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NEDD8-conjugating enzymes, E2s, include the well-studied ubiquitin-conjugating enzyme E2 M (UBE2M) and the poorly
characterized ubiquitin-conjugating enzyme E2 F (UBE2F). UBE2M and UBE2F have distinct and prominent roles in catalyzing the
neddylation of Cullin or non-Cullin substrates. These enzymes are overexpressed in various malignancies, conferring a worse overall
survival. Targeting UBE2M to influence tumor growth by either modulating several biological responses of tumor cells (such as
DNA-damage response, apoptosis, or senescence) or regulating the anti-tumor immunity holds strong therapeutic potential.
Multiple inhibitors that target the interaction between UBE2M and defective cullin neddylation protein 1 (DCN1), a co-E3 for
neddylation, exhibit promising anti-tumor effects. By contrast, the potential benefits of targeting UBE2F are still to be explored. It is
currently reported to inhibit apoptosis and then induce cell growth; hence, targeting UBE2F serves as an effective chemo-/
radiosensitizing strategy by triggering apoptosis. This review highlights the most recent advances in the roles of UBE2M and UBE2F
in tumor progression, indicating these E2s as two promising anti-tumor targets.
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FACTS

● More research is being devoted to finding specific inhibitors
against neddylation E2s to address the limitations of
neddylation E1 inhibitor MLN4924.

● UBE2M and UBE2F are overexpressed in various malignancies,
conferring a worse overall survival.

● Targeting UBE2M to influence tumor growth by either
modulating several biological responses of tumor cells (such
as DNA-damage response, apoptosis, or senescence) or regulat-
ing the anti-tumor immunity holds strong therapeutic potential.

● A few inhibitors targeting UBE2M-DCN1 interaction have been
identified.

● UBE2F appears to be promising as both an anti-tumor target
and a chemo-/radiosensitizing target.

OPEN QUESTIONS

● The induction of drug-resistant mutations in UBA3 inhibits the
formation of the MLN4924-NEDD8 adduct, and hence there is
a need to explore possible alternative targets against the
neddylation pathway.

● How do the two E2s regulate anti-tumor immunity? In-depth
elucidation of the underlying mechanisms may provide vital
cues for targeting UBE2M and UBE2F.

● Deciphering the cellular potency of these UBE2M-DCN1
inhibitors compared to MLN4924?

● Whether these UBE2M-DCN1 inhibitors have any biological
function?

● Whether to promote clinical trials of these E2s inhibitors alone
or in combination?

INTRODUCTION
Protein neddylation involves the conjugation of a ubiquitin-like
molecule known as neuronal precursor cell-expressed develop-
mentally down-regulated protein 8 (NEDD8) to the lysine residue
of targeted substrate proteins [1, 2]. Like ubiquitin, NEDD8 binds
to substrates by forming an isopeptide chain between its
C-terminal glycine residue (Gly76) and a lysine residue on targeted
proteins. In the initial step of the reaction, NEDD8 is produced as a
precursor containing five additional residues downstream from
Gly76 cleaved by the C-terminal hydrolases [3, 4]. The next step
involves activation of the mature NEDD8 in an ATP-dependent
manner by the NEDD8-activating enzyme (NAE) E1, a heterodimer
composed of NAE1 and ubiquitin-like modifier activating enzyme
3 (UBA3) [5, 6]. After that, a trans-thiolation process occurs during
which the NEDD8-loaded NAE is transferred to either UBE2M, also
known as UBC12, or UBE2F (two NEDD8-conjugating enzyme E2s)
[7–9]. Finally, covalent attachment drives a substrate-specific E3
ligase, such as defective in cullin neddylation 1 (DCN1) and RING-
box protein 1/2 (RBX1/2), to transfer NEDD8 from the charged E2
to a lysine residue in its target protein (Fig. 1) [10–14]. The best
characterized principal substrates of neddylation are the cullin
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family members (CUL1, 2, 3, 4A, 4B, and 5), which function as core
components of Cullin-RING E3 ubiquitin ligases (CRLs) [4]. The
activation of CRLs requires NEDD8 to attach to a C-terminal lysine
residue of cullins, inducing structural changes in the CRLs complex
and leading to open conformation to facilitate substrate
ubiquitylation [15–19]. As the most prominent family of E3
ubiquitin ligases, CRLs noticeably regulate various essential
biological functions, including tumorigenesis, accomplished by
enhancing ubiquitylation and consequent degradation of a wide
range of critical modulatory proteins [4, 20]. Besides cullins, several
non-cullin proteins have been identified as the substrates of
neddylation, such as p53, MDM2, and EGFR [21–24]. However,
regulatory mechanisms and physiological functions of non-cullin
substrates still await experimental validation.
In multiple cancers, overactivation of the neddylation pathway

leads to elevated global neddylation of substrates, such as cullins,
and consequent accumulation of tumor suppressors, thereby
promoting tumorigenesis and development [25–28]. Targeting the
overactivated protein neddylation pathway has been proven to be
an effective anti-tumor strategy. MLN4924, commonly referred to
as pevonedistat, is an effective and highly selective small-
molecule inhibitor of NAE adopted to inhibit protein neddylation
via inactivation of the initial stage of the neddylation cascade [29].
When bound to the active site of UBA3, MLN4924 forms a stable
covalent adduct with NEDD8 to block further enzymatic processes
[30]. It achieves potent anti-tumor effects by inducing cell cycle
arrest, apoptosis, or senescence of tumor cells, or affecting the
functions of multiple components of the tumor microenvironment
[28, 29, 31–37]. MLN4924 has been evaluated in Phase I/II clinical
trials for treating various solid tumors and hematologic cancers
[38–44]. Nevertheless, the induction of drug-resistant mutations in
UBA3 inhibits the formation of the MLN4924-NEDD8 adduct,
necessitating the need to explore alternative targets against the
neddylation pathway [45, 46]. To address the limitations of
MLN4924, specific inhibitors against neddylation E2s are being
investigated [47, 48]. This review summarizes the latest progress
on validating the neddylation of these enzymes as promising anti-
tumor targets.

BIOLOGICAL CHARACTERISTICS AND CORRELATION OF UBE2M
AND UBE2F
UBE2M and UBE2F bind to the ubiquitin-fold domain and the
UBA3 hydrophobic groove of E1 via the core domain and the
N-terminal motif, respectively [9]. Acetylation of the N-terminal
methionine occurs in both E2s, which facilitates their binding to
the PONY domain pocket of neddylation E3 DCN-like (DCNL),
thereby increasing the efficiency of the cullin neddylation process
[49–51]. In addition to these similarities, protein structure
assessment of both UBE2M and UBE2F reveals unique character-
istics. UBE2F is very specific to the neddylation of RBX2-related
CUL5, while UBE2M can pair with RBX1 to modulate the
neddylation of CUL1, 2, 3, 4A, and 4B [50]. It is noteworthy that
glycyl-tRNA synthetase, an enzyme necessary for protein produc-
tion, binds to the NAE1 subunit of E1 to capture and protect
activated UBE2M before it reaches the downstream target [52].
The enzymes UBE2M and UBE2F can activate distinct cullins by

enhancing neddylation modification, and interestingly, there is a
cross-talk that leads to UBE2M targeting UBE2F for degradation
[53]. Specifically, UBE2M serves as a stress-inducible protein and a
dual E2 for neddylation and ubiquitylation to degrade UBE2F.
Under physiological conditions, UBE2M acts as a neddylation E2 to
promote CUL3 neddylation, which triggers polyubiquitylation and
degradation of UBE2F through CUL3-KEAP1 E3 ligase. However,
UBE2M is transcriptionally activated under stress by hypoxia-
inducible factor 1α (HIF-1α) or transcription factor AP-1 (AP-1).
UBE2M performs ubiquitylation E2 for Parkin-DJ-1 E3, followed by
ubiquitylation and degradation of UBE2F. Ultimately, the degrada-
tion of UBE2F is accompanied by the inactivation of CRL5.
Collectively, these findings provide evidence that one neddylation
E2 (UBE2M) acts as a dual E2 for both neddylation and
ubiquitylation to decrease the protein levels of the other (UBE2F),
leading to one CRL E3 (CRL3) inactivating the other (CRL5) (Fig. 2).

UBE2M AND UBE2F AS ATTRACTIVE ANTI-TUMOR TARGETS
Most studies reveal that both two neddylation E2s act as
oncogenes, evidenced mainly by their significant upregulation in
various human cancers, including esophageal squamous cell
carcinoma, osteosarcoma, lung cancer, and hepatocellular carci-
noma [54–59]. In addition, the upregulation of the two neddyla-
tion E2s correlates closely with illness progression [55–58]. To
attain a greater understanding of the expression profile and
prognostic significance of UBE2M and UBE2F in human cancers,
we examined their expression with the aid of Tumor Immune
Estimation Resource (TIMER) online database, an interactive
platform that allows users to conduct in-depth studies of TCGA
gene expression profiles (http://timer.cistrome.org/). Compared to
normal tissues, the mRNA levels of UBE2M are elevated in 17
different kinds of human cancers, while the mRNA levels of UBE2F
are elevated in 12 different types of human cancers (Fig. 3A, B).
Kaplan–Meier analysis shows that increased mRNA levels of both
enzymes correlated to worse survival for patients with lung
adenocarcinoma (LUAD) or with liver hepatocellular carcinoma
(LIHC) (Fig. 3C, D). They exert oncogenic effects by enhancing the
neddylation of certain substrates to mediate a variety of signaling
pathways and modulate multiple biological activities, such as
apoptosis or senescence (Fig. 4). These findings suggest that the
overactivation of these two enzymes could be an oncogenic event
throughout the process of tumor occurrence and development.

TARGETING UBE2M FOR ANTI-TUMOR THERAPY
In recent decades, increasing studies have shown UBE2M, also
known as UBC12, to be an attractive anti-tumor target. Compared
with E1 subunits (NAE1 and UBA3), UBE2M is significantly more
consistent with the global protein neddylation levels [56].
Targeting UBE2M suppresses the growth of MLN4924-resistant

Fig. 1 The process of protein neddylation. Neddylation is a
process that conjugates NEDD8 to cullins or non-cullin substrates
via a three-step reaction, catalyzed by NEDD8-activating enzyme E1
(a heterodimer of NAE1 and UBA3), NEDD8-conjugating enzyme E2
(UBE2M or UBE2F) and substrate-specific NEDD8-E3 ligases (e.g.,
RBX1 and RBX2). MLN4924: an inhibitor of UBA3; N8: neuronal
precursor cell-expressed developmentally downregulated protein 8.
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cells by inhibiting cullins neddylation and inducing the accumula-
tion of CRLs substrates [56]. Moreover, UBE2M-mediated protein
neddylation is essential for multiple cellular responses, such as
DNA-damage response (DDR), apoptosis, senescence, and anti-
tumor immunity. These findings validate UBE2M as an attractive
alternative anti-tumor target to efficiently inhibit the neddylation
pathway.

UBE2M PARTICIPATES IN DDR
DNA double-strand break (DSB), contributing significantly to
genomic stability [60, 61], is sensed and repaired by DDR,
warranting the recruitment and post-translational modification
of multiple proteins at the damaged DNA sites. This phenomenon
induces checkpoint signaling or essential repair steps [62, 63].
Recent studies have shown that UBE2M-mediated neddylation of
cullins, or non-cullins, is involved in the DDR pathway (Fig. 4).
UBE2M affects DDR and the integrity of the genome by regulating
several CRLs substrates, such as CDT1, p21, and claspin, which play
complex roles in the increased DNA-damage in UBE2M-silenced
cells [64]. Another study supported the accumulation effects of
CRLs substrates CDT1 and ORC1 caused by silenced UBE2M. This
phenomenon subsequently induces DSBs, evidenced by the
upregulated expression of γ-H2AX [65].
Generally, Ku70/Ku80 (Ku) heterodimer is first recruited to the

DSB sites, after which, DNA-dependent protein kinase catalytic
subunit (DNA-PKcs) is recruited into the process, facilitating
nonhomologous end-joining (NHEJ) repair [66, 67]. Upon DNA-
damage, UBE2M-mediated cullins neddylation promotes ubiqui-
tylation of Ku, releasing it and its associated proteins from the
damaged sites after repair. After NHEJ, ionizing radiation
hypersensitivity and decreased cell survival occur in UBE2M-
depleted cells [68]. Moreover, UBE2M also regulates the neddyla-
tion of DNA-PKcs, which promotes DNA-PKc autophosphorylation,
preferentially activating the NHEJ pathway and facilitating its

Fig. 3 Expression of UBE2M and UBE2F in cancers and their effects on the prognosis of patients with LUAD and LIHC. A, B The expression
of UBE2M and UBE2F in different types of cancer was investigated with the TIMER database. The variance was similar between the groups that
were being compared. P < 0.05 was considered as statistical significance. *P < 0.05, **P < 0.01, ***P < 0.001 for the indicated comparison.
C, D Kaplan-Meier analysis shows that increased levels of both UBE2M and UBE2F are related to worse survival for patients with lung
adenocarcinoma (LUAD) or with liver hepatocellular carcinoma (LIHC).

Fig. 2 UBE2M acts as a dual E2 for neddylation and ubiquitylation
to degrade UBE2F. Under physiological conditions, UBE2M serves
as a neddylation E2 to promote CUL3 neddylation, triggering
polyubiquitylation and degradation of UBE2F through CUL3-KEAP1
E3 ligase. Under stressed conditions, UBE2M is transcriptionally
activated by HIF-1α or AP-1, which makes it serve as a ubiquitylation
E2 to complex with DJ-1/Parkin to promote the ubiquitylation and
degradation of UBE2F. Ultimately, the degradation of UBE2F is
accompanied by the inactivation of CRL5. TPA: a typical tumor
promoter and mitogen stimulator, inducing c-JUN.
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release from DNA-damage sites after Ku [69]. Consistently, the
knockdown of UBE2M significantly enhances the sensitivity of
hormone-resistant prostate cancer cells to radiation-induced DNA
damage [70].
Furthermore, in response to various stimuli, NEDD8 may

accumulate at DNA-damage sites by relying on UBE2M rather
than UBE2F. UBE2M, together with an E3 ubiquitin ligase RNF111,
promotes ionizing radiation-induced histone H4 neddylation and
links another E3 ligase RNF168 to DNA-damage sites. This
occurrence leads to the recruitment of BRCA1 and other down-
stream DDR factors to repair the damaged DNA [71]. Notably,
another group has reported that UBE2M/RNF111-mediated
neddylation inhibits BRCA1 and CtIP-regulated DNA end resection,
an essential mechanism aiding the selection of an appropriate
repair pathway [72].

UBE2M INHIBITION INDUCES CELL CYCLE ARREST
The aberrant functioning of cell cycle regulators leads to
unregulated cell proliferation, making them promising therapeutic
targets for cancer treatment [73, 74]. UBE2M has been shown to
crucially regulate the tumor-suppressive cell cycle inhibitors (Fig.
4). In lung cancer and esophageal squamous cell carcinoma cells,
UBE2M knockdown disturbs cell cycle progression by triggering
G2 phase cell cycle arrest, specifically by inhibiting cullins
neddylation and upregulating CRL substrates (p21, p27, and
Wee1) [55, 56]. In hepatocellular carcinoma cells, UBE2M-mediated
stabilization of β-catenin, leading to the upregulation of its
downstream effectors, known as cyclin D1, promotes the G1/S
transition of cells [75]. These data suggest that suppression of
UBE2M can potentially trigger cell cycle arrest at distinct stages in
a cell type-dependent manner via multiple mechanisms.

UBE2M INHIBITION INDUCES APOPTOSIS OR SENESCENCE
UBE2M plays an essential role in regulating apoptosis and
senescence (Fig. 4). In intrahepatic cholangiocarcinoma cells,
UBE2M knockdown induces apoptosis, demonstrated by shrinkage
of cellular morphology and the upregulation of cleaved PARP and
caspase-3/-9 [65]. In hepatocellular cells, UBE2M knockdown
promotes apoptosis by inducing the accumulation of cleaved
PARP and caspase-3 and increasing the mRNA levels of apoptosis-
associated proteins, including p53, PUMA, and Bax [76]. Interest-
ingly, UBE2M knockdown leads to p53-mediated apoptosis by
activating and stabilizing the protein [76]. In esophageal squamous
cell carcinoma cells, UBE2M knockdown triggers apoptosis or
senescence in a cell line-dependent manner. EC1 cells with UBE2M
knockdown exhibit typical senescent morphology, well-
characterized by an enlarged and flattened cellular shape and
positive staining for senescence-related β-galactosidase [55]. In
contrast, KYSE450 cells with UBE2M knockdown show prominent
apoptotic features, shrunk morphology, and a substantial increase
in cell numbers positive for annexin V [55]. Moreover, UBE2M
knockdown increases the accumulation of CRL substrate activating
transcription factor 4 (ATF4), activating death receptor 5 (DR5)-
mediated extrinsic apoptosis and proapoptotic protein NOXA-
mediated intrinsic apoptosis [55, 77, 78]. Thus, induction of
apoptosis or senescence establishes UBE2M as a promising anti-
tumor target.

UBE2M IS INVOLVED IN ANTI-TUMOR IMMUNITY
Immune evasion is a hallmark of cancer. Anti-tumorigenic immune
cells are often exhausted or repressed by immune suppressive cell
populations, such as tumor-associated macrophages (TAMs),
regulatory T (Treg), and myeloid-derived suppressor cells (MDSCs),

Fig. 4 The function of UBE2M and UBE2F in tumor growth. UBE2M influences tumor growth by modulating several biological responses of
tumor cells, such as DNA-damage response, cell cycle arrest, apoptosis, or senescence. UBE2F promotes the degradation of NOXA and then
inhibits apoptosis and induces tumor growth.
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leading to tumor immune evasion [79–81]. Hence, targeting these
immune suppressive cells is a promising anti-tumor immunother-
apy. It is known that UBE2M knockdown inhibits the expression of
proinflammatory cytokines triggered by exposure to lipopolysac-
charides (LPS) (e.g., IL-6 and TNF-α) in macrophages. UBE2M
knockdown suppresses CUL1 neddylation, inactivates CRL1, and
induces the accumulation of phosphorylated IκBα and the
subsequent suppression of NF-κB nuclear translocation. This
phenomenon transcriptionally inhibits macrophage-associated
cytokines [82]. Recent reports suggest that the Ube2m/Rbx1 axis,
rather than the Ube2f/Rbx2 one, is crucial to the homeostasis and
survival of Treg cells [83]. We then investigated the association
between UBE2M expression and the abundance of immune cell
populations in tumors using the TIMER database to assess further
the effects of UBE2M on these immune suppressive cells (Fig. 5A).
This analysis revealed that in hepatocellular carcinoma, the
expression of UBE2M was significantly positively correlated with
the abundance of Treg, MDSCs, and macrophage M2 (Fig. 5A).
Moreover, the expression of UBE2M was also significantly
correlated with multiple genes related to macrophage M2, MDSCs,
or Treg (Fig. 5B, C). These results collectively suggest that UBE2M
may drive immunosuppression in hepatocellular carcinoma.
However, future investigation of detailed mechanisms is
warranted.
Targeting immune checkpoints mediated by programmed cell

death 1 (PD-1) and its ligand PD-L1 is a practical approach to
enhance anti-tumor immunity. This line of therapy has been
approved for treating various human cancers with durable clinical
benefits [84, 85]. Notably, inhibition of UBE2M-mediated neddyla-
tion significantly upregulates the expression of PD-L1 by
inactivating CUL1 and CUL3 in glioblastoma cancer cells. This
phenomenon is mainly achieved by the transcriptional activation
of PD-L1 by dysregulating the CUL1-FBXW7/c-MYC axis and
stabilizing PD-L1 protein by inhibiting CUL3 E3 ligase activity,
leading to T-cell exhaustion [86]. Moreover, inhibition of CUL3-

SPOP E3 ligase impairs ubiquitination-mediated PD-L1 degrada-
tion, increasing PD-L1 protein levels and reducing the numbers of
tumor-infiltrating lymphocytes in mouse tumors and primary
human prostate cancer [87]. A recent study also revealed that
inhibition of the neddylation pathway by MLN4924 activates ERK
and JNK signals, leading to AP-1 activation. Activated AP-1
transactivates PD-L1 expression, inducing tumor immune evasion
to fight the anti-tumor activity of MLN4924 [88]. These findings
offer novel insights for further clinical experiments on tumor
patients using a combined method of UBE2M targeting and anti-
PD-L1/PD-1 therapy. Altogether, the identification of the role of
UBE2M in modulating anti-tumor immunity deserves further
research.

TARGETING UBE2M-DCN1 INTERACTION FOR REGULATION OF
NEDDYLATION PATHWAY
Efforts have been directed to develop more specific small-
molecule inhibitors that preferentially target neddylation E2s to
address the shortcomings of MLN4924. The co-crystal structure
assessment of DCN1, which has no RING finger domain and acts as
a co-NEDD8-E3 with RBX1, and its binding partners UBE2M,
harbors the potential to develop strong small-molecule inhibitors
[47, 51, 89–91]. Over the past few years, several different research
facilities have developed small-molecule inhibitors for suppressing
interactions between UBE2M and DCN1. Zhou et al. created
potent peptidomimetics, such as DI-591 and DI-404, by signifi-
cantly modifying the N-terminal 12-residue peptide of UBE2M to
inhibit UBE2M-DCN1 interaction [92, 93]. Subsequently, Guy et al.
identified non-peptidic and potent small-molecule UBE2M-DCN1
inhibitors, such as NAcM-HIT, by high-throughput screening of
over 600,000 compounds. The chemical optimization of NAcM-HIT
led to designing two more potent inhibitors, NAcM-OPT and
NAcM-COV [94–96]. Liu et al. discovered the triazolo[1,5-α]
pyrimidine-based inhibitor WS-383, which targets the UBE2M-

Fig. 5 The correlation of UBE2M and immune suppressive cell populations. A Graphs generated from TIMER database show the correlations
between UBE2M and the abundance of macrophage, Treg, and MDSCs. B, C The expression of UBE2M was significantly correlated with
multiple genes that are related to macrophage M2, MDSCs, or Treg in liver hepatocellular carcinoma. Spearman correlation analysis was used
to assess the correlation. P < 0.05 was considered as statistical significance.
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DCN1 interaction [97]. In addition, Zhao et al. discovered small-
molecular DCN1 inhibitors DC-1 and DC-2 based on pyrimidines
[98].
Such studies have successfully discovered potent small-

molecule inhibitors that are either covalent or non-covalent with
powerful affinities to DCN1. These UBE2M-DCN1 inhibitors have
been shown to efficiently block the neddylation of CUL1 and/or
CUL3 while exerting no or minimal impact on the other members
of the cullin family. These UBE2M-DCN1 inhibitors, as predicted,
cause an accumulation of the CUL1 or CUL3 substrates, such as
p21, p27, and NRF2 [92, 95–98]. However, compared to MLN4924,
the UBE2M-DCN1 inhibitors have moderate cellular potency,
suggesting the need for further potency improvement.

TARGETING UBE2F FOR ANTI-TUMOR THERAPY
In contrast with many studies done on UBE2M, UBE2F receives little
attention. Recently, UBE2F has been shown to inhibit apoptosis
and induce cell growth. UBE2F can be efficiently targeted as a
chemo-/radiosensitizing strategy by triggering apoptosis.

UBE2F INHIBITION INDUCES APOPTOSIS
Zhou et al. reported that by coupling to RBX2, UBE2F neddylates
CUL5, which activates CRL5, eventually leading to the ubiquityla-
tion and degradation of NOXA through the K11-linkage [57]. In
lung cancer cells, overexpression of UBE2F activates CRL5 and
promotes NOXA degradation, leading to inhibition of apoptosis
and improvement of cell survival [57]. HA-9104 is recently
discovered as a novel small-molecule inhibitor targeting UBE2F-
CRL5 axis. HA-9104 interacts with UBE2F to reduce its protein
levels (via a yet-to-defined mechanism), thereby inhibiting CUL5
neddylation. Blockage of CUL5 neddylation results in CRL5
inhibition and NOXA accumulation to trigger apoptosis [48]. Since
UBE2F inhibition promotes apoptosis and suppresses cancer cell
growth (Fig. 4), it is a promising target for anti-tumor therapy.
Moreover, peroxiredoxin PRDX1 binds to UBE2F and CUL5 to form

a triple-molecule complex, PRDX1-UBE2F-CUL5, essential for CUL5
neddylation. Silencing PRDX1 or blocking PRDX1 oligomerization
significantly inhibits CUL5 neddylation, suppressing NOXA ubiquiti-
nation and degradation. Etoposide, an anti-cancer chemotherapeu-
tic DNA damaging agent, increases NOXA transcription, leading to
apoptosis. Colorectal cancer cells increase CUL5 neddylation to
accelerate NOXA degradation, which prevents etoposide-induced
apoptosis. At the same time, the knockdown of PRDX1 eliminates
etoposide-induced CUL5 neddylation and increases the sensitivity of
colorectal cancer cells to etoposide therapy [99].

UBE2F SERVES AS A TARGET FOR CHEMO-/
RADIOSENSITIZATION
UBE2F, an apoptotic regulatory protein, is a probable viable target
for chemosensitization [100, 101]. In lung cancer cells, depletion of
UBE2F renders the cells more sensitive to multiple anti-tumor
agents (e.g., an inhibitor of anti-apoptotic protein MCL1) by
accumulating NOXA [101]. UBE2F upregulation allows lung cancer
cells to evade apoptosis caused by platinum exposure. Mechan-
istically, platinum prevents the generation of the complex
required for proteasome-mediated UBE2F degradation, which
ultimately results in UBE2F accumulation. This phenomenon
demonstrates an increase in the CUL5 neddylation level,
consistent with the decreased protein levels of NOXA. UBE2F
knockdown dramatically increases cell sensitivity to platinum
therapy by increasing NOXA protein levels and consequently
promoting apoptosis [100]. Notably, these effects manifest in
other cancer cells, such as breast and ovarian cancer cells,
indicating the role of UBE2F, a universal drug target of platinum-
sensitization [100]. Nevertheless, the expressions of other

neddylation factors, such as UBE2M, are not affected following
platinum treatment [100].
Besides chemosensitization, targeting UBE2F also displays a

sensitizing effect on radiotherapy [102]. Elevated UBE2F levels can
be attributed to oxidative stress induced by irradiation or other
stimuli, causing the degradation of ROS-induced NOXA, conse-
quently inducing apoptotic resistance to radiotherapy. Moreover,
silencing UBE2F suppresses NOXA degradation and increases
cancer cells’ susceptibility to irradiation-mediated apoptosis [102].
Taken together, UBE2F-mediated activation of CRL5 and subse-
quent ubiquitylation and degradation of NOXA potentially hold
great promise as both an anti-tumor target and a chemo-/
radiosensitizing target.

CONCLUSIONS
Targeting the overactivated neddylation pathway has been
demonstrated as a promising anti-tumor strategy, supported by
the development of MLN4924, a potent inhibitor of the
neddylation E1 subunit UBA3. However, the emergence of drug-
resistant mutations in UBA3 warrants the identification of
alternative targets against the neddylation pathway. Recent and
ongoing research has revealed that UBE2M and UBE2F perform an
integral function in the biology of tumors. Overexpression of both
UBE2M and UBE2F in cancer cells is associated with increased cell
proliferation and poor survival. UBE2M regulates tumor growth by
modulating several cellular responses, such as DDR, senescence, or
apoptosis. The functional role of UBE2F, on the other hand,
remains poorly characterized. Recent studies have shown that
UBE2F inhibits apoptosis, induces cell growth, and serves as an
effective chemo-/radiosensitizing target. However, the effects of
both E2s on anti-tumor immunity undoubtedly demand more
experimental investigations. In-depth elucidation of the mechan-
isms of these E2s may provide more in-depth knowledge for
targeting UBE2M and UBE2F as attractive anti-tumor therapy.
Many inhibitors targeting UBE2M-DCN1 interaction have been

discovered to overcome the limitations of MLN4924 and tackle the
crucial role of UBE2M on the neddylation pathway and tumor
growth. However, compared to MLN4924, the tumor cell-killing
potency of these UBE2M-DCN1 inhibitors is moderate, suggesting
the need for further potency improvement. Promoting anti-tumor
clinical trials of these E2 inhibitors alone or in combination may
direct further research. Recent studies reported that, in addition to
effective tumor treatment, MLN4924 also plays a potential role in
the treatment of obesity [103], insulin resistance [103, 104],
nonalcoholic fatty liver [105], and ischemia-reperfusion injury
[106–108]. Hence, it would be interesting to identify the function
of these UBE2M-DCN1 inhibitors in these non-tumor diseases.
In summary, the current research offers profound insights into

the role of UBE2M and UBE2F in tumor progression, which is
highly conducive to aiding the development of targeted inhibitors
with higher potency and selectivity.
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