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Abstract
Reaction times (RTs) are an essential metric used for understanding the link between brain and behaviour. As research is

reaffirming the tight coupling between neuronal and behavioural RTs, thorough statistical modelling of RT data is thus

essential to enrich current theories and motivate novel findings. A statistical distribution is proposed herein that is able to

model the complete RT’s distribution, including location, scale and shape: the generalised-exponential-Gaussian (GEG)

distribution. The GEG distribution enables shifting the attention from traditional means and standard deviations to the

entire RT distribution. The mathematical properties of the GEG distribution are presented and investigated via simulations.

Additionally, the GEG distribution is featured via four real-life data sets. Finally, we discuss how the proposed distribution

can be used for regression analyses via generalised additive models for location, scale and shape (GAMLSS).

Keywords Exponential Gaussian distribution � Reaction times � Neuronal response latency � Cognitive neuroscience �
Generalised additive models for location, Scale and shape

Introduction

The brain is a system that consists of millions of thousands

of neurons designed to perceive and respond to external

stimulus in a highly nonlinear and complex way. Reaction

times, broadly defined as the time lapse between the pre-

sentation of a stimulus and a response to it, have been

proven a ubiquitous metric extensively used in experi-

mental psychology, cognitive neuroscience, psychophysi-

ology and behavioural neuroscience to explain the

mechanisms supporting higher- and lower-order cognitive

processes. Research suggests there is a tight coupling

between neuronal RTs and behavioural RTs (see Palmer

et al. 2007; Galashan et al. 2013; Mukamel and Fried
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2012; Levakova et al. 2015) and that neural processing,

signal transmission, and decision processes are bundled

within that time lapse (see Voelker et al. 2017; see Fig-

ure 1 in Commenges and Seal (1986) for a representation

of the association between stimulus, neuronal RTs, and

behavioural RT). The importance of investigating RTs has

been demonstrated via computational, human- and animal-

based behavioural approaches. From a computational per-

spective, for example, it has been shown that behavioural

RTs can be used as biomarkers for characterising neuro-

logical diseases (Maia and Kutz 2017). From a human

behavioural perspective, evidence shows that RTs can

indeed allow differentiation between certain brain diseases.

For example, Jahanshahi et al. (1993) showed that patients

with Parkinson’s disease, Huntington’s disease and cere-

bellar disease exhibit different average RTs, and Osmon

et al. (2018) demonstrated the clinical advantage of

examining the distribution of Attention Deficit/Hyperac-

tivity and neurotypical patients’ RTs. Animal-based

research has shown how and when specific sets of neurons

fire to selected stimuli under highly controlled experi-

mental settings (e.g. Sun et al. 2019; Luna et al. 2005;

Múnera et al. 2012; Veit et al. 2014).

Various distributions including the Inverse-Gaussian (or

Wald), Weibull, Log-Normal, Weibull-Gaussian, and

Gamma have been used to fit behavioural and neural reaction

time data. For example, Palmer et al. (2007) used the Wei-

bull distribution, Leiva et al. (2015) used the Birnbaum–

Saunders distribution, and Seal et al. (1983) used the

Gamma distribution. Other distributions have recently been

proposed for modelling RT data. For example, Tejo et al.

(2018, 2019), and Martı́nez-Flórez et al. (2020) have put

forward the shifted Birnbaum–Saunders, shifted Gamma

distributions, and Exponential-Centred Skew-Normal dis-

tributions, respectively, as good fits to RTs. For example,

Osmon et al. (2018) fitted the participants’ RTs with the

three-parameter Johnson’s SU distribution,1 and Foroni

et al. (2020) found the four-parameter Sinh-Arcsinh distri-

bution gave the best fit for simple choice RTs. However, the

distribution most commonly used to fit RT data is the

Exponential Gaussian (also known as Exponentially Modi-

fiedGaussian or Ex-Gaussian distribution; here referred to as

EG). This is a three-parameter distribution that can fit the

data’s location, scale and rightward exponential shape. The

EG hence shows a positive skew, which is the canonical

shape of both neuronal and behavioural RTs [e.g. see Fig-

ure 4 in Hanes and Schall (1996), Figure 2 in Hauser et al.

(2018), and Figure 2 in Mormann et al. (2008) for neuronal

RT shapes, Figure 7 in Osmon et al. (2018) and Figures 3C,

4C, and 5B in Fischer and Wegener (2018) for behavioural

RT shapes]. Although flexible enough to fit the typical pos-

itive skew distribution of RTs, the EG cannot fit RTs that

exhibit normal-like or even negative skew. Normal- and

negative-like shapes have been reported for rate RTs (re-

ciprocal RTs, i.e. 1/RT) [see Figure 2A in Harris et al.

(2014)] and recognition (go/no-go) RTs [see Figure 2 in

Limongi et al. (2018)], respectively.

In this article, a four-parameters distribution called

Generalised Exponential Gaussian is proposed. Similar to

the EG distribution, the proposed distribution can fit posi-

tively skewed RT shapes but it has the advantage of fitting

Gaussian-like and negatively skewed RT shapes. The

article unfolds as follows: first, statistical arguments in

favour of asymmetric distributions are presented; second,

the properties of the EG are outlined; third, the details of

the proposed distribution are described; fourth, the results

of a computer simulation examining the properties of the

proposed distribution are reported; fifth, the proposed dis-

tribution is illustrated via four data sets; sixth, generalised

additive models for location, scale and shape (GAMLSS)

are briefly presented, as this is the only existing regression

framework suitable to model regression data in a fully

distributional fashion; and finally, the statistical and prac-

tical implications of the proposed distribution are discussed

in relation to GAMLSS.

Asymmetric distributions as better
alternatives to model non-normal data

Most statistical analyses featured in published research rely

on techniques that assume, among other things, that data

follow a normal distribution. In practice, however, data tend

to follow non-normal shapes [see Bono et al. (2017)]. When

faced with non-normal distributions, the common approach

is to transform the numeric variables. Although transfor-

mations can indeed be successful, they bring challenges in

relation to the interpretability of the new metric and back-

transformation (Marmolejo-Ramos et al. 2015; Pek et al.

2018; Vélez et al. 2015). Specifically, it is not always pos-

sible to find a back-transformation that enables interpretation

of the parameter estimate, and this issue is more pronounced

when there are several variables with different transforma-

tions [see Azzalini and Capitanio (1999)]. Distributions

more flexible than the traditional Gaussian have been pro-

posed to overcome these challenges. These newly proposed

distributions enable data with different degrees of asym-

metry and kurtosis to be tackled. Some of these distributions

are the Skew-Normal [SN; Azzalini (1985)], Power-Normal

[PN; Durrans (1992); Pewsey et al. (2012)], and Skew-

Normal Alpha-Power [here called SNAP for short; Martı́-

nez-Flórez et al. (2014)].

1 This study is perhaps one of the few studies, if not the only one,

tackling RTs from a distributional perspective for understanding

neuropsychological disorders.
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The SN model is defined by the probability density

function (PDF)

uðz; kÞ ¼ 2/ðzÞUðkzÞ; z 2 R; ð1Þ

where / and U are the density and distribution functions,

respectively, of the standard normal distribution, and k is a

skewness parameter. This distribution is denoted by

Z� SNðkÞ and, in addition to the work by Azzalini (1985),

it has been extensively studied by Henze (1986), Chiogna

(1998), Gómez et al. (2007) and Pewsey et al. (2012).

Alternatively, Lehmann (1953) proposed a family of

distributions with PDF Fðz; aÞ ¼ fFðzÞga�1
, where F is a

distribution function with z 2 R, and a 2 Zþ. In general

terms, this distribution is generated from the distribution of

the maximum of the sample. This model is known in the

literature as Lehmann’s alternative model and is widely

discussed by Gupta and Gupta (2008).2

The PN model, denoted by Z�PNðaÞ and introduced by
Durrans (1992), has the following PDF:

f ðz; aÞ ¼ a/ðzÞ UðzÞf ga�1; z 2 R; a 2 Rþ; ð2Þ

where / and U are the density and distribution functions,

respectively, of the standard normal distribution and a is a

shape parameter. This distribution has multiple applica-

tions in cases where data cannot be handled through normal

distributions and, instead, data present high or low asym-

metry and/or kurtosis.

Martı́nez-Flórez et al. (2014) proposed the SNAP dis-

tribution (SNAPðk; aÞ), a more flexible extension of the

previous two distributions. This distribution not only con-

tains the SN and PN distributions as special cases, but it

also includes the normal distribution. The PDF of the

SNAP distribution is as follows:

f ðz; aÞ ¼ a/SNðz; kÞ USNðz; kÞf ga�1; z; k 2 R; a 2 Rþ:

ð3Þ

The SN, PN, and SNAP distributions illustrate the versa-

tility of asymmetric and generalised distributions for fitting

non-Gaussian data (Table 1 provides a summary of key

aspects of these distributions). Although it could be argued
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2 Following the work by Lehmann (1953), Durrans (1992) extended

the SN distribution for all a 2 Rþ and labelled it the distribution of

fractional order statistics. These statistics are also known as AP,

Exponentiated, or Generalised Gaussian distributions. These distri-

butions have the PDF uFðz; aÞ ¼ af ðzÞfFðzÞga�1
, with z

2 R; a 2 Rþ, and where F is an absolutely continuous distribution

function with probability density function f ðzÞ ¼ d=dzFðzÞ. This new
model gives rise to the family of AP (or Exponentiated) distributions,

denoted by Z �APðaÞ, which is a new alternative among families of

distributions that model high degrees of asymmetry and kurtosis. The

AP distribution therefore allows modelling data that do not follow a

normal distribution and that rather exhibit high (or low) asymmetry

and/or kurtosis.
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that these distributions provide good-enough fits to RT

data, they have not been investigated in the context of RT

experiments. The EG distribution, however, is the most

commonly used distribution to fit RTs obtained in

(neuro)psychological experiments [see Dawson (1988)].

The Ex-Gaussian distribution and its
statistical properties

This probability model was introduced by Hohle (1965)

through the convolution of two independent random vari-

ables; the Normal and Exponential PDFs. This distribution

was conceived between 1956 and 1963 (Christie and Luce

1956) while searching for a model that could represent the

disjunctive structure of RTs. That is, the RT is composed of

an exponentially distributed decision time, plus a variable

time or motor RT. After studying the cumulative distri-

bution function (CDF) of the RT for different intensities of

auditory stimuli, McGill (1963) concluded that the variable

had an exponential form with similar constant times. This

led to the assumption that at least one component of the

total RT had an exponential distribution. Given that the

time constants implied by the curves appeared to be almost

independent of the stimulus intensity, McGill (1963)

assumed that this component was the time required for the

motor response, while the other component was assumed to

be the time taken to make a decision. Specifically, the EG’s

exponential distribution component has a constant average

response s (Luce 1986; McGill 1963) while the remaining

part of the EG follows a normal distribution Nðl; r2Þ
(Hohle 1965). These statistical properties of the EG dis-

tribution are described in more detail in ‘‘Appendix’’ [see

also section 13.3.2.1 in Rigby et al. (2020)].

The generalised exponential-Gaussian
distribution

Based on the distribution of the sample’s maximum, Leh-

mann (1953) proposed the family of distributions FF ¼
fFðxÞga where Fð�Þ is an absolutely continuous distribution
function and a is a rational number. In the context of

hydrology, Durrans (1992) extended this model to a family

of distributions GF ¼ fFðxÞga where Fð�Þ is a distribution

function and a 2 Rþ. This family of distributions has PDF

gðxÞ ¼ af ðxÞfFðxÞga�1
where f ¼ dF denotes the distri-

bution of fractional order statistics [see also Stigler (1977)].

When F ¼ U (i.e. the Normal distribution’s CDF), it is

known as the generalised normal distribution. This is a

flexible distribution that can be conceived as an extreme

values distribution given that a 2 Rþ. Also, when a 2 N,

this distribution can fit data with positive or negative

skews. Finally, when a ¼ 1, the original distribution’s PDF

f ð�Þ is obtained.
Following the above-mentioned work by Durrans

(1992), a generalisation of the distribution of the maximum

in the fEGð�Þ is proposed by considering an a�fractional

order statistic where a 2 Rþ. That is, the goal is to extend

the EG distribution by incorporating a new parameter that

controls the skewness and kurtosis of the distribution, i.e.

the distribution’s shape. As the new distribution has

skewness and kurtosis values above and below those pos-

sible by the original fEGð�Þ, it is hence much more flexible

than the traditional EG distribution in accommodating

skewness and kurtosis.

According to the results given by Durrans (1992) and

Pewsey et al. (2012), the exponential extension of the EG

distribution is given by the following PDF:

uðxÞ ¼ a
s
e�

x�l
s þ r2

2s2U
x� l
r

� r
s

� �

U
x� l
r

� �

� e�
x�l
s þ r2

2s2U
x� l
r

� r
s

� �h ia�1 ð4Þ

such that a 2 Rþ is a shape parameter that controls

skewness and s regulates kurtosis; l and r are the location

and scale parameters respectively (such that r[ 0 and

�1\l\1). This distribution is called from here on the

Generalised Exponential Gaussian (GEG) distribution and

it is denoted by X�GEGðs; l; r; aÞ. Note that when a ¼ 1;

the GEG meets the EG distribution. On the other hand,

when s ! 0, then EðXÞ ! l; VarðXÞ ! r2;
skew ! 0 and kurt ! 3; i.e. EGðs; l; r2Þ ! Nðl; r2Þ.
Additionally, when s ! 0 and a 6¼ 1, the GEG distribution

converges to the PN distribution; i.e.

GEGðs; l; r; aÞ ! PNðl; r; aÞ. Figure 1 displays some of

the shapes the GEG distribution can take.

The CDF of the random variable X�GEGðs; l; r; aÞ is
given by:

FGEGðxÞ ¼ U
x� l
r

� �

� e�
x�l
s þ r2

2s2U
x� l
r

� r
s

� �h ia
ð5Þ

To generate a random variable with GEG distribution, a

uniform random variable U in (0,1) should be used. So,

letting

u ¼ ½FEGðx; s; l; rÞ�a;

then

u1=a ¼ FEGðx; s; l; rÞ

from where it follows that
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x ¼ F�1
EGðu1=a; s; l; rÞ;

where F�1
EGð�; s; l;rÞ is the inverse function of the EG

distribution with parameters s; l; r, which is available in

the R packages emg and gamlss.dist (via the function

‘exGAUS’).

The survival, inverse risk, and the hazard functions of

the GEG distribution are:

SGEGðxÞ ¼ 1� U
x� l
r

� �

� e�
x�l
s þ r2

2s2U
x� l
r

� r
s

� �h ia

;

rGEGðtÞ ¼
fGEGðxÞ
FGEGðxÞ

¼ arEGðtÞ;

ð6Þ

hGEGðtÞ ¼ a
e�

x�l
s þ r2

2s2U x�l
r � r

s

� �

U x�l
r

� �

� e�
x�l
s þ r2

2s2U x�l
r � r

s

� �

h ia�1

s 1� U x�l
r

� �

� e�
x�l
s þ r2

2s2U x�l
r � r

s

� �

h ia� �

ð7Þ

where rEGð�Þ is the inverse risk function of the EG distri-

bution defined in Eq. (11 in ‘‘Appendix’’). This entails the

inverse risk function of the GEG distribution being directly

proportional to the previous function, and in the same way,

they are intervals where rGEG grows or decreases. Some

properties of the exponentiated generalized class of distri-

butions can be found in Cordeiro et al. (2013). Details

regarding the GEG distribution’s moments, log-likelihood

function, score function, and information matrices are

presented in ‘‘Appendix’’.

A simulation-based assessment
of the generalised exponential-Gaussian
distribution

A simulation was carried out to investigate the maximum

likelihood estimates (MLEs) of theGEG’s parameters across

several data generating process (DGP) scenarios. While l
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Fig. 1 Probability density (first row) and cumulative distribution functions (second row) for values of s; l;r, and a of the GEG distribution.

Three negatively skewed, symmetric, and positively skewed shapes are shown in the first, second, and third columns respectively

Cognitive Neurodynamics (2023) 17:221–237 225

123



Ta
bl
e
2

B
eh
av
io
u
r
o
f
th
e
M
L
E
fo
r
se
le
ct
ed

p
ar
am

et
er
s
o
f
th
e
G
E
G

d
is
tr
ib
u
ti
o
n

n
a

s
r

l
C
o
n
v
er
g
ed

l̂
r̂

ŝ
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and rwere set at 0 and 1 respectively (as no major impact of

location and scale on the quality of the estimates was

expected), s and awere varied such that s 2 f0:5; 1:25} and
a 2 f0:75; 1:75; 2:75g. Variations of these parameter val-

ues were assessed across small and large sample sizes such

that n 2 f50; 100; 200; 400; 800; 1600g. Each of the

resulting 36 DGP was replicated 1000 times.

For each setting, the empirical bias, root mean squared

error (rMSE), and coverage probability were estimated (see

Table 2). The coverage probability had a 95% Wald con-

fidence interval utilising the inverse of the observed Fisher

information as the asymptotic covariance matrix for all

four distributional parameters l, r, s and a. The median

value across the 1,000 simulations in each DGP was esti-

mated for the bias and the rMSE. The empirical coverage

probabilities were obtained by averaging over the replica-

tions. Given that the numerical estimation of MLE failed in

the case of small sample sizes, the number of converged

optimisations for each DGP is reported.

The results indicate that, as expected from standard

asymptotic consistency and normality of MLEs, all criteria

improve as the sample size increases, regardless of the

specific parameter setting (i.e. the bias and the rMSE

decrease while the coverage approaches the nominal level

of 95%). It is evident too that larger values of either s and/
or a are associated with decreasing statistical performance;

thus, larger sample sizes are required to obtain reliable

estimates.

Illustration of the generalised exponential-
Gaussian distribution via published data sets

In this section, the versatility of the GEG distribution is

illustrated via four data sets in which motor or neuronal

RTs are featured.

• ADHD’s simple RTs in Osmon et al. (2018) [here

ADHD data set]. Osmon et al. (2018) obtained three

different types of RTs from 27 neurotypical participants

and 28 participants diagnosed with attention-deficit/

hyperactivity disorder (ADHD). The RTs obtained

during the simple RT task are featured in this study.

In this task, participants had to press the same centrally

located key when a stimulus appeared, regardless of the

location on a computer screen (right or left side). As

each participant had a fixed number of 120 trials and

there were 28 ADHD participants, a total of 3360 trials

were obtained.

• Monkey S’s RTs in a reaching task in Kuang et al.

(2016) [here M.S. data set]. The goal of this study was

to investigate the neuronal activity in the posterior

parietal cortex in two rhesus monkeys while they

performed centre-out hand reaches under either normal

or prism-reversed viewing conditions. All the trials in

all 107 sessions for the ‘normal right’ condition from

monkey S were used. There were between 19 and 62

trials across sessions and the median number of trials

across sessions was 40� 14:82. This gives a total of

3996 trials and RTs. After removing RTs \ 50 ms,

3980 RTs remained. It is important to acknowledge that

the lower limit of 50 ms is somewhat arbitrary and

there are no agreed rules in the monkey literature on

what the lower and upper boundaries should be.

However, considering usual visual information pro-

cessing latencies (ventral stream: � 50 ms; dorsal

stream: � 100 ms), imposing a 50 ms constraint seems

to be a minimal requirement.

• Crows’ RTs in a visual task in Veit et al. (2014) [here

C.D. data set]. This study aimed to investigate the

neuronal correlates of visual working memory in four

trained carrion crows. The experimental set-up required

crows to remember a visual stimulus for later compar-

ison while the activity of neurons in the nidopallium

caudolaterale (a higher association brain area function-

ally akin to the prefrontal cortex in monkeys) was

recorded. Veit et al. (2014) reported a histogram of the

RTs of 162 visually responsive neurons (i.e. neurons

from the four crows for which RTs could be estimated)

in Figure 4B in their paper.

• Synchronised cortical state and neuronal RTs [here

S.S.N. data set]. Fazlali et al. (2016) investigated the

link between spontaneous activity in the locus coeruleus

(a key neuromodulatory nucleus in the brainstem) and

synchronised/desynchronised states in the vibrissal

barrel somatosensory cortex (BC) in Wistar rats. One

of the analyses looked at neuronal responses in the BC

during the two cortical states. The authors found that

neuronal RTs in the BC were faster during the

desynchronised than during the synchronised cortical

state (in their study neuronal RTs were defined as the

first time bin exceeding background activity by three

standard deviations). The distribution of the BC’s

neuronal RTs in the synchronised cortical state are

featured in this study. Figure 6B and the section

‘Reduced response latency in desynchronised state’ in

Fazlali et al. (2016) provide details for this data set.

Table 3 reports the goodness-of-fit of the GEG and other

distributions to these data sets (to improve numerical sta-

bility, all data were divided by a constant factor of 100).

The results indicated that the SNAP and SN distributions

provided the best fits in the C.D. and S.S.N. data sets,

respectively, and that the GEG distribution gave the best fit

in the remaining two data sets (bearing in mind that the

lower the AIC and/or BIC, the better the fit). Note that,
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Table 3 Parameter and goodness-of-fit estimates of 10 distributions fitted to four data sets

Dataset (size) Distribution Parameter (SE) AIC|BIC

l r s a

ADHD (n = 3360) EXP 3.105 (0.054) NA (NA) NA (NA) NA (NA) 14335.086|14341.205

NO 3.105 (0.021) 1.231 (0.015) NA (NA) NA (NA) 10936.058|10948.298

T 2.831 (0.013) 0.584 (0.011) 2.449 (0.096) NA (NA) 8872.626|8890.985

EG 2.109 (0.010) 0.264 (0.010) 0.996 (0.015) NA (NA) 8215.94|8234.30

G 3.105 (0.017) 0.316 (0.004) NA (NA) NA (NA) 9171.67|9183.91

LN 2.951 (0.015) 0.297 (0.004) NA (NA) NA (NA) 8652.98|8665.22

SNAP 3.061 (0.043) 2.943 (0.008) 15.521 (0.913) 0.120 (0.081) 8379.29|8403.77

SN 2.02 (0.009) 0.516 (0.002) 3.321 (0.012) NA (NA) 9077.44v9095.80

ECSN 1.856 (0.056) 0.387 (0.054) 1.015 (0.024) 1.634 (0.611) 8215.42|8239.90

GEG 2.471 (0.078) 0.253 (0.009) 0.835 (0.044) 0.486 (0.074) 8197.86|8222.34

M.S (n = 3980) EXP 2.371 (0.038) NA (NA) NA (NA) NA (NA) 14832.983|14839.272

NO 2.371 (0.01) 0.631 (0.007) NA (NA) NA (NA) 7632.219|7644.798

T 2.263 (0.004) 0.198 (0.003) 2.029 (0.066) NA (NA) 2650.054|2668.921

EG 2.012 (0.005) 0.191 (0.002) 0.358 (0.003) NA (NA) 3290.43|3309.29

G 2.371 (0.008) 0.201 (0.002) NA (NA) NA (NA) 5273.32|5285.89

LN 2.323 (0.007) 0.183 (0.002) NA (NA) NA (NA) 4499.72|4512.30

SNAP - 17.444 (NaN) 2.694 (0.004) 37.56 (0.021) 3104014918865.67 (NaN) 4170.55|4195.70

SN 2.053 (0.006) 0.398 (0.001) 1.974 (0.004) NA (NA) 5669.91|5688.78

ECSN 2.013 (NaN) 0.191 (0.004) 2.79 (0.059) - 0.002 (NaN) 3292.42|3317.58

GEG 2.503 (0.011) 0.071 (0.002) 0.807 (0.065) 0.061 (0.005) 2546.67|2571.83

C.D. (n = 162) EXP 1.684 (0.132) NA (NA) NA (NA) NA (NA) 494.874|497.962

NO 1.684 (0.058) 0.737 (0.041) NA (NA) NA (NA) 364.894|371.069

T 1.6 (0.056) 0.644 (0.042) 7.818 (3.184) NA (NA) 365.753|375.016

EG 0.901 (0.031) 0.164 (0.040) 0.783 (0.069) NA (NA) 309.08|318.34

G 1.684 (0.054) 0.411 (0.022) NA (NA) NA (NA) 325.43|331.61

LN 1.544 (0.050) 0.410 (0.023) NA (NA) NA (NA) 315.55|321.72

SNAP 1.102 (0.133) 1.282 (0.038) 8.929 (1.792) 0.459 (1.653) 306.89|319.24

SN 0.893 (0.028) 0.350 (0.019) 3.235 (0.165) NA (NA) 310.58|319.84

ECSN 0.651 (0.028) 0.331 (0.080) 1.302 (0.136) 354.056 (11863.415) 308.53|320.88

GEG 0.663 (0.038) 0.003 (4.123) 1.447 (0.143) 1.946 (0.361) 308.76|321.11

S.S.N. (n = 171) EXP 0.144 (0.011) NA (NA) NA (NA) NA (NA) - 319.179|- 316.038

NO 0.144 (0.004) 0.047 (0.003) NA (NA) NA (NA) - 553.518|- 547.234

T 0.143 (0.004) 0.046 (0.003) 27.098 (31.564) NA (NA) - 551.764|- 542.339

EG 0.102 (0.003) 0.027 (0.005) 0.042 (0.004) NA (NA) - 565.531|- 556.106

G 0.144 (0.004) 0.324 (0.017) NA (NA) NA (NA) - 572.003|- 565.719

LN 0.136 (0.003) 0.327 (0.018) NA (NA) NA (NA) - 573.931|- 567.648

SNAP - 1.166 (1.508) 0.686 (0.353) - 2.818 (3.024) 2162326935.754 (43972887567.382) - 568.638|- 556.071

SN 0.085 (0.002) 0.025 (0.002) 3.162 (0.178) NA (NA) 2 580.824|2 571.399

ECSN 0.103 (0.128) 0.028 (0.004) 24.38 (3.841) - 0.006 (5.82) - 563.553|- 550.986

GEG 0.063 (0.008) 0.002 (0.035) 21.475 (2.345) 2.716 (1.041) - 572.157|- 559.59

The number of parameters of each distribution is shown in brackets. EXP = Exponential (1), NO = Normal (2), T = t-distribution (3), EG = Ex-

Gaussian (3), G = Gamma (2), LN = Log-Normal (2), SNAP = Skew-Normal Alpha-Power (4), SN = Skew-Normal (3), ECSN = Exponential-

Centred Skew-Normal (4), GEG = Generalised Exponential Gaussian (4). The sample size of each data set (n) is shown in brackets. ADHD =

simple RTs of participants with ADHD (RTs correspond to several trials from several ADHD participants; no RTs discarded), M.S = reaching

RTs of monkey S to a visual target presented on the right side under a normal viewing condition (RTs are from several trials across several

sessions; RTs[ 50 ms were retained), C.D = neuronal RTs of an adult carrion crow during a visual task, and S.S.N. = response latencies of

synchronised state neurons (synchronised state was defined as oscillations of high amplitude and low frequency (\4 Hz)). Lowest AIC|BIC

estimates are shown in bold. SE = standard error. Note the SNAP distribution gave biased estimates in the M.S. and S.S.N. data sets, and the

ECSN distribution gave biased estimates in the M.S., C.D., and S.S.N. data sets. These situations reflect difficulties with convergence in

numerical optimisation of the MLEs

228 Cognitive Neurodynamics (2023) 17:221–237

123



while we are comparing distributions with differing num-

bers of parameters and therefore an inherent advantage for

more complex distributions to fit the data better, AIC and/

or BIC both adjust for the model complexity such that we

can make valid comparisons across distributions with dif-

ferent numbers of parameters.

Although the ECSN (Exponential-Centred Skew-Nor-

mal) distribution gave the second-best fit in the C.D. data

set, this result is not reliable given difficulties in conver-

gence, leaving that second place for the GEG distribution.

In the case of the S.S.N. data set, the LN and GEG dis-

tributions gave the second- and third-best fits, respectively.

Table 3 also shows that the NO distribution tended to

give bad fits (i.e. very high AIC and/or BIC) due to its

natural inability to fit asymmetric data and its definition on

the real line, which does not match with the non-negativity

of RTs. Such a result reinforces the claim that methods that

assume normality in the response variable (e.g. ordinary

least squares, t-test and ANOVA) are not suitable to

analyse and model RT data. The results of the LN distri-

bution also indicate that a logarithmic transformation is

usually not enough to make the distribution of RTs adhere

to a normal law. That the EXP distribution gave the highest

AIC and/or BIC suggests that having just one parameter

(rate or inverse scale in the case of this distribution) limits

this distribution’s flexibility to meet the shape of RT data.

Overall, the results thus suggest the GEG distribution

provides a good fit to these behavioural and neuronal RTs

data sets (see Fig. 2). A future study should aim to fit

several suitable distributions to a much larger collection of

real-life neuronal and behavioural data sets to obtain a fine-

grained picture of which distributions tend to give the best

fit across data sets of comparable characteristics.

GAMLSS in a nutshell: a regression
framework for distributional modelling

In the regression context, it is traditional to investigate the

effects of independent variables (IVs) on the mean of the

dependent variable (DV) and this is achieved via ordinary

least squares regression (also known as linear models, LM).

Improvements on the LM approach have been reflected in

the generalised linear model (GLM) by replacing the

required normal distribution of the response variable with

the exponential family of distributions (e.g. the Gamma

distribution). Although GLM is more flexible than LM,

both focus on the effects of the IVs on the DV’s mean.

However, even if LM and GLM could also model the

effects of the IVs on the DV’s standard deviation, the

findings would be limited to the data’s location and scale

parameters. Additionally, LM allows only a linear rela-

tionship between continuous IVs and DVs, and GLM

assumes a linear relationship between the transformed

response in terms of the link function and IVs. Generalised

additive models (GAM), however, allow modelling such a

relationship by using non-parametric (smooth) functions on

the numeric IVs. Generalised additive models for location,

scale and shape (GAMLSS) is the only existing regression

framework that encompasses all these regression methods

(Stasinopoulos et al. 2018; Kneib et al. 2021). It also has

the extra property of allowing modelling of the effects of

IVs on the DV’s location, scale and shape (i.e. skewness

and kurtosis) via over 100 statistical distributions, thus

enabling a comparison between many different models and

proper distributional analysis [Rigby et al. (2020); see also

Fig. 3].

Statistically speaking, in a GAMLSS model Yi �DðhÞ
where the values of Yi are n independent observations, for

i ¼ 1; 2; . . .; n, and that have probability (density) function

fYðyijhÞ conditional to distribution parameters, usually up

to four distribution parameters, each of which can be a

function of the IVs. For k ¼ 1; 2; 3; 4, let gkð:Þ be a known
monotonic link function relating a distribution parameter to

a predictor gk, such that

gkðhÞ ¼ gk ¼ Xkbk þ
X

Jk

j¼1

skjðxkjÞ

where Xk is a known design matrix, bk ¼ ðbk1; . . .; bkJ0
k
Þ> is

a parameter vector of length J
0
k, skj is a smooth non-para-

metric function of variable Xkj and the terms xkj are vectors

of length n, for k ¼ 1; 2; 3; 4 and j ¼ 1; . . .; Jk. Here, h

¼ ðs; l; r; aÞ, D represents the GEG distribution, and each

of the GEG distribution parameters can be modelled as

linear or smooth functions of the IVs.

In a nutshell, GAMLSS is thus an interpretable, flexible

and sophisticated framework for data modelling. It is

interpretable in that it is conceived in the well-known

regression framework; it is flexible in that it allows mod-

elling of the response variable via several candidate sta-

tistical distributions; and it is sophisticated in that numeric

and categorical IVs can be subjected to cutting-edge

smoothing algorithms. Thus, GAMLSS could be an edu-

cated analytical approach to respond to the current lack of

statistical sophistication and rigour permeating research in

neuroscience (Nieuwenhuis et al. 2011).

To illustrate the potential of GAMLSS for the analysis

of RT data, the data set shown in Figure 2F in Schledde

et al. (2017) was examined via GAMLSS. In that study, the

authors recorded in monkey motion-sensitive area MT and

investigated the latency of neurons in response to stimulus
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Fig. 2 Empirical CDFs of four

real-life data sets and four fitted

theoretical CDFs. The data

distributions are represented by

black dots (eCDF). Note that the

NO distribution tends to miss

the tails of the data (e.g. in data

sets M.S. and C.D.) and in other

cases it misses the data locations

(e.g. in the C.D. data set). Note

there is a trade-off between

interpretability and fitness (i.e.

accuracy and flexibility) that

requires careful consideration

when selecting a distribution to

model data. GEG = four-

parameters Generalised

Exponential-Gaussian

distribution; NO = two-

parameter Normal distribution;

G = two-parameter Gamma

distribution; SN = three-

parameter Skew-Normal

distribution. The x axis

represents RTs (these were

divided by 100 to improve

numerical stability). See

Table 3 for the results of the fits

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F
n(

x)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 3 Cumulative distribution functions (CDF) illustrating different

normal (left plot) and non-normal distributions (right plot). Left plot

(differences/similarities in location and scale): black and red CDFs

have similar location and similar scale; blue and black/red CDFs have

similar location and different scale; blue and green CDFs have

different location and similar scale; green and black/red CDFs have

different location and different scale. In all these cases, LM and GLM

would be able to identify similarities/differences in location only (i.e.

mean values); that is, standard techniques are good for detecting shifts

but not shapes of distributions. Right plot (different types of shapes):

black and blue CDFs represent distributions with positive skew, green

and red CDFs represent distributions with negative skew, and the grey

CDF represents a uniform distribution. The dotted grey horizontal line

cuts through the distributions medians
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changes under different conditions of attention. Two

monkeys were engaged in a change-detection paradigm

and the neuron under investigation was responding to a

speed change either with spatial attention directed to its

receptive field or away from it (i.e. attend-in and attend-

out), and with feature-attention directed towards the motion

domain or towards the colour domain otherwise (i.e. speed

and colour tasks). The authors found that the response

latency of the neurons was significant, depending on the

attentional condition, with both spatial and feature atten-

tion having an influence on the shape of the distribution of

latencies.

Such data can be represented as the regression model

‘RT �A � T’; where RT are the neuronal latencies, A and T

are the 2-level categorical variables attention (attend-in and

attend-out) and task (colour and speed), respectively, and

‘�’ stands for main effects and interactions. That model is

equivalent to a 2� 2 ANOVA design and that is tradi-

tionally assessed via LM. GAMLSS models therefore

imply four conditional distributions whose ECDFs are

shown in Figure 2F in Schledde et al. (2017). There can be

several analytical options, but for illustration purposes only

a main-effects-with-no-random-effects model was consid-

ered. A GAMLSS modelling of the conditional distribu-

tions via the 10 probability distributions considered in

Table 3 indicated that while the G distribution gave the

best fit for one conditional distribution, the NO distribution

fitted the three remaining conditional distributions best. A

marginal distributional modelling (i.e. all the RTs) showed

the EG distribution gave the best fit (the GEG distribution

being the second-best fit). Two versions of the regression

model shown above were considered; a model in which the

DV was modelled via the NO distribution and a model in

which the DV was modelled via the EG distribution.3

While the NO model corresponds to the classic LM, the EG

model is achievable only via GAMLSS. In both cases only

the location parameter was investigated and RTs were

divided by 100 to improve numerical stability. The results

showed that the EG model (AIC = - 73.86) provided a

better fit to the data than the NO model (AIC = - 70.09).4

Discussion and conclusion

The GEG distribution was proposed as a candidate statistical

model of behavioural and neuronal RTs and its statistical

properties were described and examined via simulations.

Given that the GEG is a four-parameter distribution, it can

readily adopt non-normal shapes typically found in RT data;

and this was exemplified via real-life data sets. It is a

common practice to apply non-linear transformations to RT

data to meet parametric assumptions and thus approximate

normality or improve symmetry. However, the GEG distri-

bution, and other distributions considered here enable

working with the original shape of the data and therefore

sidestep unnecessary non-linear transformations. The fol-

lowing paragraphs discuss statistical and practical implica-

tions of the GEG distribution within a GAMLSS framework

for the analysis of neuronal and behavioural RTs.

Some statistical graphics aspects relating
to GAMLSS

Commenges and Seal (1986) argue that explaining the

relationship between neuronal RTs and behavioural RTs in

well-controlled experiments, depends on the statistical

methods used for the data analysis. The GEG distribution is

amenable to properly characterise the distribution of both

types of RTs conditioned on the specific variables manip-

ulated in an experiment. However, the explanatory power

of the GEG can only be appreciated when this distribution

is used within a distributional modelling approach. Such a

method was briefly described above: GAMLSS (Stasino-

poulos et al. 2017). A key step, though, in the distributional

modelling of data is the use of statistical graphical tech-

niques that allow the distribution of the data to be exam-

ined. Traditionally, bar plots have been used for such a

purpose but they do not allow the shape of the data to be

visualised; instead, boxplots and violin plots are better

techniques. However, empirical cumulative distribution

function (ECDF) plots are the optimal approach to inves-

tigate the shape of data and are instrumental in comparing

vectors of data. An example of ECDFs representing neu-

ronal RTs can be seen in Figure 4A in Mormann et al.

(2008). Indeed, Mormann et al. (2008)’s study is an

excellent example of how neuronal RTs can provide insight

3 Note that the GEG, ECSN, and SNAP distributions are not yet

included in standard GAMLSS R packages such as gamlss.dist
and only the specific GAMLSS model required for the analysis of

Schledde et al. (2017)’s data set was implemented. While the results

reported in this manuscript indicate that it is worthwhile including the

GEG distribution in the gamlss.dist R package, the other

distributions should be included as well given evidence supporting

their value (see references in the main text). Doing so, though,

requires more theoretical work on determining several derivatives and

other properties of these distributions that are needed for the internal

optimisation of parameters. Research on this this matter is under way.

4 Indeed, when both location and scale parameters were modelled,

the EG model still provided a better fit (EG model’s AIC = - 78.62

and NO model’s AIC = - 78.59). Having said this, it is important that

a GAMLSS model be selected based on its interpretability (Ramires

et al. 2021).
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as to neuronal firing associated to brain connectivity and

stimuli.

A hypothetical scenario where GAMLSS can be
used

The explanatory and predictive power of statistical distri-

butions can only be achieved via the GAMLSS framework.

The following lines depict a hypothetical experiment in

which GAMLSS could be used to model RTs via the GEG

distribution to better understand neuronal activity. A study

conceptualised from the the two-stream model of higher-

order visual processing (Goodale and Milner 1992) mea-

sures extracellular RTs in neurons specialised in the shape

of visual stimuli. The study’s goal is to characterise neu-

ronal RTs conditioned on IVs of interest in the experiment;

of particular interest is the presentation time of the stimuli.

Hence, single- and multiple-neuron recordings are per-

formed in cortical visual areas V1, V2, V3, and V4 from a

small sample of neurotypical human adult participants. The

researchers define neuronal RTs as the time lapse between

the presentation of the stimulus and the moment the neuron

generates an action potential. Since each neuron ‘sees’ all

stimuli, RT distributions per neuron for all trials and

stimuli are obtained. Further suppose that data from a

reasonable number of neurons in each V area are obtained

(e.g. 10 neurons per area per participant). The stimulus

consists of equal numbers of two-dimensional round and

angular shapes of equal size and colour (e.g. all black

colour). The task consists of sacadding from a fixation

point to selected coordinates on a computer screen where

the shapes are shown individually and randomly at a fixed

interstimulus interval but at three different presentation

times (e.g. stimuli are exposed for 10, 30, and 50 ms; i.e.

each image is seen three times in total).

A traditional LM or GLM model to analyse the data

could be conceived as RT �V � T � S, such that RT, V, T,

and S stand for the resulting marginal distribution of neu-

ronal RTs, the four V cortical areas, the three presentation

times, and the two types of shapes, respectively; and �
stands for the main effects and interactions. The results

would inform whether, for example, there are differences

in mean RTs among the four V areas, the three presentation

times, and/or the two types of shapes. Also, the model

would indicate, for example, if there is an interaction

between V and T such that differences in mean RTs

between V areas may occur at certain presentation times.

The other two two-way interactions and the three-way

interaction could also be investigated. The issue with

modelling such data via LM or GLM is that the findings are

limited to mean RTs. Regardless of the main or interaction

effects on the mean RTs, it may be the case that there are

effects on the RTs’ variability (i.e. the RT’s scale). Neither

LM nor GLM can detect potential effects of the IVs on

changes in the RT’s scale. GAMLSS, on the other hand, is

able to examine effects that the IVs can have on the RT’s

location parameter (as LM and GLM do) but can also

determine if the same IVs (or a subset of them) can affect

the response’s variability (see Fig. 3). Importantly, while

LM can model the DV via the Normal distribution only and

GLM can do so via distributions from the Exponential

family, GAMLSS can use those and any other statistical

distribution implemented in the gamlss.dist R pack-

age (Rigby et al. 2020) or in a way that can be used within

the GAMLSS framework [see Roquim et al. (2021) and the

‘RelDists’ package for examples of this approach].

Modelling the data of this hypothetical experiment via

GAMLSS would allow understanding of the trial-to-trial

RT signature of single and multiple neurons conditioned on

the stimuli and task they are faced with. Furthermore, it

could be inferred that signature RTs’ distributions (loca-

tion, scale and shape) should be able to differentiate

between healthy and unhealthy neurons according to task

demands (e.g. visual tasks, auditory tasks, type of stimuli).

If there is a predictive goal, trees and forest for distribu-

tional regression could be used [see Schlosser et al. (2019)

and the R package disttree], since they blend algo-

rithmic modelling with GAMLSS modelling.

Applied implications of the GAMLSS modelling

The previous example illustrates how neuronal RTs can be

used to explain the processing of stimuli in networks of

brain areas. An actual example of the value of investigating

neuronal RTs is provided in Figures 5D and 5E in Yoshor

et al. (2007). Those figures show an increasing trend in

neuronal RTs (Figure 5D) and time to peak (Figure 5E)

from zone 1 (areas for shape and colour processing) to zone

4 (areas for object and face processing) in the visual cortex;

in particular, there was an RT mean difference between

neurons in zone 1 and zone 4. In a similar vein, Mormann

et al. (2008) found that parahippocampal, entorhinal, hip-

pocampal, and amygdalan neuronal average RTs were in

accord with neuroanatomical evidence. Also, Lin et al.

(2018) found increments in RTs’ average and variability

from the calcarine fissure (low-order primary sensory

cortex) to the fusiform gyrus (higher-order association

area), areas within the ventral pathway of face processing.

Such types of analytical approach contribute to better

characterising brain areas and their functions by placing

neurons along a sensory-motor spectrum (DiCarlo and

Maunsell 2005). Very likely, a more sophisticated analysis

of this type of data via GAMLSS would further the current

understanding of neuronal activation in those areas.
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Future challenges

Although using the GEG distribution for the analysis of

RTs offers a promising avenue for new research, there are

some aspects that need to be investigated. It was argued

that the GEG is a four-parameter distribution flexible

enough to capture changes in location, scale, and shape.

The simulation study reported above indicated that the

GEG’s scale parameters, that is, skewness and kurtosis,

require large samples to allow reliable estimates. Future

work should investigate these parameters in more depth. A

way to do so is via transformed moment kurtosis and

skewness plots [see section 16.1.2 in Rigby et al. (2020)].

These types of plot enable the investigation of regions of

possible combinations of transformed moment skewness

and transformed kurtosis of the distributions, and so the

flexibility of the GEG can be compared to other continuous

distributions in terms of moment skewness and kurtosis.

Conclusion

In summary, distributional modelling of neuronal RTs

enables fine-grained temporal profiles of brain areas and

networks. The GEG has been proposed as a suitable dis-

tribution to fit RT data and its use in neuronal and beha-

vioural statistical modelling will contribute to forging the

link between neurometrics and psychometrics. Data sets

featured in this article and related R codes are available at

https://cutt.ly/IWJeSkO.

Appendix

Statistical details of the Ex-Gaussian distribution

For Y1 �APðsÞ and Y2 �Nðl; r2Þ with independent Y1 and

Y2, it follows that the PDF of the random variable X ¼
Y1 þ Y2 is given by:

fEGðxÞ ¼
1

s
e�

x�l
s þr2

2sU
x� l
r

� r
s

� �

;

s[ 0; �1\l\1; r[ 0:
ð8Þ

This PDF is denoted as EGðs; l; r2Þ. On the other hand, the

EG distribution’s CDF can be obtained as:

FEGðxÞ ¼
Z x

�1

1

s
e�

t�l
s þ r2

2s2U
t � l
r

� r
s

� �

dt

¼ r
s
e

r2

2s2

Z

x�l
r �r

s

�1
e�

r
s vþr

sð ÞU vð Þdv

¼ r
s
e�

r2

2s2

Z

x�l
r �r

s

�1
e�

r
svU vð Þdv

¼ e�
r2

2s2 �e�
r
svU vð Þ þ e

r2

2s2U vþ r
s

� �h i

j
x�l
r �r

s
�1

U
x� l
r

� �

� e�
x�l
s þ r2

2s2U
x� l
r

� r
s

� �

¼ U zð Þ � sfEGðxÞ;

ð9Þ

where z ¼ x�l
r

� �

.

From this result, it follows that the survival functions,

relative risk and hazard, are given by:

SEGðtÞ ¼ SNðtÞ þ sfEGðtÞ; ð10Þ

rEGðtÞ ¼
�e

x�l
s þr2

2sU x�l
r � r

s

� �

s U x�l
r

� �

� e
x�l
s þr2

2sU x�l
r � r

s

� �

� � ;

hEGðtÞ ¼
e�

x�l
s þr2

2sU x�l
r � r

s

� �

s SNðtÞ þ e�
x�l
s þr2

2sU x�l
r � r

s

� �

� � :

ð11Þ

where SNðtÞ is the survival function of the normal

distribution.

Given the independence between the convoluted expo-

nential and normal variables, it follows that

EðXÞ ¼ sþ l and VarðXÞ ¼ s2 þ r2: ð12Þ

Likewise, the skewness and kurtosis coefficients are given

by:

skew ¼
2 s

r

� �3

1þ s
r

� �2
h i3=2

and kurt ¼
3 1þ 2 s

r

� �2þ3 s
r

� �4
� �

1þ s
r

� �2
h i2

:

ð13Þ

A simplification of kurtosis expression could be through

excess kurtosis, which is calculated as

3� kurt ¼ 3
r
sð Þ

2�2

r
sð Þ

2þ1
� �2 :

These formulas thus indicate that the EG distribution has

positive asymmetry.

In the context of an RT experiment, if T is the RT or

response time, then, for a random sample T ¼
ðT1; T2; . . .; TnÞ0; with Ti �EGðs; l; rÞ; the distribution of

the statistics TðnÞ ¼ max½T1; T2; . . .; Tn�; where max denotes
the maximum of the sample, and is given by
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FTðtÞP½T 	 t� ¼ P½T1 	 t; T2 	 t; . . .;Tn 	 t�

¼
Y

n

i¼1

FEGðtiÞ ¼ FEGðtÞf gn:
ð14Þ

Therefore, the PDF of T is given by the expression:

uTðtÞ ¼ nfEGðtÞ FEGðtÞf gn�1; ð15Þ

which is an expression similar to the PDF of the random

variable AP(n).

Statistical details of the generalised exponential-
Gaussian distribution

Moments

Moments of the rth order statistics of the GEG distribution

are not available in a closed-form expression, and thus

need to be estimated numerically. Then, for

X�GEGðs; l; r; aÞ it follows that

lr ¼ EðXrÞ ¼ a
Z 1

0

ua�1F�1
EGðu; s; l; rÞdu ð16Þ

where F�1
EGð�; s; l;rÞ is the inverse function of the EG

distribution with parameters s; l; r. This distribution is

available in R packages such as emg and gamlss.

The central moments, �lr ¼ EðX � EðXÞÞr , for r ¼ 2; 3; 4

can be calculated by the expressions,

�l2 ¼ l2 � l21; �l3 ¼ l3 � 3l2l1 þ 2l31 and

�l4 ¼ l4 � 4l3l1 þ 6l2l
2
1 � 3l41:

Also, the variance, coefficients of variation, skewness, and

kurtosis are given as:

VarðXÞ ¼ �l2; CV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðXÞ
p

l1
;

ffiffiffiffiffi

b1
p

¼ �l3
½ �l2�

3=2
and

b2 ¼
�l4

½ �l2�2
:

Skewness and kurtosis coefficients in the range [-

1.20841, 2.01773] and [1.658303, 10.28841] were found

when l ¼ 0; r ¼ 1, s 2 ½0:2; 200� and a 2 ½0:25; 20�.
These intervals contain skewness and kurtosis ranges of the

PN and EG distributions; thus indicating that the GEG

distribution is more flexible in terms of skewness and

kurtosis than the PN and EG distributions. Furthermore, the

GEG distribution’s skewness and kurtosis ranges provide

better coverage than those of the SN (Azzalini 1985), and

the SNAP (Martı́nez-Flórez et al. 2014) distributions.

These results also indicate that while the EG distribution

can only fit positively skewed data, the GEG distribution

can fit data with positive skew, negative skew, and data

with kurtosis larger than that of the EG distribution.

Log-likelihood function

The parameters of the GEGðs; l; r; aÞ distribution are

estimated via a maximum likelihood method. Thus, for a

random sample of size n, X1;X2; . . .;Xn, where for

i ¼ 1; 2; . . .; n, Xi �GEGðs; l; r; aÞ; the log-likelihood

function of the parameter vector h ¼ ðs; l; r; aÞ0 is given

by:

‘ðhÞ ¼ n logðaÞ þ
X

n

i¼1

logðfEGðxiÞÞ

þ ða� 1Þ
X

n

i¼1

log U
xi � l
r

� �

� sfEGðxiÞ
h i

:

Score function

UðhÞ ¼ ðUðsÞ;UðlÞ;UðrÞ;UðaÞÞ0; defined as the deriva-

tives with respect to the parameters of the log-likelihood

function are given by:

UðsÞ ¼ o‘ðhÞ
os

¼ 1

s

X

n

i¼1

�1þ xi � l
s

� r2

s2

�

þ r
s
wi

�

þ ða� 1Þ
X

n

i¼1

� xi�l
s � r2

s2 þ r
s wi

� �

fEGðxiÞ
FEGðxiÞ

;

UðlÞ ¼ o‘ðhÞ
ol

¼ n

s
� 1

r

X

n

i¼1

wi � ða� 1Þ

X

n

i¼1

1
r /

xi�l
r

� �

� s 1
s � 1

rwi

� �

fEGðxiÞ
FEGðxiÞ

;

UðrÞ ¼ o‘ðhÞ
or

¼ nr
s2
X

n

i¼1

xi � l
r2

þ 1

s

� �

wi � ða� 1Þ

X

n

i¼1

xi�l
r / xi�l

r

� �

r
s � s

r
xi�l
r þ r

s

� �

wi

� �

fEGðxiÞ
FEGðxiÞ

and

UðaÞ ¼ o‘ðhÞ
oa

¼ n

a
þ
X

n

i¼1

log /
xi � l
r

� �

� sfEGðxiÞ
h i

where wi ¼ /ðziÞ
UðziÞ with zi ¼ xi�l

r . The corresponding score

equations are obtained by equating the above equations to

zero. The score equations can be solved by iterative

numerical methods and this, in turn, leads to maximum

likelihood estimators.

Information matrices

The elements of the observed information matrix, JðhÞ;
defined as minus the second derivatives of the log-likeli-

hood function with respect to the parameters denoted by

jss; jls; jrs; � � � ; jaa, are given by:
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jss ¼ �
X

i

1

s2
� 2r

s2
zi þ

2r2

s2
� r
s2

wi �
r2

s3
qi

� �

�

ða� 1Þ

X

i

r
s2 zi þ 2r2

s2 � r
s2 wi � r2

s2 qi þ � r
s zi � r2

s2 þ r
s wi

� �

� 1
s þ r

s2 zi � r2
s3 þ r

s2 wi

� �

fEGðxiÞ
� �

FEGðxiÞ

2

4

�
�rzi � r2

s þ rwi

� �2

f 2EGðxiÞ
s2F2

EGðxiÞ

3

7

5

;

jsl ¼
n

s2
þ 1

r2
X

i

qi � ða� 1Þ
X

i

fEGðxiÞ 1
r 1� r2

s

� �

wi � 1
s ðrzi þ qiÞ þ r2

s2 þ 1
h i

FEGðxiÞ
þ

2

4

1
s2 rzi þ r2

s � rwi

� �2

f 2EGðxiÞ
F2
EGðxiÞ

3

7

5

;

jsr ¼ 2nr
s3

� n

s2
X

i

wi �
X

i

zi
r
þ 1

s

� �

r
s2
qiþ

ða� 1Þ

X

i

fEGðxiÞ � r
s2 �

ziwi

r þ 1
s zi þ r

s

� �

qi
� �

þ r
s � s

r zi þ r
s

� �

wi

� �

� 1
s þ r

s2 ðzi þ wiÞ � r2

s2

� �h i

FEGðxiÞ

2

4

þ
fEGðxiÞ 1

r zi/ðziÞ þ fEGðxiÞ r
s � s

r zi þ r
s

� �

wi

� �� �

�rzi � r2
s þ rwi

� �

sF2
EGðxiÞ

3

5;

jsa ¼
r
s

X

i

zi þ r
s þ wi

� �

fEGðxiÞ
FEGðxiÞ

;

jll ¼
1

r2
X

i

qi þ
ða� 1Þ

r2

X

i

/ðziÞ þ sr2fEGðxiÞ 1
s � 1

rwiðl; r; sÞ
� �2� 1

r2 qi

h i

FEGðxiÞ

2

4 þ

1
r /ðziÞ þ sfEGðxiÞ 1

s � 1
rwiðl; r; sÞ
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#

;
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r2
X

i
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1

r2
X

i

ziqi þ
1

rs

X

i

qi�
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X
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i
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X
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1� s
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X
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r2
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1

r
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1
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and

jaa ¼
n

a2

where wiðl; r; sÞ ¼
/

xi�l
r �r

sð Þ
U

xi�l
r �r

sð Þ and qi ¼ wiðl; r; sÞ xi�l
r �

	

r
s þ wiðl; r; sÞ�.

For large n, the observed information matrix JðhÞ,
converges to the expected information matrix IðhÞ. Hence,
with the elements of the matrix JðhÞ and the power-normal

family being characterised by having a non-singular

information matrix [see Pewsey et al. (2012)], it can be

concluded that
ffiffiffi

n
p

ðĥ� hÞ ! Nð0; J�1ðhÞÞ:

That is, the GEG converges to a normal distribution with

covariance matrix J�1ðhÞ: The standard errors of the esti-

mates of the model parameters can be obtained by calcu-

lating the square root of the elements of the diagonal of

Ĵ�1ðĥÞ. The result of this can be used to find confidence

intervals for the model parameters.
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