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Abstract

Background: The combination of neuromuscular impairments plus psychosocial aspects of 

chronic kidney disease (CKD) may predispose these patients to greater risk for experiencing 

increased levels of fatigability. There has been extensive clinical and scientific interest in the 

problem of fatigue in CKD and end-stage kidney disease (ESKD) patients, whereas less attention 

has been directed to understanding fatigability. Accordingly, the primary purposes of this review 

are to (1) discuss fatigue and fatigability and their potential interactions in patients with CKD 

and ESKD, (2) provide evidence for increased fatigability in CKD and ESKD patients, (3) 

examine how commonly experienced neuromuscular impairments in CKD and ESKD patients 

may contribute to the severity of performance fatigability, and (4) highlight preliminary evidence 

on the effects of exercise as a potential clinical treatment for targeting fatigability in this 

population.

Summary: Fatigue is broadly defined as a multidimensional construct encompassing a subjective 

lack of physical and/or mental energy that is perceived by the individual to interfere with usual or 

desired activities. In contrast, fatigability is conceptualized within the context of physical activity 
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and is quantified as the interactions between reductions in objective measures of performance 

(i.e., performance fatigability) and perceptual adjustments regulating activity performance (i.e., 

perceived fatigability). We propose herein a conceptual model to extend current understandings of 

fatigability by considering the interactions among fatigue, perceived fatigability, and performance 

fatigability. Neuromuscular impairments reported in patients with CKD and ESKD, including 

reductions in force capacity, skeletal muscle atrophy, mitochondrial dysfunction, abnormal 

skeletal muscle excitability, and neurological complications, may each contribute to the greater 

performance fatigability observed in these patients.

Key Messages: Considering the interactions among fatigue, perceived fatigability, and 

performance fatigability provides a novel conceptual framework to advance the understanding 

of fatigability in CKD and ESKD patients. Measures of fatigability may provide valuable clinical 

insights into the overall health status of CKD and ESKD patients. Existing data suggest that 

CKD and ESKD patients are at greater risk of experiencing increased fatigability, partly due to 

neuromuscular impairments associated with reduced kidney function. Further investigations are 

warranted to determine the potential clinical role fatigability measures can play in monitoring the 

health of CKD and ESKD patients, and in identifying potential treatments targeting fatigability in 

this patient population.
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Introduction

Chronic kidney disease (CKD) is a debilitating condition affecting approximately 10%–15% 

of the global population [1]. Fatigue is one of the most common symptoms in patients with 

CKD not on dialysis, and in those with end-stage kidney disease (ESKD) [2–7]. Fatigue is 

broadly defined as a multidimensional construct encompassing a subjective lack of physical 

and/or mental energy that is perceived by the individual to interfere with usual or desired 

activities [8–10]. Patients with CKD who experience greater fatigue are at an increased risk 

of adverse cardiovascular events, decreased quality of life, and mortality [3, 11].

Fatigability, in contrast to fatigue, is conceptualized within the context of physical 

activity and is quantified as the interactions between reductions in objective measures 

of performance (i.e., performance fatigability) and perceptual changes regulating activity 

performance (i.e., perceived fatigability) [12]. While the symptom of fatigue can be 

chronic in nature, fatigability is reversible with rest [13, 14]. The predominant factors 

that affect fatigability are strongly influenced by the activity being performed [12, 15–17]. 

For example, during tasks isolating a specific muscle or muscle group(s), the primary 

mechanisms contributing to fatigability are directly related to the active muscles involved in 

performing the task [16, 18]. In comparison, during whole-body activities such as walking, 

there is an increase in the amount of active muscle mass and required support from 

other physiological systems to sustain muscle function [18]. This increases the potential 

involvement of psychobehavioral and central nervous system (CNS) factors contributing 

to fatigability [14, 19, 20]. In clinical populations, additional factors such as fatigue, 
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lack of motivation, anxiety, depression, disease/injury severity, and physical inactivity may 

contribute more importantly to fatigability and must also be considered [12, 14, 21].

The combination of neuromuscular impairments plus psychosocial aspects of CKD may 

predispose these patients to greater risk for experiencing increased fatigability [22–24]. 

There has been extensive clinical and scientific interest in the problem of fatigue in CKD 

and ESKD patients, whereas less attention has been directed to understanding fatigability. 

Although fatigue is a major challenge to everyday life, fatigue is not synonymous with 

fatigability [8, 12, 13, 25–31]. Accordingly, the primary purposes of this review are to 

(1) discuss fatigue and fatigability and their potential interactions in patients with CKD 

and ESKD, (2) provide evidence for increased fatigability in CKD and ESKD patients, 

(3) examine how commonly experienced neuromuscular impairments in CKD and ESKD 

patients may contribute to the severity of performance fatigability, and (4) highlight 

preliminary evidence of the effects of exercise as a potential clinical treatment for targeting 

fatigability in this population.

Fatigue and Fatigability and Their Potential Interactions in Patients with 

CKD and ESKD

Fatigue is often reported as a symptom of disease reflecting a formed representation of 

the specific condition [10, 32]. For example, fatigue has been proposed as a state of 

feeling in which there is a lack of motivation to deploy resources and engage in high 

effort performance to cope with a situation [10]. In this context, fatigue in CKD patients 

may occur as an adaptive process resulting from declines in kidney function that allow for 

mobilization of critical resources while preserving energy necessary for the maintenance 

of homeostasis so as to ensure survival [33–35]. Factors associated with fatigue in non-

dialysis CKD patients include unemployment, comorbidities, antidepressant medication 

use, and anemia [36]. In a multivariable regression analysis, Jhamb et al. [37] observed 

that cardiovascular disease, low serum albumin, depressive symptoms, poor subjective 

sleep quality, excessive daytime sleepiness, and restless leg syndrome were independently 

associated with greater fatigue in CKD and ESKD patients. The findings of these studies 

highlight the multitude of factors associated with fatigue in non-dialysis CKD and ESKD 

patients, and their potential differences based on the severity of disease.

Complicating the understanding of fatigue in patients with ESKD is the phenomenon of 

post-dialysis fatigue. Such patients often report feelings of physical and mental fatigue 

immediately following dialysis treatment [38]. Symptoms of physical fatigue include feeling 

a lack of strength, worn out, drained, or exhausted. Regarding symptoms of mental fatigue 

following dialysis treatment, patients reported the inability to remember conversations, name 

recall challenges, and forgetfulness of where they were driving in their cars [38]. The time 

to recover from dialysis sessions varies among individuals and ranges from minutes to days 

but is typically resolved within 4 h [2, 39]. Importantly, the time to recover from dialysis 

is significantly related to fatigue status [40]. The type and duration of kidney replacement 

therapy, osmotic dis-equilibrium, blood membrane interactions, isolated ultrafiltration and 
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diffusion, and serum cytokine concentrations all influence the level of fatigue experienced 

after completing a dialysis session [2, 3, 41].

Psychological disorders and cognitive impairment are common in patients with CKD. 

Depression occurs in up to 20%, and anxiety in 10%–50%, of CKD patients [42–47]. 

Patients with depression and anxiety disorders are more likely to score higher on self-

reported fatigue scales [41]. Cognitive impairment is associated with the severity of 

kidney disease and is thought to result from an accumulation of uremic neurotoxins 

that interact with neural progenitor cells, brain vasculature, the lymphatic system, and 

monoaminergic neurons [48–51]. Impaired kidney function has also been associated with 

reductions in cerebral gray matter volume and cortical thickness [52]. The high prevalence 

of depression, anxiety, and cognitive impairment is particularly salient when assessing 

fatigue and fatigability of CKD patients. While depression, anxiety, and fatigue constitute 

separate psychological states, their interrelationship has the potential to impact a person’s 

willingness to engage in physical activity or exert oneself (i.e., perceived fatigability) [10, 

20, 53]. This may help explain the observation that fatigue and low energy levels are the 

most common perceived barriers to exercise in patients with CKD and ESKD [54].

From a bioenergetic perspective, dysregulation of energy use (i.e., adenosine triphosphate, 

ATP) is a principal mechanism responsible for performance fatigability [55]. Augmented 

breakdown of ATP increases circulating and tissue concentrations of metabolic byproducts 

(hydrogen ions and inorganic phosphate) and decreases calcium sensitivity, resulting in 

impaired skeletal muscle cross-bridge function during high-intensity physical activity [15, 

16, 56, 57]. In comparison, fatigability experienced during moderate-intensity activity is 

thought to result from reductions in substrate availability and muscle activation [14, 58–

62]. Sensory feedback from receptors located in skeletal muscle is sent to the CNS via 

myelinated (group III) and unmyelinated (group IV) nerve fibers [58, 59]. The afferent 

information received by the CNS from the group III/IV nerve fibers during skeletal 

muscle contraction exerts inhibitory influences on the central motor drive and muscle 

activation [58, 59]. Reductions in physiologic capacity and/or increases in energetic cost 

of muscle contraction with aging place greater strain on bioenergetic systems, accelerating 

the accumulation of metabolic by-products and the increased sense of effort required to 

perform a given activity [20, 56, 63, 64].

Recent efforts have been made to further clarify distinctions between fatigue and fatigability 

[8, 12, 25–31]. These efforts are influenced, in part, by the lack of significant associations 

between measures of fatigue and performance fatigability in the medical literature, 

suggesting potential differences in biological underpinnings [25, 65–72]. Perceived 

fatigablity has been shown to be significantly associated with heightened perceived effort 

and reduced affect, but not performance fatigability, when assessed during knee extensor 

contractions [73]. The transient changes in an individual’s psychophysiological state 

influence the decision or desire to continue with activity performance [20, 53]. In ESKD 

patients, this is reflected in how individuals adjust the timing and intensity of their activities 

to accommodate their level of fatigue [38]. Fatigability thus emerges as the interactions 

among fatigue, perceived fatigability, and performance fatigability[12]. Such a model also 

allows possible underlying determinants of fatigue, perceived fatigability, and performance 
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fatigability to be identified, and to be used in combination to inform the clinical decision-

making process. Furthermore, simultaneous monitoring of each domain may provide a 

more comprehensive understanding of how fatigue and fatigability respond to specific 

interventions [74].

Evidence of Elevated Fatigability in Patients with CKD and ESKD

Evidence from several cross-sectional studies suggests that such individuals are more 

susceptible to greater levels of fatigability than are their age-matched healthy counterparts 

(Table 1) [75–79]. For example, Johansen et al. [75] observed greater performance 

fatigability of the ankle dorsiflexors during maximum voluntary isometric contractions in 

dialysis patients versus control subjects. Similarly, performance fatigability, as determined 

during thirty maximal isokinetic contractions at 180°/s, was estimated to be 1.6-fold higher 

in kidney transplant and hemodialysis (HD) patients than in control subjects [76]. During 

rhythmic hand-grip exercise, HD patients exhibited greater fatigability than did transplant 

recipients or control subjects [79]. Macdonald et al. [77] noted that patients with CKD 

stages 3b and 4 reported greater ratings of perceived exertion than did control subjects when 

engaging in exercise intensities representative of various activities of daily living.

To our knowledge, few longitudinal studies have been reported examining changes in 

measures of fatigability in patients with CKD. In one 2-year longitudinal study in 

patients with non-dialysis-dependent CKD, whole-body performance fatigability increased, 

as measured by reductions in peak oxygen consumption [80]. However, in the same study, 

knee extensor performance fatigability remained unchanged, despite reductions in creatinine 

clearance and isokinetic strength [80]. More and larger longitudinal studies are warranted 

to determine the extent to which fatigability levels change over time in CKD and ESKD 

patients [80].

Neuromuscular Impairments Influencing Fatigability in Patients with CKD 

and ESKD

The remainder of this review is focused on commonly observed neuromuscular impairments 

that are likely to exacerbate performance fatigability in CKD and ESKD patients (shown in 

Fig. 1). This represents just one example of how consequences associated with CKD and 

ESKD could exacerbate fatigability. Moreover, the influences of performance fatigability 

resulting from neuromuscular impairments on fatigue and perceived fatigability have yet to 

be thoroughly investigated. Importantly, factors other than neuromuscular impairments are 

likely to contribute to fatigability in CKD and ESKD patients and should also be considered 

[7, 81].

Force Capacity

Skeletal muscle weakness is commonly associated with CKD and ESKD [82–84]. Although 

there is some overlap between the mechanisms contributing to muscle weakness and 

performance fatigability, these two phenomena are not synonymous [85]. For example, 

after the termination of activity, performance fatigability is mitigated with rest while muscle 
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weakness is evident even in a fully rested state [14]. The reductions in force capacity 

experienced with CKD may promote greater fatigability through decreases in physiologic 

reserve [86]. Moreover, this may have a direct impact on functional capabilities, as weaker 

individuals require a greater percentage of their physiologic capacity to perform a given 

amount of work. During exercise at lower relative intensities, more rapid depletion of 

phosphocreatine and increased intracellular acidosis occur in HD patients compared with 

transplant recipients and control subjects [79]. In comparison, isokinetic knee extensor 

strength is directly associated with whole-body exercise endurance in patients with CKD 

and ESKD, suggesting that level of strength positively influences whole-body performance 

fatigability [80, 87].

Skeletal Muscle Atrophy

Declines in force capacity are, in part, explained by the loss of skeletal muscle mass in 

individuals with CKD and ESKD [88–90]. Skeletal muscle atrophy has also been associated 

with declines in certain measures of physical function [88, 89, 91–93]. Individuals with 

compromised kidney function are predisposed to accelerated skeletal muscle loss via 

upregulation of protein degradation and downregulation of protein synthesis [94]. Johansen 

et al. [95] reported decreased amounts of contractile tissue in the anterior compartment 

of the lower leg in dialysis patients compared to control subjects. Using a subjective 

clinical assessment for skeletal muscle atrophy, Carrero et al. [96] found that 30% of 

patients initiating HD and 39% of prevalent HD patients exhibited signs of muscle atrophy. 

Skeletal muscle cross-sectional area of the mid-thigh, determined via computed tomography, 

declined 4.3% over a 2-year period in stage 4 CKD and HD patients [88]. Atrophy of type 

II muscle fibers may, in part, explain the reductions in muscle force capacity observed in 

this population [84]. Additional mechanisms involved in the promotion of skeletal muscle 

atrophy may also contribute to increased fatigability, such as alterations in mitochondrial 

function, which have been identified as a primary cause of skeletal muscle atrophy in aging, 

physical inactivity, and various diseases, including CKD [97, 98].

Mitochondrial Dysfunction

Skeletal muscle mitochondrial dysfunction is directly associated with disease severity in 

patients with CKD [99–104]. Mitochondrial dysfunction promotes skeletal muscle atrophy 

and impairs bioenergetic processes [103–106]. Thome et al. [104] reported significant 

impairments in oxidative phosphorylation in skeletal muscle of mice with adenine-

induced CKD. In other rodent models of CKD (i.e., C57BL/6N), uremic metabolites 

contribute to decreased energy transfer, impaired complex III and IV enzyme activity, 

and elevated oxidant production within mitochondria [103]. Similarly, accumulation of the 

uremic metabolite indoxyl sulfate in skeletal muscle tissue upregulates glycolysis with 

concomitant downregulation of oxidative metabolism [107]. Indoxyl sulfate also decreases 

the expression of peroxisome proliferator-activated receptor-gamma coactivator-1 alpha, 

a principal regulator of mitochondrial biogenesis [105]. Human vastus lateralis skeletal 

muscle in patients on maintenance HD exhibits reduced enzymatic activity of succinate 

dehydrogenase, an enzyme involved in oxidative metabolism, compared to that in control 

subjects [108]. Similarly, in calf muscle of HD patients, energy production via oxidative 

metabolism was impaired and compensated for by an increase in anaerobic glycolysis [109]. 
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Therefore, in addition to promoting skeletal muscle loss, mitochondrial dysfunction and 

altered oxidative metabolism may serve as contributing factors to excess fatigability in CKD 

and ESKD patients.

Skeletal Muscle Excitability

Disturbances in skeletal muscle potassium (K+), sodium (Na+), chloride (Cl−), and Na+-K+ 

pump activity have been implicated in promoting fatigability [110–113]. In particular, 

elevations in skeletal muscle K+ concentrations [K+] depolarize the sarcolemma and 

inactivate voltage-gated Na+ channels, decreasing membrane excitability [111, 113]. During 

intense muscular activity, ionic shifts can exert profound effects on skeletal muscle 

contractile function [111]. For example, the rate of interstitial [K+] accumulation is likely 

to hasten the onset of activity termination by preventing calcium (Ca2+) release [111, 

114]. This concept is supported by the finding that a more rapid accumulation of skeletal 

muscle interstitial [K+] induced by prior arm exercise was associated with a reduced time 

to exhaustion during subsequent leg exercise [115, 116]. However, interstitial [K+] does 

not seem to act independently during the fatigability process, but in combination with 

intracellular [K+], [Na+], and [Cl−] and Na+-K+ pump activity [111].

Abnormal K+ regulation is frequently reported in patients with CKD and may explain, 

in part, findings of greater fatigability in this population [76, 117–119]. Friedland & 

Paterson described the potential impact of elevated K+ on performance fatigability during 

exhaustive cycle ergometry exercise in ESKD patients on maintenance HD [120]. These 

authors observed arterial plasma [K]+ of about 7 mmol/L at the end of exercise and 

suggested that this increase in [K+] was sufficient to impair membrane excitability, thereby 

decreasing muscle contractility [120]. The resting transmembrane potential of myocytes in 

uremic patients decreases progressively with declining kidney function and assumes a linear 

relationship with creatinine clearance values below 6.3 mL/min per 1.73 m2 [121]. Of note, 

maximal Na+-K+ pump activity of the vastus lateralis is reduced by approximately 30% 

in HD patients and kidney transplantation recipients, and dialysis transiently normalizes 

sarcolemmal membrane potential, but not t-tubule function [76, 122].

Neurological Impairments

CNS contributions to the suppression of motoneuron excitability can occur via multiple 

processes, resulting in elevated fatigability [14, 58, 59, 123]. Neurological complications 

accompany CKD and become more pronounced in those with ESKD [23, 24, 124, 125]. 

Isaacs observed considerable dropout of motor unit activity during isometric fatigability 

testing of the abductor pollicis brevis in patients with CKD and clinical neuropathy [126]. 

Subsequent studies demonstrated that the nerves of uremic patients exhibit a chronically 

depolarized state before dialysis, with improvement and normalization of nerve resting 

membrane potential 1 h after a standard 5 h HD session [127]. The magnitude of 

depolarization was directly related to the serum [K]+, suggesting that depolarization due to 

chronic elevations in [K]+ plays an important role in the development of nerve dysfunction 

and performance fatigability in patients with ESKD [24, 127].
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The exercise pressor reflex is a pathophysiological mechanism that elicits increased 

sympathetic nerve activity in the heart, blood vessels, and adrenal medulla, and decreased 

parasympathetic activity in the heart, so as to ensure matching the circulatory and metabolic 

demands of muscle contraction [128, 129]. Both mechanical (mechanoreflex) and metabolic 

(metaboreflex) stimuli produced by contracting skeletal muscle trigger autonomic activation 

during physical activity [129]. In patients with ESKD, exaggerated increases in the exercise 

pressor reflex may contribute to fatigability [130]. In this context, ESKD patients exhibit 

decreased muscle oxygenation at rest and an impaired ability of skeletal muscle to oppose 

sympathetically mediated vasoconstriction during exercise (functional sympatholysis) [131]. 

Moreover, reduced flow-mediated dilation has been significantly associated with a higher 

slope-of-rise in systolic blood pressure during exercise, and poorer exercise capacity, 

in CKD patients [132]. The aforementioned factors all contribute to greater peripheral 

resistance, increased myocardial work-load, and diminished blood flow.

Effects of Exercise on Fatigability in Patients with CKD and ESKD

Improvements in energy and strength are the two most desired benefits from exercise in 

those with ESKD [133]. Exercise interventions exert beneficial effects on fatigue, anxiety, 

depression, and quality of life in patients with ESKD, and both resistance exercise and 

aerobic exercise improve neuromuscular and functional outcomes in people with CKD 

and ESKD [134–139]. In comparison, the effects of exercise on fatigability in CKD and 

ESKD patients are not as clear, due to the relatively limited number of studies to date. 

In this regard, in one study, 6 weeks of cycling exercise performed for 30-min a day 3 

days/week during the first hour of dialysis treatment increased whole-body performance 

fatigability [78]. However, in the latter study, knee extensor performance fatigability index 

did not change significantly despite improvements in absolute and relative peak torque [78]. 

Similarly, in a recent pilot study, 12 weeks of flywheel resistance exercise in adults with 

CKD not on dialysis elicited no change in a maximal isometric or isokinetic knee extensor 

performance fatigability index despite increases in torque capacity [140].

The force-fatigability relationship suggests that, in general, the degree to which fatigability 

is expressed is related to the amount of force produced, so that greater force elicits greater 

fatigability [141]. Therefore, patients with CKD and ESKD are seemingly more resistant to 

activity-induced fatigability following exercise, given that fatigability level was unchanged 

despite increased force generation [78, 140]. Further investigations are warranted to identify 

the most effective exercise interventions for reducing fatigability in patients with CKD 

and ESKD and to determine how various exercise paradigms alter neuromuscular factors 

implicated in fatigability.

Conclusion

Fatigability reflects activity-induced declines in performance (performance fatigability) and 

changes in perceptions regulating activity performance (perceived fatigability). Herein, 

we extend the understanding of fatigability by presenting a conceptual framework 

that considers fatigability as the interactions among fatigue, perceived fatigability, and 

performance fatigability and discuss how neuromuscular impairments reported in CKD 
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and ESKD patients may provide a treatment target to diminish performance fatigability. 

Limited preliminary evidence in CKD and ESKD patients supports the notion that 

exercise interventions may beneficially affect elevated fatigability. It remains unclear as to 

whether treatment of secondary sequelae of CKD and ESKD, such as anemia, secondary 

hyperparathyroidism, and metabolic acidosis, will improve fatigability status. Further 

investigations are warranted to determine the potential clinical utility fatigability measures 

might play in monitoring the health of CKD and ESKD patients, and in identifying potential 

treatments targeting fatigability in this patient population.
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Fig. 1. 
Depicts neuromuscular impairments potentially contributing to performance fatigability in 

patients with CKD (yellow circle). Fatigue and perceived fatigability may act to further 

exacerbate performance fatigability (gray circles and dashed lines). Performance fatigability 

is defined as declines in objective measures of performance and perceived fatigability as the 

perceptual adjustments regulating activity performance. Fatigue represents a self-reported 

symptom defined as a subjective lack of physical and/or mental energy that is perceived by 

the individual to interfere with usual or desired activities.
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