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Abstract
Many of the well-known neuron models are continuous time systems with complex mathematical definitions. Literatures

have shown that a discrete mathematical model can effectively replicate the complete dynamical behaviour of a neuron

with much reduced complexity. Hence, we propose a new discrete neuron model derived from the Huber-Braun neuron

with two additional slow and subthreshold currents alongside the ion channel currents. We have also introduced tem-

perature dependent ion channels to study its effects on the firing pattern of the neuron. With bifurcation and Lyapunov

exponents we showed the chaotic and periodic regions of the discrete model. Further to study the complexity of the neuron

model, we have used the sample entropy algorithm. Though the individual neuron analysis gives us an idea about the

dynamical properties, it’s the collective behaviour which decides the overall behavioural pattern of the neuron. Hence, we

investigate the spatiotemporal behaviour of the discrete neuron model in single- and two-layer network. We have con-

sidered obstacle as an important factor which changes the excitability of the neurons in the network. Literatures have

shown that spiral waves can play a positive role in breaking through quiescent areas of the brain as a pacemaker by creating

a coherence resonance behaviour. Hence, we are interested in studying the induced spiral waves in the network. In this

condition when an obstacle is introduced the wave propagation is disturbed and we could see multiple wave re-entry and

spiral waves. In a two-layer network when the obstacle is considered only in one layer and stimulus applied to the layer

having the obstacle, the wave re-entry is seen in both the layer though the other layer is not exposed to obstacle. But when

both the layers are inserted with an obstacle and stimuli also applied to the layers, they behave like independent layers with

no coupling effect. In a two-layer network, stimulus play an important role in spatiotemporal dynamics of the network.

Keywords Discrete neuron � Chaos � Bifurcation � Spiral waves

Introduction

Investigating the local dynamics of neurons is vital in

understanding their oscillatory behaviour (Song et al. 2020)

but will not be useful in analysing their collective

dynamics. To mention, phenomena such as synchroniza-

tion, chimera states, Spiral waves etc., cannot be studied

with such low population neuron models. Hence in the

recent years the research throng has shifted towards the

neuronal network modelling for biological realism. The

challenge starts from modelling the action potentials such

as frequency, inter spike intervals (ISI), bursting or fre-

quency of bursting. A map-based neuron is identified with

effective in computationally feasible and tailored for

investigating phenomenological behaviours (Izhikevich

and Hoppensteadt 2004; Kinouchi and Tragtenberg 1996;

Rulkov 2002; Shilnikov and Rulkov 2004). The dynamical
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map can be defined as dynamical systems with discrete

space and discrete time, but with continuous state vari-

ables. In (Kinouchi and Tragtenberg 1996) an approach is

presented with simplification of continuous time differen-

tial equation models into discrete time and keeping the

desired properties. The early work on Map-based models

(Karthikeyan et al. 2021; Rajagopal et al. 2021a, b, c)

enumerated with advantages such as independency from

integration and integration step adjustments. But the exis-

tence of piecewise linear function affects the performance

particularly phase plane analysis (Kaneko 1993; Tanaka

et al. 2006). Formulation of network topology for com-

bining the discrete time elements with synapse model is the

other challenge. Among various types, diffusive coupling

models (Ibarz et al. 2011; Rulkov 2002) found its attraction

because it uses synaptic current through a time dependent

(or not) conductance. In (De Vries 2012; Rulkov 2002)

Rulkov and De vries investigated the synchronization and

existence of spatiotemporal chaos with neuron coupling

strength. (Rulkov 2002; Shilnikov and Rulkov 2004;

Tanaka et al. 2006) extended the model to study the chaotic

phase synchronization and burst synchronization and

proved that discrete maps are superior to study the network

behaviour of neuronal system. The major challenge is,

system stability not matching with the map stability and

results with restriction to study the delay nature and tem-

perature effects on the neuron synapse and network

(McGahan and Keener 2020; Budzinski et al. 2019; Wang

et al. 2015).

In (Braun et al. 1994) Huber Braun derived Temperature

dependent Hodgkin-Huxley-type neurons and presented

various dynamic nature of the neuronal system under dif-

ferent temperature conditions, which other models fails to

show. The model ensembled with two slow, subthreshold

currents along with the leak and channel currents and

henceforth called Huber Braun (HB) neurons. The model

can expose different spiking patterns and bursting and

chaotic nature (Bazhenov et al 2005; Mikhail et al. 2007;

Shilnikov and Rulkov 2004). The experimental evidences

show that the transmission of signals between neurons in

single layer is considerably different from neurons in dif-

ferent layers (Izhikevich 2000; Tan et al. 2020; Kamimura

2019; Wang et al. 2019), it extends the scope of study from

single layer into multilayer network. The conductance is

often changed when the ion channels are blocked. The ratio

of working ion channels of potassium (and calcium) to the

total ion channels of potassium (and calcium) can be used

to partially blocking the ion channels of a fraction of

neurons (local poisoned area). The unexcited or partially

excited neurons can be identified as defects and presence of

bunch of defected neurons is denoted as obstacle (Lenk

et al. 2010). These obstacles potentially influence the

propagation of travelling waves and contributes re-entrant

of wavefronts and generation of spiral waves etc.,(Starobin

et al. 1996; Rostami et al. 2018a, b).

The advent of irregular patterns in electrically coupled

networks are studied in many literatures (Kotini and

Anninos 1997; Wei and Luo 2007; Ibarz et al. 2007; de

Pontes et al. 2008; Kaneko 1993; Wang et al. 2008; Tanaka

et al. 2006; Zou et al. 2009) but many not considered the

presence of obstacles and very few discussed influences of

the obstacle size and orientation (Rajagopal et al. 2019a, b;

Majumder et al. 2018; Rostami et al. 2018a, b; Prado wt al.

2014; Wang et al. 2018; Wu et al. 2019; Feng et al. 2019;

Yuan et al. 2017). Even those are not considered multilayer

networking strategy.

A rotating spiral wave with its frequency higher than the

frequency of a pacemaker often disturbs the regularity of

heartbeat and thus causing arrhythmias and cardiac death.

More than a spiral seed the danger imposed by multiple

broken spiral waves are more because of its multiple fre-

quency of rotation which increases the turbulent activity of

the heart tissues and thus causing atrial fibrillation (Ros-

tami et al. 2018a, b). This unsynchronised mechanical

contrition of the heart muscles causes the irregular pump-

ing of the blood. Such situations can often arise because of

the heterogeneity and obstacles (Starobin et al. 1996) but

this theory was not completely proven in the literatures as

the relation between cardiac arrhythmias and reduced

excitability is still a topic of debate. Using a discrete

neuron model such complexities are resolved as the reset-

ting happens in every step without loss of the actual

behaviour of the neuron.

Motivated by this in the present study we propose a

discrete HB neuron model and investigating the beha-

vioural patterns of the discrete neuron such as periodic and

chaotic bursting. Further to study the network behaviour

we used a 2D lattice of the discrete HD neurons.

The manuscript is organized as follows Sect. 2.

Describes the model of Discrete Huber-Braun neurons with

their parameter values. Section 3. Discussing about the

dynamical analysis of the model including bifurcation

diagram, Lyapunov spectrum and complexity measure

Sect. 4. Deals with formulation of network model and the

effects of obstacle on the spatiotemporal behaviour. Finally

the conclusion section is provided.

Discrete Huber-Braun neuron (DHB) model

The continuous time model of a Huber-Braun type neuron

which is the modification of the well-known Hodgkin-

Huxley models derived by including two slow, subthresh-

old currents along with the leak and channel currents was

discussed in (Finke et al. 2008). But many literatures have

shown that discrete neuron maps are valid
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phenomenological neuron models (.Braun et al.). Normally

discretisation can be applied with respect to space, time

and field in neuron models. We are interested in applying

discretisation in time and propose a new discrete neuron

model derived from the continuous time Huber-Braun type

neurons. The new neuron map can be called as Discrete

Huber-Braun neuron (DHB) model whose mathematical

model is defined by.

Vðk þ 1Þ ¼ �IlðkÞ � IdðkÞ � IrðkÞ � IsdðkÞ � IsrðkÞ
CM

arðk þ 1Þ ¼ /ðTÞ ðar1ðkÞ � arðkÞÞ
sl

asdðk þ 1Þ ¼ /ðTÞ ðasd1ðkÞ � asdðkÞÞ
sl

asrðk þ 1Þ ¼ /ðTÞ ð�gIsdðkÞ � kasrðkÞÞ
ssr

ð1Þ

where the currents are defined by the relations with Il
defining the leak current, Id and Ir representing depolar-

ising and repolarising currents, Isd and Isr representing the

sub-threshold depolarising and repolarising currents

respectively.

IlðkÞ ¼ glðVðkÞ � VlÞ
IdðkÞ ¼ qðTÞgdadðkÞðVðkÞ � VdÞ
IrðkÞ ¼ qðTÞgrarðkÞðVðkÞ � VrÞ

IsdðkÞ ¼ qðTÞgsdasdðkÞðVðkÞ � VsdÞ
IsrðkÞ ¼ qðTÞgsrasrðkÞðVðkÞ � VsrÞ

ð2Þ

In all the current and function definitions the suffix d

denotes depolarising and r denotes repolarising. The slow

depolarising and repolarising parameters and functions are

defined with a suffix sd and sr respectively. The steady

state activation functions are defined by the relations,

ar1ðkÞ ¼ 1

1þ expð�srðVðkÞ � V0rÞ

asd1ðkÞ ¼ 1

1þ expð�ssdðVðkÞ � V0sdÞ

adðkÞ ¼
1

1þ expð�sdðVðkÞ � V0dÞ

ð3Þ

In order to define the temperature dependencies for the

neuron model (1), we use the Q10 laws (Finke et al. 2008)

defined by the mathematical relations.

/ðTÞ ¼ 3ðT�T0Þ=10�C

qðTÞ ¼ 1:3ðT�T0Þ=10�C
ð4Þ

The system parameters are adopted from (Finke et al.

2008) and defined as.

Equilibrium potentials : Vsd ¼ Vd ¼ 50 mV;

Vsr ¼ Vr ¼ �90 mV; Vl ¼ �60 mV;

Ionic conductance : gl ¼ 0:1; gd ¼ 1:5; gr ¼ 2:0;

gsd ¼ 0:25; gsr ¼ 0:4 in
ms

cm2

� �
;

Membrane Capacitance : CM ¼ 1
lF
cm2

� �
;

Activation time constant : sr ¼ 2ms; ssd ¼ 10ms;

ssr ¼ 20ms; sd ¼ sr ¼ 0:25; ssd ¼ 0:09;

Half Activation Potentials : V0d ¼ V0r ¼ �25mV;

V0sd ¼ �40mV;

Coupling factor : g ¼ 0:012; k ¼ 0:17; D ¼ 0:5;

T0 ¼ 25�C;

ð5Þ

Set the initial conditions

V 0ð Þ; ar 0ð Þ; asd 0ð Þ; asr 0ð Þ½ � ¼ �55; 0:01; 0; 0½ �

, and T = 15�C and 11�C, the time series (See the sup-

plementary Material) of the neural model shows that the

system is periodic when T = 15�C, while is chaotic when

T = 11�C.

Dynamical properties

In this section, we focus on the complex dynamics of the

system with system parameters gl, gd and T, where bifur-

cation diagram, Lyapunov exponents (LEs) and sample

entropy algorithm are employed. It should be noted that the

Jacobian matrix of the neural model is obtained used the

matlab function ‘‘J = jacobian(.)’’, and the QR decompo-

sition method is applied to estimate Lyapunov exponents.

In the figures, since LE3 and LE4 are both smaller than

zero, we just illustrate the Lyapunov exponents LE1 and

LE2 for simplification. The initial conditions are given as

[V 0ð Þ; ar 0ð Þ; asd 0ð Þ; asr 0ð Þ] = [-55, 0.01, 0, 0].

Bifurcation and Lyapunov exponents

Let gl =0.1 and gd =1.5, vary the parameter T from 8�C to

28�C with step size of 0.0401. The obtained bifurcation

diagram and Lyapunov exponents are shown in Fig. 1. It

shows that there is a large periodic window when

T [ [12.14, 21.1]. In the left and right side of this periodic

window, the system is chaotic. However, the system is non-

chaotic when T\ 8.9�C. It also shows that there are many

small periodic windows with the variations of T in the

chaotic regions.

Secondly, the Lyapunov exponents-based chaos dia-

grams are obtained in different parameter planes. Let gl
=0.1, T varies from 8 to 28 with step size of 0.1 and gd
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varies from 1 to 2 with step size of 0.005. The analysis

result in the parameter plane T-gd is shown in Fig. 2a. Let

gd =1.5, T varies from 8�C to 28�C with step size of 0.1

and gl varies from 0 to 1.5 with step size of 0.0075. The

analysis result in the parameter plane T � gl is shown in

Fig. 2b. Let T = 11, gd varies from 1 to 2 with step size of

0.005 and gl varies from 0 to 1.5 with step size of 0.0075.

The analysis result in the parameter plane T � gd is shown

in Fig. 2c. In Fig. 2, the threshold value for chaos is set as

0.01. Thus we just show the regions with largest Lyapunov

exponents than 0.01 and keep the rest states including

periodic and divergent states with white color. As shown in

those chaos diagrams, the system has wide regions for

chaos. Meanwhile, there are also regions with Lyapunov

exponents smaller than zero, and the white regions mean

that the system is divergent. It shows that the system has

rich dynamics with the variation of parameters gl, gd and T.

(Bifurcation and Lyapunov exponents for the parameters gl
& gd provided in the supplementary material).

Complexity measure

In this paper, complexity measure of time series generated

by the neural is carried out based on the sample entropy

(SampEn) algorithm.

The physical significance of SampEn is not difficulty to

find out. It measures the probability of the generation of

new patterns in the time series. The larger the measure

value is, the greater the probability of the generation of

new patterns. At present complexity analysis plays an

important role for dynamics of different chaotic systems

(Ma et al. 2021; Natiq et al. 2019; Politi 2017).

Complexity of the system with the variation of different

parameters are shown in Fig. 3. The results shows high

complexity with chaotic state while show low complexity

and zero complexity for the other states. Obviously, for

those periodic windows, there shows low complexity

measure results. When gd takes values between 1.4 and

1.63, the complexity increases with the increase of gd, and

when T[ 21.1�C, the complexity of the system increases

with the increase of T. However, compared with dynamic

analysis results, SampEn can build a clear version

regarding the complexity of the system. Thus, we analyzed

complexity of the neural model in the parameter planes.

We use the same parameter settings and initial condi-

tions to simulate the system for complexity measure. The

results are shown in Fig. 4 where we draw the SampEn

based chaos diagrams using those measured values which

are larger than 0.1. According to the above analysis results,

it shows that the neural system can also have high

Fig. 1 Dynamics of the system with the variation of parameter T. (a) Bifurcation diagram; (b) Lyapunov exponents

Fig. 2 Lyapunov exponents-based chaos diagrams in different parameter planes. (a) T � gd; (b) T � gl; (c) gd � gl
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complexity measures which is related to the chaotic state,

and SampEn provides an effective tool for complex

dynamics of chaotic systems.

Spiral waves in the DHBN model

The major challenge of a map-based neuron model is to

correlate the behaviour with a biophysical neuron charac-

teristic. Replicating the network behaviour of a continuous

time neuron model with a map-based neuron is considered

complex as phenomenon like the spiral waves and multi-

armed spiral waves are not very well documented by lit-

eratures (Huang et al. 2010). Hence a discrete neuron

model capable of replicating the behaviour of an ODE

neuron model in both local and collective sense is very

rarely discussed. The DHBN model proposed in this work

has effectively showed the characteristics of a biophysical

neuron (Braun et al. 2000) and we now are interested in

investigating the network behaviour of the DHBN model.

For this we arrange the neuron in a network and

depending on the number of layers in the network we

subdivide the discussion in two cases. In the first case we

investigate using a single lattice array of DHBN model and

in the second case we consider two-layer network with

each layer being the lattice array of the DHBN model.

Further we expand the investigation by considering two

separate scenarios which could affect the excitability of the

neurons and thus could contribute to re-entry and spiral

waves. In the first scenario we considered different sizes

and orientations of obstacles and show their impact on the

wave propagation and re-entry. The mathematical model of

the DHBN network can be defined as.

CVkþ1
ij ¼ �IkLij � IkDij

� IkRij
� IkSDij

� IkSRij

þ rðVk
iþ1j þ Vk

i�1;j þ Vk
i;jþ1 þ Vk

i;j�1 � 4Vk
ijÞ þ A sinðxtÞhishjq

ð6Þ

The stimuli are applied to the network with the condi-

tion his; hjq ¼ 1 when i ¼ s; j ¼ q . The stimulus is applied

from the left side of the network by setting s ¼ 100; q ¼ 1 .

The stimuli settings are A ¼ 0:1;x ¼ 0:01 and we capture

the spatiotemporal behaviour of the network at the end of

6000 s.

When the stimuli are applied to the network, the tissues

are highly excited and we could observe simple travelling

waves from left to right boundary and no signs of wave re-

entry. Varying the stimulus amplitude, frequency and the

system parameters doesn’t change the excitability of the

neurons. For certain amplitude and frequency values of the

stimulus the entire network goes unstable. Hence, we are

interested in investigations different scenarios which will

influence the wave re-entry and spiral waves in the

network.

In our previous work (Rostami et al. 2018a, b), we have

showed that obstacles in the network can initiate wave re-

entry and can contribute to the spiral wave formations.

Here we consider that the network has some defects

defined by the obstacles on the path of the wave

propagation.

Fig. 3 SampEn complexity analysis results with different parameters. (a) gl Varying; (b) gd Varying; (c) T Varying

Fig. 4 SampEn based chaos diagrams in different parameter planes. (a) T-gd; (b) T-gl; (c) gd-gl
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Effects of obstacle on the spatiotemporal
behaviour

During absence of obstacles the network tissues are in high

excitability and hence plane waves propagate in the media.

Now we insert an obstacle in the network and investigate

the effect of the size and orientation of the obstacle on the

wave front. We consider the system parameters as in (5)

and the stimulus setting are same. For the orientations of

the obstacle, we have considered parallel and perpendicular

obstacles with reference to the wave front. Different sizes

of obstacles having heights H 2 60; 20½ � and width W 2
20; 10; 5; 1½ � with the measuring unit being the nodes. First,

we considered parallel obstacles with different combina-

tions of H and W as shown in Fig. 5. When the obstacle

width is less than 5 nodes, there is no wave re-entry in the

media and we could note just a phase shift in the wave

propagation as in Fig. 5a for the [H, W] = {60, 1}. When

the width is increased to 5 and keeping the height as 60, the

obstacle creates wave re-entry and spiral wave seeds in the

right boundary of the obstacle. Further increasing the width

to 10 two spiral pools are created at the top and bottom

ends of the obstacle and we could also note that the spiral

waves are formed inside the obstacle too. Broken multiple

spiral waves can be generated by further increasing the

width to 20 as in Fig. 5d. Now we decrease the height to 1

and width to 5 and no phenomenal changes in the

excitability of the neurons and hence travelling plane

waves are noted. Now an increase in just the width of the

obstacle to 10 making it a square block could induce wave

re-entry and spiral waves shown in Fig. 5f.

Considering the obstacles placed perpendicular to the

wave front, we considered different sizes of obstacles with

width W 2 f20; 10; 5g and length L 2 f60; 20; 10; 5g.
Firstly, we consider an obstacle of 10 9 5 and the exci-

tation is applied to the network. The snapshots shown in

Fig. 6a confirms that the obstacle breaks the wave at the

interaction points while no re-entry or spiral wave phe-

nomenon observed. By increasing the width to 20 and

length kept at 10, the spiral wave seeds are seen towards

the upper and lower part of the obstacle as in Fig. 6c. For

an obstacle of width 20 and length 60, symmetric spiral

waves originate at the right side of the obstacle and rotates

with a larger arm radius. But comparing Fig. 6 with 6, we

could comment that the obstacles parallel to the wave front

are more effective in the excitability and wave re-entry

compared to the perpendicular obstacles.

Now the question arises of what will be effect of

obstacles in multilayer networks. Will the obstacle in a

layer influence the excitability in the other layers too? If so

under what circumstances such excitability changes hap-

pens. To answer all these questions, we construct the

mathematical model of the two-layer DHBN network as in

(7).

Fig. 5 Spatiotemporal behaviour of the DHBN network considering

the obstacle parallel to the wave front. 5(a) [H,W] = [60,1],

5(b)[H,W] = [60,5], 5(c)[H,W] = [60,10], 5(d)[H,W] = [60,20],

5(e)[H,W] = [1,5], 5(f)[H,W] = [10,20]. Different sized obstacles

are used for the analysis with obstacles greater than five node width

we could note that wave re-entry and spiral waves are formed near the

boundary opposite to the wave entry side
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CVkþ1
U;ij ¼ �IkLU;ij

� IkDU;ij
� IkRU;ij

� IkSDU;ij
� IkSRU;ij

þ DLUðVL;ij � VU;ijÞ þ rUðVk
U;iþ1j þ Vk

U;i�1;j þ Vk
U;i;jþ1

þ Vk
U;i;j�1 � 4Vk

U;ijÞ þ AU sinðxtÞhishjq
CVkþ1

L;ij ¼ �IkLL;ij � IkDL;ij
� IkRL;ij

� IkSDL;ij
� IkSRL;ij

þ D21ðVU;ij � VL;ijÞ þ rLðVk
L;iþ1j þ Vk

L;i�1;j þ Vk
L;i;jþ1

þ Vk
L;i;j�1 � 4Vk

L;ijÞ þ AL sinðxtÞhishjq
ð7Þ

The inter layer coupling term is defined by DLUðVL;ij �
VU;ijÞ for the upper layer and D21ðVU;ij � VL;ijÞ for the

lower layer. The intra layer coupling is like the one used in

single layer network (7) with rU ; rL defining the respective

coupling strengths. We have considered stimulus whose

amplitudes are AU and AL for upper and lower layers

respectively and by setting the amplitude of the stimulus in

the respective layer to ‘0’ we could show the effect of

coupling effects between layers.

In the first discussion we consider the obstacles to be

parallel to the wave front and stimulus is applied only to

the upper layer by setting AL ¼ 0 . We have considered

similar sizes of obstacles as considered for the single layer

discussion and the obstacle is inserted only in the upper

layer. Though there is no obstacle in the lower layer, the

excitability of tissues is controlled by the first layer through

the coupling as there is no stimulus in the lower layer.

Hence, we could note that both the layers operate in syn-

chrony and the obstacle effects seen in the upper layer is

transferred to the lower layer and thus both the layers

showing similar re-entry and spiral wave phenomenon.

These observations can be easily seen in the snapshots

shown in Fig. 7. There is an identifiable difference between

the upper layer and lower layer snapshots with the lower

layer displaying a much lesser difference between the

media and excited tissues while the upper layer shows a

definitive larger difference. This is because the excited

state of neurons in the lower layer is of lesser amplitude as

the coupling though is capable of achieving coherent

behaviour between the layers, they are not effective in

coupling the exact excitability conditions to the lower

layer.

When stimulus is applied to only upper layer the

obstacle effects are coupled to the lower layer even though

there is no physical obstacle present. Now we consider

stimulus in both the layers and use the same orientation and

size of obstacle as in the previous case. Now we could

show that though the coupling strength or the stimulus

amplitude is note changed as from Fig. 7, the obstacle

effects in the lower layer are not displayed. In other words,

now the lower layer tissues are excited by the applied

stimulus rather than the upper layer effects as shown in

Fig. 8. Thus, the effects of coupling bond between the

layers are now eliminated by applying stimulus to the

respective layers. Also, we could note that the difference

between the excited amplitude and the media in the lower

layer are significantly higher and thus overcoming the blur

effect seen in Fig. 7. Though not presented here, the same

Fig. 6 Snapshots of the media with obstacle perpendicular to the wave entry. Different combinations of width and length of the obstacle are

considered. 6(a) [H,W] = [1,10], 6(b) [H,W] = [10,5], 6(c) [H,W] = [5,10], 6(d) [H,W] = [5,20], 6(e) [H,W] = [5,60], 6(f) [H,W] = [10,60]
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phenomenon can be observed when we consider the lower

layer obstacle and excitation with the upper layer not

exposed to obstacles or stimulus.

Conclusion

A discrete neuron map derived by modifying the continu-

ous time Huber-Braun neuron model is proposed in this

paper. The novelty of the model is the inclusion of two

slow, subthreshold currents along with the leak and channel

currents. We have considered the temperature effect on

various current channels of the neurons and depending on

the temperature the neuron shows periodic spiking and

chaotic bursting behaviour. The bifurcation studies reveal

the different periodic and chaotic regime of the DHBN

model. To clearly show the chaotic and periodic regime in

a 2D parametric space, we have used the Lyapunov

exponents-based chaos diagram. A sample entropy algo-

rithm is proposed to measure the complexity of the DHBN

model which is correlated with the Lyapunov exponent

chaos diagram.

Though nodal dynamics will make us understand the

complete behavioural pattern of the neuron, it is the col-

lective dynamics which plays a significant role in bio-

physical models. Hence, we constructed a simple 2D

network of DHBN modes and investigated the network

behaviour by applying a periodic force. The network shows

simple plane wave propagation with no sign of wave re-

entry on spiral waves. Now our interest is to investigate the

Fig. 7 Spatiotemporal snapshots of the two-layer DHBN network with the obstacle and stimulus applied to the upper layer. Obstacle sizes are

considered as 7(a)&(e) [H,W] = [60,1], 7(b)&(f) [H,W] = [60,5], 7 (c) &(g) [H,W] = [60,10], 7(d)&(h) [H,W] = [60,20]

Fig. 8 The snapshots of the two-layer network with stimulus applied to both the layers while the obstacle is considered only in the upper layer.

7(a) [H,W] = [60,1], 7(b) [H,W] = [60,5], 7(c) [H,W] = [60,10], 7 (d) [H,W] = [60,20]
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conditions which can induce wave re-entry. We introduced

an obstacle in the network and decided to investigate the

effects. For this we have chosen two orientations and six

different sizes of obstacle. The observation shows that

wave re-entry and spiral waves are formed near the

boundary opposite to the wave entry side. Also, we have

shown the minimum dimensions of the obstacles which can

cause wave re-entry and induce spiral waves. To check the

obstacle effects on multilayer networks, we constructed a

two-layer DHBN network. Firstly, we showed that though

the obstacle is considered only in one layer, the stimulus

applied to the layers play an important role is the wave re-

entry in the layers. This is proved by setting only stimulus

and obstacles to the first layer, but the second layer also

displays stimulus wave re-entry like the first layer. This

coherent behaviour is removed when we apply stimulus to

the second layer also.

Supplementary Information The online version contains

supplementary material available at https://doi.org/10.1007/s11571-

022-09806-1.
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