic variant p to be associated with expression levels in the two cell
types and let b1p = b2p = 1 or -1 with equal chance, corresponding to a
median heritability of 0.27 and interquartile range (IQR) of 0.10. We
varied b0 from -2 to 2 to evaluate the impact of the intercept (mean
expression difference in two cell types under xi =0) on TWAS. Under
the Heterogeneous SNP-Exp setting, we randomly selected two SNPs
p1 ≠ p2∈ (1, . . . , 50) with SNPs p1 and p2 associated with expression
levels in theminor andmajor cell types, respectively, corresponding to
the same heritability in both cell types (median 0.27; IQR 0.10). Similar
to the Homogeneous SNP-Exp setting, we first evaluated the impact of
the intercept by varying b0 from -2 to 2 while fixing b1p1

at 1 or -1 and
b2p2

at 1 or -1with equal chance. Second,wevaried themagnitudeofb1p
from 0 to 2 (median heritability 0 to 0.59) with equal chance of a
positive or negative sign, while fixing b0 at 1 and b2p = ± 1 to
understand the impact of the SNP-Exp association strength in the
minor cell type. Third, we varied the magnitude of b2p from 0 to 2
(allowing a random sign with equal chance), while fixing b0 at 1 and
b1p = ± 1 to understand the impact of the SNP-Exp association strength
in the major cell type. Finally, to evaluate the impact of the training
data sample size, we assessed sample sizes ranging from 100 to 300,
while fixing b0 at 1 and the magnitude of non-zero components of
b1,b2 at 1.

For the GWAS dataset, we simulated a case-control study of 3000
participants with observed genotypes and disease status. We assumed
the unobserved cell-type composition and cell-type-level gene
expression in this dataset followed the same distributions as in the
training dataset. Disease risk was simulated using a logistic model,
such that logitP(dj = 1) = η0 + η1uj + η2vj for j∈ (1, . . . , 3000). The inter-
cept η0 was set to reflect a 1:1 ratio of cases and controls. We con-
sidered five different settings for η1, η2 to capture the dynamic
relationship between gene expression levels in the two cell types and
disease risk:
1. No Exp-Disease Association: η1 = η2 = 0, i.e. disease is not

associated with the gene expression in either cell type.
2. Homogeneous Exp-Disease Association: η1 = η2 = 0.2, i.e. disease is

associated with the gene expression in both cell types in the
same way.

3. Exp-Disease Association in Major Cell: η1 = 0 and η2 = 0.2, i.e.
disease is associated with the gene expression in the major cell
type (cell type 2).

4. Exp-Disease Association in Minor Cell: η1 = 0.2 and η2 = 0, i.e.
disease is associated with the gene expression in the minor cell
type (cell type 1).

5. Exp-Disease Association in Opposite Directions: η1 = −0.2 and
η2 = 0.2, i.e. disease is associated with the gene expression in the
two cell types in opposite directions.
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We compared the prediction accuracy, type I error, and power of
MiXcan with PrediXcan, which ignores cell-type heterogeneity in 500
Monte Carlo simulations.

MiXcan performance under misspecified models. MiXcan
decomposes tissues into two cell-type components. To evaluate the
robustness of MiXcan to misspecification of the cell-type proportion,
where a noisy estimate of π̂ is used instead of the trueπ, we simulated:
(a) π̂ =0:8π to shift the mean from 0.4 to 0.32 and scale from (0–1) to
(0–0.8); (b) π̂ =0:7π +0:2 to shift the mean from 0.4 to 0.48 and
scale from (0-1) to (0.2-1); (c) π̂i ∼Betað50πi,50ð1� πiÞÞ to reduce
the correlation with the true value corðπ̂i,πiÞ to 0.9; and (d)
π̂i ∼Betað5:5πi,5:5ð1� πiÞÞ to further reduce corðπ̂i,πiÞ to 0.6. We
compared the performance of MiXcan using the misspecified π̂ with
MiXcan using the true π and PrediXcan.

We also evaluated the robustness of MiXcan to the presence of a
latent third cell type. We simulated a tissue with three cell types that
have different SNP-Exp or Exp-Disease associations, and evaluated the
performance ofMiXcanby decomposing the tissue into cell type 1 vs. a
mixture of cell types 2 and 3. Specifically, we simulated 300 bulk tissue
samples comprised of three cell types with proportions π1i = 40%,
π2i = 50% and π3i = 10%. As in the simulations above, gene expression
levels in three cell types were linearly dependent on 50 neighboring
SNPs as determined byb1,b2 andb3, and logit transformeddisease risk
was linearly dependent on the expression levels in the three cell types
as determined by η1, η2 and η3. To evaluate the impact of a latent third
cell type contributing to the SNP-Exp association, we compared the
performance of MiXcan and PrediXcan for b2 =b3 vs. b2 ≠b3 assuming
η2 = η3 under the Heterogeneous SNP-Exp Association (b1 ≠b2)
setting. In detail, we randomly selected three different SNPs
p1, p2, p3∈ (1, . . . , 50) to be associated with expression levels in the
three cell types, respectively, and fixed the magnitude of these non-
zero b (b1p1

,b2p2
,b2p3

) at 1, with equal chance of a positive or negative
sign. We evaluated type I error and power in simulated GWAS datasets
(N = 3000) under five Exp-Disease patterns as described for η1, η2
above. As we observed that type I error was well controlled under
various SNP-Exp associations in a latent third cell type, we next eval-
uated the impact of a latent third cell type contributing to the Exp-
Disease association on the study power of MiXcan. In this simulation,
we fixed b3 =b2 but simulated η3 ≠ η2 with η3 values ranging from
-0.2 to 0.2.

ApplyMiXcan toperformcell-type-awareTWASof breast cancer
Cell-type-aware TWAS of breast cancer. We performed cell-type-
awareTWASof breast cancer risk usingGWASdata from theDiscovery,
Biology, and Risk of Inherited Variants in Breast Cancer (DRIVE) study.
Genotype data for 60,014 women (32,438 cases and 27,576 controls)
assayed using the Oncoarray30, which includes >500,000 variants and
provides excellent coverage of most common variants, were down-
loaded from dbGaP (phs001265.v1.p1 <https://www.ncbi.nlm.nih.gov/
projects/gap/cgi-bin/study.cgi?study_id=phs001265.v1.p1>). After
imputation (as described above for TCGA data), 95% (53,528 out of
56,531) and 95% (51,049 out of 53,876) SNPs used in MiXcan and Pre-
diXcan prediction models, respectively, were available for analysis.

Principle component analysis (PCA) was performed using 20,629
SNPs, after excluding SNPs with a missing rate above 0.01% and
selecting SNPs in approximate linkage equilibrium using PLINK v1.90
(indep-pairwise option with window size=50kb, step size=5, r2

threshold=0.05)68. EIGENSOFT v6.1.4 was used to compute PCs with
the fast mode option enabled, which implements the FastPCA
approximation69. The first PC separated individuals of African (e.g.
fromNigeria, Uganda andCameroon) vs. European (e.g. fromAustralia)
ancestry. In total, 58,648 women (31,716 cases and 26,932 controls) of
European ancestry determinedby PCswere included in TWAS analyses.

MiXcan, PrediXcan and PredictDB elastic-net mammary tissue
models were applied to the individual-level genotype data to perform

cell-type-aware or tissue-level TWAS, as described above. All three
models were adjusted for the same covariates, including age, country
of origin and the top 10 PCs15.

Evaluation of TWAS findings. We evaluated significant TWAS genes
identified by MiXcan and PrediXcan in a substantially larger study of
228,951 European ancestry women (122,977 cases and 105,974 con-
trols) from the combined DRIVE and Breast Cancer Association Con-
sortium (BCAC) GWAS meta-analysis of breast cancer11. The summary
statistics for the “Combined Oncoarray, iCOGS GWAS meta analysis"
were downloaded from https://bcac.ccge.medschl.cam.ac.uk/
bcacdata/oncoarray/oncoarray-and-combined-summary-result/gwas-
summary-results-breast-cancer-risk-2017/. Associations of predicted
tissue-level GReX with breast cancer risk were evaluated using
S-PrediXcan33 with PredictDB28 elastic-net models derived from GTEx
v8 mammary tissue data for 337 men and women of European ances-
try. We also determined whether TWAS genes identified by MiXcan
and PrediXcan were located within 500 kb of 214 previously reported
genome-wide significant breast cancer susceptibility loci11–13.

MiXcan software
We developed a computationally efficient R package MiXcan to facil-
itate estimation of cell-type-level GReX prediction models in the two
cell components of bulk tissue data, and to perform cell-type-aware
TWAS. The MiXcan R package, and pre-trained models for the epi-
thelial and stromal (non-epithelial) cell components of mammary tis-
sue derived from 125 European ancestry women in GTEx v8 are freely
available at https://github.com/songxiaoyu/MiXcan54.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data used in this study are publicly available from the following
sources: GTEx v8 (dbGaP accession number phs000424.v8.p2 <https://
www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs0
00424.v8.p2>); GTEx v9 (https://gtexportal.org/home/datasets); TCGA
(dbGaP accession number phs000178.v8.p7 <https://www.ncbi.nlm.nih.
gov/projects/gap/cgi-bin/study.cgi?study_id=phs000178.v8.p7>); Dis-
covery, Biology, and Risk of Inherited Variants in Breast Cancer (DRIVE)
(dbGaP accession number phs001265.v1.p1 <https://www.ncbi.nlm.nih.
gov/projects/gap/cgi-bin/study.cgi?study_id=phs001265.v1.p1>); Pre-
dictDB (http://predictdb.org); and the Breast Cancer Association Con-
sortium (BCAC) (https://bcac.ccge.medschl.cam.ac.uk/bcacdata/).
Source data are provided with this paper.

Code availability
The MiXcan R package is publicly available at https://github.com/
songxiaoyu/MiXcan54.
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