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Abstract 

Background  Guidelines recommend shared decision making (SDM) for mammography screening for women ≥ 75 
and not screening women with < 10-year life expectancy. High-quality SDM requires consideration of women’s breast 
cancer (BC) risk, life expectancy, and values but is hard to implement because no models simultaneously estimate 
older women’s individualized BC risk and life expectancy.

Methods  Using competing risk regression and data from 83,330 women > 55 years who completed the 2004 Nurses’ 
Health Study (NHS) questionnaire, we developed (in 2/3 of the cohort, n = 55,533) a model to predict 10-year non-
breast cancer (BC) death. We considered 60 mortality risk factors and used best-subsets regression, the Akaike infor-
mation criterion, and c-index, to identify the best-fitting model. We examined model performance in the remaining 
1/3 of the NHS cohort (n = 27,777) and among 17,380 Black Women’s Health Study (BWHS) participants, ≥ 55 years, 
who completed the 2009 questionnaire. We then included the identified mortality predictors in a previously devel-
oped competing risk BC prediction model and examined model performance for predicting BC risk.

Results  Mean age of NHS development cohort participants was 70.1 years (± 7.0); over 10 years, 3.1% developed BC, 
0.3% died of BC, and 20.1% died of other causes; NHS validation cohort participants were similar. BWHS participants 
were younger (mean age 63.7 years [± 6.7]); over 10-years 3.1% developed BC, 0.4% died of BC, and 11.1% died of 
other causes. The final non-BC death prediction model included 21 variables (age; body mass index [BMI]; physical 
function [3 measures]; comorbidities [12]; alcohol; smoking; age at menopause; and mammography use). The final BC 
prediction model included age, BMI, alcohol and hormone use, family history, age at menopause, age at first birth/
parity, and breast biopsy history. When risk factor regression coefficients were applied in the validation cohorts, the 
c-index for predicting 10-year non-BC death was 0.790 (0.784–0.796) in NHS and 0.768 (0.757–0.780) in BWHS; for 
predicting 5-year BC risk, the c-index was 0.612 (0.538–0.641) in NHS and 0.573 (0.536–0.611) in BWHS.

Conclusions  We developed and validated a novel competing-risk model that predicts 10-year non-BC death and 
5-year BC risk. Model risk estimates may help inform SDM around mammography screening.
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Introduction
Breast cancer is the most common non-skin cancer 
diagnosed in women and incidence increases with age 
[1, 2]. Mammography screening reduces breast can-
cer mortality by 19% in women 40–74 years. However, 
there is a delay in benefit; on average it takes 10.7 years 
for 1 in 1000 women screened to avoid breast cancer 
death [3, 4]. There are also harms to screening, includ-
ing anxiety, complications from workup of cancer, and 
overdiagnosis (detection of non-lethal tumors) [5]. 
Therefore, guidelines recommend not screening women 
who have a life expectancy of less than 10 years. [6–8] 
Despite these recommendations, 40–55% of commu-
nity dwelling US women ≥ 65  years with < 10  year life 
expectancy are screened; most are at low or average 
breast cancer risk. [9, 10]

In addition, none of the mammography screening 
trials included women ≥ 75  years old. Most guidelines 
recommend engaging women ≥ 75 in shared decision 
making [7, 8, 11, 12]. High-quality shared decision mak-
ing around mammography screening requires consider-
ation of breast cancer risk, life expectancy, and values 
and preferences [5]. However, shared decision making 
rarely occurs and many older women overestimate their 
breast cancer risk and screening’s benefits [13–15]. 
Furthermore, while guidelines recommend biennial 
screening for women ≥ 55  years, many older women 
choose to be screened annually; personalized informa-
tion about breast cancer risk may help these women 
decide how often to be screened [16, 17]. Despite the 
need, there are no tools that simultaneously estimate 
older women’s individualized breast cancer risk and life 
expectancy to support shared decision making around 
mammography screening.

The Breast Cancer Risk Assessment Tool (BCRAT, 
a.k.a. “Gail Model”) is the most commonly used breast 
cancer prediction model in primary care [18, 19]. It 
considers a woman’s age, age at menarche, age at first 
birth, history of breast biopsy (including presence of 
atypia), breast cancer family history and race/ethnic-
ity to estimate 5-year breast cancer risk for women 
up to age 85. We previously examined BCRAT’s per-
formance in in the Nurses’ Health Study (NHS) and 
Women’s Health Initiative and found that BCRAT 
overestimated 5-year breast cancer risk by 5–20% in 
women ≥ 55  years and by 10–30% in women ≥ 75 and 
had modest discrimination (c-statistic 0.57–0.58) [20]. 
We hypothesized that BCRAT overestimated breast 
cancer risk in older women because while it accounts 
for age-based risk of non-breast cancer (non-BC) death 
in estimating breast cancer risk, it does not account for 
women’s individualized non-BC death risk. Therefore, 

we aimed to develop a novel model that would simulta-
neously predict breast cancer risk and non-BC death in 
women ≥ 55 years.

We previously used NHS data and Fine-Gray compet-
ing risk regression to develop a breast cancer predic-
tion model for older women [21]. That model included 
women’s age, family history of breast cancer, reproduc-
tive factors, health behaviors, and prior mammography 
use (because screening increases breast cancer detection 
and may confound the influence of some risk factors on 
breast cancer incidence) [22]. It also included six mor-
tality risk factors (history of stroke, diabetes, myocardial 
infarction, emphysema, heart failure, and limitation in 
performing moderate activity) that were added based on 
expert opinion to apply weights to women’s probability of 
a competing non-BC death when estimating their breast 
cancer risk. Our current aim was to develop and validate 
a non-BC death prediction model and then include pre-
dictors from this model in our competing risk breast can-
cer risk prediction model.

Methods
We used NHS data to extend our previously developed 
competing risk breast cancer prediction model to also 
predict non-BC death [23]. NHS is a longitudinal study of 
121,738 female nurses aged 30–55 years at entry in 1976; 
97% who were white. Since Black women are more likely 
to die of breast cancer and be diagnosed at earlier ages 
than white women, we further examined model perfor-
mance in the Black Women’s Health Study (BWHS) [24, 
25]; a longitudinal study of 59,000 self-identified Black 
women ages 21–69 at entry in 1995. At baseline and in 
biennial follow-ups, participants in both cohorts pro-
vide detailed lifestyle and medical history information 
through mailed questionnaires (Additional file 1: Appen-
dix A provides additional details about each cohort). 
Our study samples (n = 83,330 NHS, n = 17,380 BWHS; 
see Additional file  1: eFigure  1) included postmenopau-
sal women without a history of invasive or noninvasive 
breast cancer who returned the 2004 NHS questionnaire 
(could be returned through May 2006) or 2009 BWHS 
questionnaire (96.3% who returned   the questionnaire 
returned it by the end of 2010). We chose the 2004 NHS 
questionnaire for study initiation since: (1) similar to cur-
rent practice most women had stopped using menopau-
sal hormone therapy (MHT); (2) it included functional 
assessments; and (3) it allowed > 10 years follow-up. We 
chose the 2009 BWHS questionnaire for study initiation 
since it allowed 10 years follow-up for most women and 
allowed a maximum number of BWHS participants to be 
included (i.e., to have reached age 55). NHS participants 
were 57–85 years, and BWHS participants were 55–85 at 
study entry. The study was approved by the institutional 
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review boards of Boston University Medical Center, 
Brigham and Women’s Hospital, Harvard T.H. Chan 
School of Public Health, and those of participating regis-
tries as required.

Outcomes
The oldest participants at the end of follow-up were aged 
95. In both cohorts, cause of death was determined from 
state-issued death certificates, the National Death Index, 
family and friends, and the post-office. In NHS, death 
information was further supplemented with medical 
record review; > 98% of deaths are identified [26, 27]. For 
NHS, we included breast cancers confirmed by medical 
record review (88%) or self-reported (12%) since valida-
tion studies have found self-reported breast cancers in 
NHS to be accurate [28]. In BWHS, breast cancers are 
identified through self-report or through 24 state can-
cer registries (> 95% of BWHS participants live in these 
states) and are confirmed by review of hospital and state 
cancer registry pathology records (> 99% are confirmed) 
[29, 30]. We excluded women with a history of cancer 
(except non-melanomatous skin cancer) since NHS did 
not consistently confirm second cancer diagnoses.

Mortality risk factors
To expand our model to predict non-BC death, we con-
sidered 60 potential mortality risk factors, including 
health behaviors (4), comorbidity (32), physical function 
(16), psychosocial factors (5), age, age at menopause, and 
parental longevity; information was obtained from the 
2004 NHS questionnaire and/or prior years (see Addi-
tional file  1: Appendix B for variable definitions). We 
only included factors that may be self-reported (e.g., no 
laboratory values) for ease of clinical implementation; 
however, in sensitivity analyses, we repeated our analy-
ses using confirmed diseases when available. We did not 
consider socioeconomic factors (e.g., income) because 
once the model is implemented we do not want women 
to be denied screening because of a low estimated life 
expectancy based on socioeconomic status.

Breast cancer risk factors
After identifying the best-fitting model for non-BC death, 
we then re-examined our model’s performance in pre-
dicting breast cancer including the risk factors identified 
for non-BC death [21]. For these analyses, we censored 
women with noninvasive breast cancer or other cancers 
at the time of diagnosis. We also re-examined model per-
formance including risk factors as continuous rather than 
categorical variables if linearly associated with breast 
cancer risk. Since measured mammographic density was 
only available for 2174 NHS participants, we used pre-
dicted mammographic density as performed previously 

by Rice et al. (predicted and actual mammographic den-
sity are correlated [Spearman correlation of 0.61]). The 
validated mammographic density prediction model con-
siders age, current BMI, BMI at age 18, adolescent soma-
totype, parity, age at first birth, postmenopausal status, 
alcohol use, benign breast disease, and MHT use. [31]

Non‑BC death model development
Analyses were completed using SAS 9.4 software. 
We randomly divided the NHS population into 2/3 
(n = 55,553) for model development and 1/3 (n = 27,777) 
for internal validation. Survival time was measured from 
study entry until non-BC death; participants were cen-
sored at breast cancer death or 10 years from their 2004 
questionnaire return date, whichever came first. We first 
examined the unadjusted effect of each mortality risk fac-
tor using proportional hazards regression (PHR). Varia-
bles significantly associated (p < 0.05) with non-BC death 
in univariate analyses and not collinear at > 0.4 (Spear-
man correlation) were considered in our multivariable 
model. When two variables were collinear, we removed 
the variable more difficult to self-report. We used best-
subsets regression (allowing comparison of all possible 
models and selecting those with the highest global score 
chi-square statistic) [31], the Akaike information crite-
rion (AIC, a function of the log-likelihood that adds a 
penalty of 2 for each additional factor; lower AICs indi-
cate better fit), and the c-index (estimate of area under 
the receiver operating characteristic curve) to identify the 
best-fitting models for non-BC death [32–34]. Investiga-
tors reviewed the top models associated with the highest 
c-index and lowest AIC to select the best model. The pro-
portional hazards assumption was evaluated by comput-
ing Schoenfeld residuals and visually examining log–log 
survival curves;  no apparent violations were identified. 
Since few methods exist for covariate selection using 
competing risk regression and breast cancer death is a 
rare competing risk to non-BC death, we hypothesized 
that using cause-specific PHR for covariate selection 
would identify the same top models as competing risk 
regression. To confirm, we reviewed the AIC and c-index 
of the 10 best-fitting models and found that the AICs and 
c-indices were similar using either method. We deter-
mined the subdistribution hazard ratio (HR) for each risk 
factor in our final model using competing risk regression 
and computed cause-specific cumulative incidence func-
tions (CIFs) for breast cancer death and non-BC death.

In sensitivity analyses, we examined for “ghost-time” 
bias (to examine the potential effect of including data 
from individuals who may have died but not yet cap-
tured) by censoring participants at age 90 [35]. We also 
calculated age-adjusted c-indices, used multiple impu-
tation to impute missing data (see Additional file  1: 
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Appendix C for multiple imputation details). In addition, 
we compared our new model’s performance in predicting 
non-BC death to a model that included only the 6 mor-
tality risk factors chosen by expert opinion to predict the 
competing risk of non-breast cancer death in our original 
breast cancer prediction model.

Internal and external validation
We examined the final model’s performance in predict-
ing 10-year non-BC death and 5-year breast cancer 
risk because these thresholds have clinical significance. 
Guidelines for use of breast cancer prevention medica-
tions consider postmenopausal women with ≥ 3% 5-year 
risk to be at high risk [36, 37]. Also, prior studies have 
shown that individuals with ≥ 50% 10-year mortality risk 
tend to have < 10-year life expectancy since life expec-
tancy is the median survival of a population [38, 39].

We used Royston and Altman’s methods for validating 
models using survival analyses and examined our model’s 
calibration (whether model predicted probabilities are 
accurate) and discrimination (how well our model distin-
guishes between individuals who do and do not develop 
an outcome) in predicting non-BC death [40, 41]. First, 
we compared the prevalence and regression coefficients 
associated with each risk factor in the development and 
validation cohorts using normal approximation z-tests. 
While most risk factors were defined similarly by NHS 
and BWHS, BWHS did not assess participant mobility or 
ability to bath/dress oneself. We censored BWHS partici-
pants without complete 10-year follow-up on December 
31, 2020, since death data after that date may have been 
incomplete.

Calibration of the model in predicting non-BC death 
was assessed by estimating the ratio of the expected 
survival (1-CIF for non-BC death from our competing 
risk regression model) to the observed survival (1-the 
observed CIF computed using the nonparametric estima-
tion of CIF) at 5 and 10 years within risk quintiles [42]. 
To test discrimination, we calculated the model’s c-index 
in the validation cohorts using risk factor regression coef-
ficients from the development cohort using Kremer’s SAS 
macro [43] based on the work of Harrell et  al. [44] and 
Pencina et al. [45]. Additional file 1: Appendix C provides 
additional details on methods used for model validation. 
We repeated these methods to examine model perfor-
mance in predicting non-BC death by age (55–74, 75+) 
and in predicting breast cancer risk overall and by age.

Examples
To demonstrate how our model may be useful, we calcu-
lated breast cancer and non-BC death risk estimates for 
four example women 75  years old for whom guidelines 
recommend shared decision making and to not screen 

women with < 10 year life expectancy [7, 8, 11]. We also 
presented the proportion of women in our validation 
cohorts who would be estimated to be at higher or lower 
risk of non-BC death (using a 50% 10-year mortality risk 
threshold) and of breast cancer (using a 3% 5-year breast 
cancer risk threshold) based on model risk estimates.

Results
NHS development cohort participants (n = 55,553) were 
96.2% non-Hispanic white, and their mean age was 70.1 
(SD 7.0) years. Over 10 years, 3.1% developed breast can-
cer, 0.3% died of breast cancer, and 20.1% died of other 
causes. NHS validation cohort (n = 27,777) participants 
were similar to development cohort participants (≤ 0.5% 
difference for any characteristic, Table 1). BWHS partici-
pants (n = 17,380) differed by race, were younger, more 
likely to have had a mammogram, a breast biopsy, have 
higher BMI, younger age at menopause, comorbidity, to 
be nulliparous and to walk briskly than NHS develop-
ment cohort participants; BWHS participants were less 
likely to use alcohol, cigarettes, or MHT. The number 
of breast cancer diagnoses was similar between cohorts, 
but BWHS participants were slightly more likely to die of 
breast cancer; after standardizing by age the cohorts had 
similar rates of non-BC death. Additional file 1: eTable 1 
demonstrates differences across cohorts in participant 
characteristics by age group (55–74, 75+ years).

Predicting non‑BC death
Additional file 1: eTable 2 includes all 60 variables consid-
ered in predicting non-BC death and the reasons certain 
variables were removed. Best-subsets regression resulted 
in 961 top models; 281 had the highest c-index of 0.789. 
Within this group, the AIC varied by < 0.02%. Based on 
clinical judgment, effect on model performance, and 
ease of self-report, we included the 20 variables (age, 
BMI, alcohol use, cigarette use, function, mobility, walk-
ing pace, age at menopause, and 12 diseases) that made 
it into > 97% of the top 281 models; the other variables 
made it into < 84% of these models. Since mammogra-
phy use in the past two years predicts breast cancer death 
(the competing risk of non-BC death), we included it in 
the model when predicting non-BC death. Using com-
peting risk regression, the model’s c-index was 0.795 
(0.791–0.800) for predicting 10-year non-BC death in 
the development cohort (Table  2), which is higher than 
the c-index (0.778 [0.773–0.782]) of the model when only 
including the 6 mortality risk factors previously selected 
based on expert opinion for our competing risk breast 
cancer prediction model.

Neither censoring follow-up of participants at age 90 
nor using confirmed (only available for stroke and myo-
cardial infarction) rather than self-reported diagnoses 
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Table 1  Participant baseline characteristics in the NHS development and validation cohorts and in BWHS

NHS development 
cohort

NHS validation 
cohorta

BWHS (Crude) BWHS (Age-
standardized)a

N 55,553 27,777 17,380 17,380

Factors in our final model

Age, mean (SD) 70.1 (7.0) 70.2 (7.0) 63.7 (6.7) –

 55–59 years, % 7.1 6.7 36.5 –

 60–64 years, % 21.4 21.5 28.3 –

 65–69 years, % 22.4 22.3 17.1 –

 70–74 years, % 20.9 20.8 9.9 –

 75–79 years, % 18.1 18.8 5.8 –

 80+ years, % 10.1 10.0 2.4 –

Highest self-reported Body Mass Index (BMI) in past 
10 years kg/m2, mean (SD)

28.1 (5.7) 28.1 (5.8) 32.1 (7.0) 31.6 (6.5)

Highest self-reported BMI in past 10 years

 < 20 kg/m2, % 2.7 2.7 0.5 0.5

 20–22.4 kg/m2, % 10.9 11.2 3.0 3.0

 22.5–24.9 kg/m2, % 19.1 19.4 8.5 9.2

 25–29.9 kg/m2, % 36.5 36.3 31.6 33.7

 30–34.9 kg/m2, % 19.5 18.9 28.3 28.0

 35–39.9 kg/m2, % 7.1 7.3 14.5 13.5

 40+ kg/m2, % 4.1 4.1 12.6 10.7

 Unknown, % 0.1 0.2 1.0 1.3

Average alcohol use per day (highest average use in past 10 years)b

 None, % 37.0 37.0 50.4 54.1

 1–4.9 g/day, % 22.5 22.7 26.0 23.9

 5–14.9 g/day, % 17.5 17.1 13.7 12.6

 15+ g/day, % 13.1 13.4 9.9 9.3

 Unknown, % 10.0 9.8 – –

Cigarette use

 Never 44.7 44.8 53.4 50.5

 Current 7.7 7.9 10.1 8.0

 Past 47.4 47.1 36.4 41.5

 Unknown 0.2 0.2 – –

Limited from walking several blocksc

 Not at all 61.8 61.5 – –

 A little or a lot 32.8 33.1 – –

 Unknown, % 5.4 5.4 – –

Limited in bathing or dressing oneselfc

 Not at all 88.2 87.9 – –

 A little or a lot 6.5 6.8 – –

 Unknown, % 5.3 5.3 – –

Usual walking pace outdoors

 Unable to walkc 2.6 2.8 – –

 Slow or average (less than 3 mph) 73.1 72.6 62.0 65.1

 Brisk/very brisk (≥ 3 mph) 19.7 20.0 27.5 23.3

 Unknown, % 4.6 4.6 10.6 11.6

High Blood pressured 60.3 60.3 68.7 75.4

Depression 20.4 20.5 22.2 19.4

Hip fracture 2.1 2.2 0.8 1.1

Parkinson’s disease 0.7 0.6 0.2 0.3

Myocardial infarction 5.5 5.7 4.3 6.5
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Table 1  (continued)

NHS development 
cohort

NHS validation 
cohorta

BWHS (Crude) BWHS (Age-
standardized)a

Congestive heart failure 3.3 3.4 3.2 4.6

Stroke/transient ischemic attack 7.5 7.5 4.2 5.7

Emphysema/Asthma 18.6 18.5 18.3 18.0

Diabetes 12.2 11.7 24.2 28.5

Dementia 1.2 1.2 0.2 0.5

Kidney disease 0.5 0.6 1.9 2.3

Cancer (excluding non-melanomatous skin cancers) 12.3 12.2 5.7 7.4

Age at menopause (years)

 < 45, % 10.8 10.4 19.3 21.2

 45–49, % 23.4 23.9 20.1 19.2

 50–54, % 56.1 56.2 27.4 25.9

 55+, % 8.8 8.5 8.3 10.6

 Hysterectomy, age unknown, %e – – 22.2 21.9

 Unknown, % 1.0 1.0 2.7 1.2

Mammogram in past 2 yearsf

 No 12.1 12.2 14.0 15.2

 Yes 79.4 79.5 86.0 84.8

 Unknown 8.5 8.3 – –

Number of breast biopsies

 0, % 73.2 73.2 67.0 65.7

 1, % 23.5 23.6 21.3 21.3

 2+, % 3.3 3.2 11.7 13.1

Postmenopausal hormone use

 Never, % 22.5 22.9 40.7 37.5

 Current estrogen plus progestin user < 5 years, % 0.4 0.5 0.7 0.2

 Current estrogen plus progestin user 5 + years, % 2.7 2.7 1.1 0.8

 Current estrogen-alone user < 5 years, % 0.9 0.8 1.6 0.7

 Current estrogen-alone user 5 + years, % 9.4 9.1 6.3 5.6

 Past estrogen plus progestin user < 5 years, % 14.9 14.9 12.8 12.5

 Past estrogen plus progestin user 5 + years, % 15.8 16.1 5.6 7.4

 Past estrogen-alone user < 5 years, % 7.1 7.2 12.2 12.2

 Past estrogen-alone user 5 + years, % 13.8 13.8 13.8 18.1

 Unknown, % 12.6 12.2 5.3 4.8

Age at first birth (years) and parityg

 Nulliparous 5.3 5.4 16.0 12.7

 < 25, 1–2 children 14.2 13.9 32.2 35.4

 < 25, 3+ children 35.2 34.9 27.8 28.3

 25–29, 1–2 children 14.8 15.3 11.9 10.8

 25–29, 3+ children 20.1 20.3 2.9 4.0

 30+, 1–2 children 5.8 5.8 7.1 6.3

 30+, 3+ children 2.8 2.8 0.5 0.6

 Unknown 1.8 1.7 1.6 1.9

Number of first-degree relatives with history of breast cancer and age at diagnosish

 None, % 82.1 81.9 80.1 79.8

 1 and age < 50, % 4.3 4.1 3.8 4.2

 1 and age 50+, % 11.6 11.8 14.2 14.0

 2+ and at least one age < 50, % 1.0 1.1 0.6 0.7

 2+ and age 50+, % 1.1 1.1 1.3 1.3
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changed the model’s c-index. Adjusting model c-indices 
for age led to a small decrease in model performance 
(Additional file  1: eTable  3). The model’s c-index was 
the same using multiple imputation or a complete case 
analysis, and the HRs for all predictors were within 8% 
of each other except for kidney disease (17% difference 
in HRs) which was the rarest disease (0.6% prevalence, 
Additional file  1: eTable  4). Therefore, our final model 

included women with complete data. Regardless of 
whether competing risk regression or cause-specific 
PHR was used, the model’s performance was simi-
lar (PHR c-index = 0.796 [0.791–0.800] for predicting 
10-year non-BC death) and risk factor hazard ratios 
(HRs) were within 3% of each other (Additional file 1: 
eTable 5).

Table 1  (continued)

NHS development 
cohort

NHS validation 
cohorta

BWHS (Crude) BWHS (Age-
standardized)a

Outcomes

Breast cancer in 5-year follow-up, % 1.7 1.7 1.7 1.8

Breast cancer in 10-year follow-up, % 3.1 3.2 3.1 3.2

Breast cancer death in 5-year follow-up, % 0.1 0.1 0.2 0.2

Breast cancer death in 10-year follow-up, % 0.3 0.2 0.4 0.6

Non-breast cancer death 5-year follow-up, % 7.7 8.0 4.5 8.1

Non-breast cancer death 10-year follow-up, % 20.1 20.6 11.1 19.7

Not included in model

Race/ethnicity

Non-Hispanic White, % 96.2 96.3 0.0 0.0

Non-Hispanic Black, % 1.8 1.6 99.1 99.9

Hispanic,% 0.9 0.9 0.9 0.1

Asian, Pacific Islander % 0.8 0.9 0.0 0.0

Native American, % 0.2 0.2 0.0 0.0

Education (years)i

 < 12 – – 2.7 4.0

 12 – – 16.4 19.1

 13–15 – – 27.8 26.2

 16 91.7 91.7 19.5 17.1

 17+ 8.4 8.4 33.6 33.5

Unknown 0.0 0.0 0.1 0.1

Predicted mammographic densityj n = 35,073 n = 17,482

Higher than median (≥ 24.7% dense) 50.0 50.1 – –

Lower than median (< 24.7% dense) 50.0 49.9 – –

NHS (Nurses’ Health Study) included participants that completed the 2004 questionnaire. BWHS (Black Women’s Health Study) included participants that completed 
the 2009 questionnaire
a There were no significant differences between the NHS development and validation cohorts, except for limited bathing/dressing (p = 0.04) and diabetes (p = 0.04). 
All comparisons between NHS development cohort and the BWHS age-standardized cohort were statistically significant except for emphysema/asthma, 5- and 
10-year breast cancer incidence, and 5- and 10-year non-breast cancer death incidence. To calculate the age-standardized values for BWHS, we weighted each of six 
5-year age groups, where the weight corresponded to the proportion of that age group in the whole NHS sample, and then summed the weighted age-specific values 
to get the overall adjusted prevalence
b A standard drink is any drink that contains about 14 g of pure alcohol (12 oz. of beer, 5 oz. of wine or 1.5 oz. of liquor)
c BWHS does not ask about participants’ about walking several blocks, limitations in bathing or dressing oneself, or inability to walk
d Health conditions were self-reported
e Participants with hysterectomy and age at menopause unknown in BWHS were placed in the 45–49 years category for all analyses; sensitivity analyses were 
performed showing no significant difference when placed in any other age category
f Participants missing data on mammography use in NHS had completed a short version of the 2004 questionnaire
g Participants who were parous with an unknown number of children were categorized as having 1–2 children
h Relatives with an unknown age at diagnosis were categorized as having been diagnosed at 50 + years of age
i Participants in NHS who had a master’s or doctorate degree were placed in the 17 + years category. All others were placed in the 16 years category, as registered 
nurses, (22.8% of these specifically reported a Bachelor’s degree)
j Predicted mammographic density was defined using a 9-item validated index. Prevalence is reported for those with complete data for the prediction model [18]
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Table 2  Final model for predicting non-breast cancer death in the NHS cohorts and in BWHS

Predicting non-breast cancer death NHS development cohort NHS validation cohort BWHS

Outcome being predicted 10 years P value 10 years P value 10 years P value

HR HR HR

n = 48,102 n = 24,088 n = 15,001

N for that outcome 9376 4790 1592

Factors in our final model

Age (per year increase) 1.11 < 0.001 1.11 < 0.001 1.10 < 0.001

Highest self-reported Body Mass Index (BMI) in past 
10 years: < 20 kg/m2

1.63 < 0.001 1.57 < 0.001 2.71 < 0.001

 20–22.4 kg/m2 1.15 < 0.001 1.10 0.08 1.21 0.25

 22.4–24.9 kg/m2 1 – 1 – 1 –

 25–29.9 kg/m2 0.91 0.003 0.87 < 0.001 0.85 0.09

 30–34.9 kg/m2 0.88 < 0.001 0.80 < 0.001 0.87 0.17

 35–39.9 kg/m2 0.91 0.07 0.93 0.28 0.98 0.87

 40+ kg/m2 1.10 0.10 0.97 0.70 1.28 0.03

Average alcohol use per day (highest average use in past 
10 years): None

1 – 1 – 1 –

 1–4.9 g/day 0.86 < 0.001 0.94 0.13 0.92 0.20

 5–14.9 g/day 0.91 0.004 0.90 0.02 0.97 0.71

 15+ g/day 1.04 0.24 0.96 0.43 1.28 0.004

Cigarette use: Never 1 – 1 – 1 –

 Current 2.46 < 0.001 2.34 < 0.001 2.66 < 0.001

 Past 1.35 < 0.001 1.30 < 0.001 1.39 < 0.001

Limited from walking several blocks:

 Not at all 1 – 1 – – –

 A little/a lot 1.58 < 0.001 1.53 < 0.001 – –

Limited in bathing/dressing oneself:

 Not at all 1 – 1 – – –

 A little or a lot 1.47 < 0.001 1.48 < 0.001 - –

Walking pace: Unable to walk 1.42 < 0.001 1.40 < 0.001 - –

 Slow or average (< 3 mph) 1 – 1 – 1 –

 Brisk/very brisk (≥ 3 mph) 0.69 < 0.001 0.74 < 0.001 0.72 < 0.001

High Blood pressure 1.15 < 0.001 1.21 < 0.001 1.15 0.04

Depression 1.17 < 0.001 1.16 < 0.001 1.10 0.14

Hip fracture 1.31 < 0.001 1.31 < 0.001 1.29 0.23

Parkinson’s disease 2.35 < 0.001 2.32 < 0.001 4.09 < 0.001

Myocardial infarction 1.27 < 0.001 1.16 0.005 1.10 0.32

Congestive heart failure 1.76 < 0.001 1.97 < 0.001 2.12 < 0.001

Stroke/transient ischemic attack 1.19 < 0.001 1.24 < 0.001 1.58 < 0.001

Emphysema/Asthma 1.29 < 0.001 1.27 < 0.001 1.03 0.68

Diabetes 1.36 < 0.001 1.31 < 0.001 1.46 < 0.001

Dementia 3.07 < 0.001 2.88 < 0.001 1.79 0.04

Kidney disease 1.28 0.07 1.28 0.22 2.31 < 0.001

Cancer* 1.45 < 0.001 1.44 < 0.001 2.60 < 0.001

Age at menopause (years), < 45 1.01 0.74 0.95 0.39 1.00 0.96

 45–49 1 – 1 – 1 –

 50–54 0.93 0.004 0.91 0.007 0.91 0.15

 55+ 0.87 0.002 0.86 0.02 0.97 0.72

Mammogram in past 2 years|| No 1 – 1 – 1 –

 Yes 0.75 < 0.001 0.74 < 0.001 0.61 < 0.001
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Internal and external validation
Although most risk factor HRs for predicting non-BC 
death differed significantly between the development 
cohort and the validation cohorts, likely due to large 
cohort sample sizes, directions of the associations were 
similar (Table  2). When the non-BC death model was 
applied to the validation cohorts, c-indices were 0.790 
(0.784–0.796) in the NHS validation cohort and 0.768 
(0.757–0.780) in the BWHS. Figure 1 presents non-BC 
death survival curves in BWHS over time by 10-year 
risk deciles. The c-index for prediction of 10-year non-
BC death in women 55–74 was 0.760 (0.749–0.770) in 
the NHS validation cohort and 0.735 (0.721–0.750) in 
BWHS; among women ≥ 75 the c-indexes were 0.696 

(0.686–0.706) and 0.671 (0.645–0.696) in NHS and 
BWHS, respectively (Additional file 1: eTable 6).

Figure  2 demonstrates the CIF for 10-year non-
BC death in each cohort, and Table  3 demonstrates 
how the expected-to-observed ratio of predicted 
risk approached 1 for each risk quintile for each out-
come; except for women in the highest risk quintile 
for 10-year non-BC death in BWHS, where the model 
underestimated survival; results were similar when we 
examined calibration by age.

We then applied regression coefficients from the devel-
opment cohort to the validation cohorts to predict 5-year 
breast cancer risk. We included all risk factors for non-
BC death and breast cancer. That model’s c-index was 
0.603 (0.575–0.632) in the NHS validation cohort and 

Fig. 1  Non-BC death cumulative incidence function (CIF) curves in the BWHS over time by 10-year risk deciles

Table 2  (continued)

* Significance was defined as a p-value of <0.05

NHS = Nurses’ Health Study, BWHS = Black Women’s Health Study

Predicting non-breast cancer death NHS development cohort NHS validation cohort BWHS

Outcome being predicted 10 years P value 10 years P value 10 years P value

HR HR HR

n = 48,102 n = 24,088 n = 15,001

C-index (95% CI) 0.795 (0.791–0.800) 0.790 (0.784–0.796) 0.780 (0.768–0.791)

C-index (95% CI) when using risk factor regression coef-
ficients from the NHS development cohort in the NHS 
and BWHS validation cohorts

– 0.790 (0.784–0.796) 0.768 (0.757–0.780)
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0.556 (0.517–0.595) in the BWHS. We then removed fac-
tors that predicted mortality alone (comorbidities, func-
tion, and cigarette use); the model’s c-statistic improved 
to 0.611 (0.582–0.640) in the NHS validation cohort and 
to 0.566 (0.528–0.604) in BWHS. We then examined 
model performance considering BMI and alcohol use 
as continuous rather than categorical variables; model 
performance improved when using continuous BMI. 

Finally, we added factors considered in our previous NHS 
model (months breastfeeding, having a grandmother 
with breast cancer, and age at menarche), but model 
performance did not improve. The c-index of our final 
breast cancer prediction model was 0.612 (0.583–0.641) 
in the NHS validation cohort and 0.573 (0.536–0.611) 
in BWHS, as shown in Table  4. Among women aged 
55–74, the c-indexes were 0.618 (0.585–0.650) and 0.566 

Fig. 2  CIFs for 10-year non-BC and breast cancer death and 5-year breast cancer from each cohort. Our competing risk model for predicting 
non-BC death yielded two CIF functions, one for the outcome of interest of non-BC death and one for breast cancer death
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Table 4  Final model for predicting 5-year breast cancer in the NHS cohorts and BWHS cohort

NHS = Nurses’ Health Study, BWHS = Black Women’s Health Study

Predicting 5-year risk of breast cancer NHS development cohort NHS validation cohort BWHS

Outcome being predicted HR P value HR P value HR P value

n = 37,628 n = 18,980 n = 13,247

N for that outcome 712 365 223

Factors in our final model

Age (per year increase) 1.01 0.10 1.01 0.41 1.02 0.15

Highest self-reported Body Mass Index (BMI) in past 
10 years: (per kg/m2 increase)

1.03 < 0.001 1.02 0.008 1.02 0.01

Average alcohol use per day (highest average use in past 
10 years): None

1 – 1 – 1 –

 1–4.9 g/day 1.12 0.27 0.99 0.95 0.79 0.17

 5–14.9 g/day 1.20 0.09 0.99 0.97 0.95 0.81

 15+ g/day 1.29 0.02 1.11 0.52 1.28 0.23

Age at menopause (years), < 45 0.91 0.57 0.64 0.07 1.08 0.74

 45–49 1 – 1 – 1 –

 50–54 1.21 0.04 1.18 0.20 1.15 0.44

 55+ 1.32 0.05 1.13 0.53 1.08 0.78

Mammogram in past 2 years | No 1 – 1 – 1 –

 Yes 0.91 0.46 0.87 0.40 0.68 0.03

Number of breast biopsies, None 1 – 1 – 1 –

 1 1.38  < 0.001 1.51  < 0.001 1.28 0.12

 2+ 1.31 0.16 1.64 0.04 1.14 0.53

Age at first birth (years) and parity, Nulliparous 1.25 0.23 0.98 0.95 1.10 0.66

 < 25, 1–2 children 1 – 1 – 1 –

 < 25, 3 + children 1.06 0.62 1.16 0.40 1.02 0.93

 25–29, 1–2 children 1.07 0.63 1.12 0.58 1.37 0.15

 25–29, 3 + children 1.04 0.76 1.08 0.68 1.60 0.17

 30+, 1–2 children 1.37 0.07 2.02 0.002 1.33 0.27

 30+, 3 + children 1.06 0.82 0.61 0.31 2.92 0.07

First-degree relatives with history of breast cancer and age 
at diagnosis, None

1 – 1 – 1 –

 1 and age < 50 1.43 0.03 1.30 0.28 1.21 0.56

 1 and age 50+ 1.30 0.02 1.31 0.08 1.30 0.14

 2+ and at least one age < 50 2.19 0.003 3.27 < 0.001 1.60 0.51

 2+ and age 50+ 2.43 < 0.001 1.53 0.31 0.39 0.35

Postmenopausal hormone use, Never 1 – 1 – 1 –

 Current estrogen + progestin user < 5 years 2.28 0.07 1.84 0.38 2.44 0.13

 Current estrogen + progestin user 5+ years 2.60 < 0.001 2.87 < 0.001 2.31 0.07

 Current estrogen-alone user < 5 years 1.60 0.15 1.42 0.50 1.88 0.14

 Current estrogen-alone user 5+ years 1.36 0.02 1.33 0.13 0.98 0.95

 Past estrogen + progestin user < 5 years 0.91 0.47 0.82 0.28 0.98 0.91

 Past estrogen + progestin user 5+ years 1.17 0.17 1.18 0.30 1.37 0.25

 Past estrogen-alone user < 5 years 1.01 0.93 0.78 0.31 1.04 0.84

 Past estrogen-alone user 5+ years 0.77 0.06 1.08 0.64 0.70 0.15

C-index (95% CI) 0.610 (0.589–0.631) 0.639 (0.611–0.667) 0.617 (0.582–0.652)

C-index (95% CI) when using risk factor regression coef-
ficients from the NHS development cohort in the NHS and 
BWHS validation cohorts

– 0.612 (0.583–0.641) 0.573 (0.536–0.611)
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Table 5  Risk estimates for 5-year breast cancer and 10-year non-BC death, for example, women aged 75

a Guidelines: The American Cancer Society and American College of Obstetrics and Gynecology recommend shared decision making around mammography 
screening for women aged 75 and older and to stop screening when life expectancy is < 10 years. The United States Preventive Services Task Force states the evidence 
is insufficient to recommend mammography screening to women ≥ 75 but encourages clinicians to be prepared to discuss this service if patients ask [7, 8, 11]
b Prior studies have estimated individuals with > 50% 10-year mortality risk to have < 10-year life expectancy since life expectancy is the median survival of a 
population; therefore, screening is not recommended for these women [38, 39]

Example cases Absolute 
Breast cancer 
risk

Absolute Breast 
cancer death 
risk

Absolute non-
Breast cancer 
death risk

Guidelines recommenda,b

Case 1: A 75-year-old woman with BMI = 28, non-smoker, 25 
alcoholic drinks per week, average walking pace, no func-
tional limitations, has hypertension, has had a mammogram 
in the past 2 years, has 1 first-degree relative with breast can-
cer < 50, had 1 breast biopsy, past user of estrogen + proges-
terone > 5 years, age 55 at menopause and had 2 children, 
first birth at 30

3.1% 5-year 0.38% 10-year 11.7% 10-year Shared decision making

Case 2: A 75-year-old woman with BMI = 23, past smoker, 
< 2 alcoholic drinks per week, slow walking pace, needs help 
getting dressed, has a history of cancer, has Parkinson’s, has 
depression, history of MI, has had a mammogram in the 
past 2 years, has no family history of breast cancer, age 50 at 
menopause and had 2 children, first birth at 28

1.7% 5-year 0.27% 10-year 69.8% 10-year Consider stopping screening

Case 3: A 75-year-old woman with BMI = 22, non-smoker, 
non-drinker, average walking pace, no functional limitations, 
has had a mammogram in the past 2 years, age 48 at meno-
pause, had 3 children, first birth at 22

1.3% 5-year 0.15% 10-year 9.8% 10-year Shared decision making

Case 4: A 75-year-old woman with BMI = 35, former smoker, 
< 2 alcoholic drinks per week, slow walking pace, limited 
walking several blocks, has hypertension, diabetes, COPD, his-
tory of myocardial infarction, has not had a mammogram in 
the past 2 years, has 1 first-degree relative with breast cancer 
< 50, had 2 breast biopsies, past user of estrogen + progester-
one > 5 years, age 55 at menopause and had no children

4.3% 5-year 0.44% 10-year 57.8% 10-year Consider stopping screening

Table 6  Women at low or high risk of breast cancer and non-BC death in each cohort

NHS = Nurses’ Health Study, BWHS = Black Women’s Health Study
a Guidelines: The American Cancer Society recommends biennial screening for women ≥ 55 at average risk and stopping screening when life expectancy is < 10 years. 
The American College of Physicians recommends not screening any women ≥ 75 at low or average breast cancer risk or any women with < 10 year life expectancy. The 
United States Preventive Services Task Force recommends biennial screening for women 50–74 years and states the evidence is insufficient to recommend screening 
to women ≥ 75 but recommends consideration of women’s breast cancer risk and health [7, 8, 11]
b Based on guidelines, we defined breast cancer risk as high when 5-year risk ≥ 3%; otherwise, we defined breast cancer risk as low. We defined mortality risk as high 
when 10-year mortality risk was ≥ 50%; otherwise, we defined mortality risk as low [36–39]

5-year Breast cancer 
risk (threshold ≥ 3%)
a,b

10-year Non-breast cancer 
death risk (threshold ≥ 50%)
a,b

NHS development cohort NHS validation cohort BWHS

55–64 years High Low 8.1% (939) 7.9% (454) 7.0% (600)

Low Low 91.8% (10,586) 92.1% (5317) 93.0% (8031)

Low High 0.1% (9) 0.1% (3) 0.1% (5)

High High 0.0% (0) 0.0% (0) 0.0% (0)

65–74 years High Low 8.3% (1408) 8.2% (694) 5.9% (211)

Low Low 90.0% (15,262) 90.1% (7651) 91.6% (3278)

Low High 1.5% (257) 1.5% (129) 2.4% (85)

High High 0.2% (27) 0.2% (16) 0.2% (6)

75+ years High Low 6.6% (603) 6.1% (287) 5.6% (58)

Low Low 71.7% (6552) 72.7% (3426) 62.0% (639)

Low High 19.8% (1812) 19.5% (920) 30.5% (314)

High High 1.9% (173) 1.8% (83) 1.9% (20)
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(0.526–0.606) in NHS and BWHS, respectively. Among 
women ≥ 75, the c-indexes were 0.596 (0.534–0.657) and 
0.614 (0.506–0.722) in NHS and BWHS, respectively, 
in Additional file  1: eTable  9; however, there were only 
26 cases among BWHS women ≥ 75. Figure  2 presents 
5-year CIFs for breast cancer in each validation cohort. 
Table 2 and Additional file 1: eTable 7 provide data on the 
model’s excellent calibration in predicting breast cancer 
in the validation cohorts. Additional file 1: eTable 8 dem-
onstrates that model performance and HRs are similar 
using PHR.

Examples
Table  5 presents risk estimates for four hypothetical 
women aged 75. Model risk estimates may help iden-
tify women at high risk of non-BC death and may pro-
vide older women with realistic estimates of their breast 
cancer risk. Table  6 demonstrates that across cohorts 
most older women are at low risk of breast cancer and of 
10-year non-BC death until age 75 when risk of non-BC 
death is higher.

Discussion
We developed a novel model to simultaneously predict 
breast cancer incidence and non-BC death to inform 
older women’s breast cancer screening decisions. Our 
model performed well in predicting non-BC death across 
cohorts. The model slightly over-predicted death in the 
BWHS after 10 years follow-up in the highest risk group, 
possibly because data were not available in BWHS on 
participant mobility and function and these values were 
highly significant for non-BC death in the NHS cohorts. 
Our rigorously developed non-BC death prediction 
model outperformed a model that only included risk fac-
tors for death that were selected based on expert opinion. 
In addition, our model for predicting 5-year breast can-
cer risk demonstrated excellent calibration but only mod-
est discrimination in predicting breast cancer, similar to 
the other breast cancer prediction models. Specifically, 
the Gail and Tyrer-Cuzick breast cancer prediction mod-
els have been shown to have c-statistics of < 0.60 in NHS 
participants ≥ 70 years [20, 46] and breast cancer predic-
tion models developed in case–control studies of breast 
cancer in Black women have been found to have c-statis-
tics of 0.56 [47] and 0.58 [30] when validated in cohorts 
of Black women. Our model yielded a similar c-statistic 
(0.57) in the BWHS.

While mortality indices exist for estimating adults’ 
10-year overall mortality risk [37, 48], none specifically 
predict non-BC death. Although breast cancer death is 
uncommon and dependent on breast cancer tumor char-
acteristics at diagnosis and treatments received, inclu-
sion of breast cancer death in estimates of overall death 

when deciding on breast cancer screening may bias deci-
sion making. The two most widely used 10-year mortality 
indices (the Lee and Schonberg indices) were developed 
from cross-sectional U.S. population surveys and only 
considered a few diseases [37, 48]. NHS is a longitudi-
nal study which allowed our model to consider numer-
ous diseases and functional measures. While our model 
includes some risk factors included in these mortality 
risk models (e.g., age, BMI, smoking history, function, 
heart failure, emphysema, cancer, and diabetes), our 
model also considers gait speed, depression, dementia, 
hypertension, Parkinson’s disease, hip fracture, stroke, 
and kidney disease. Gait speed is known to be an espe-
cially strong predictor of mortality [49]. The inclusion of 
dementia may be particularly useful since screening deci-
sions for these women may be challenging for caregivers 
and clinicians [50].

We used competing risk regression to obtain the esti-
mated HRs and CIFs because HRs from competing risk 
models are directly associated with CIFs and take into 
account competing risks, while HRs from cause-specific 
PHR models examine a risk factor’s effect in a hypotheti-
cal world with no competing risks. (Competing risks are 
censored.) Putter et al. have elegantly shown that the HRs 
from competing risk models are directly associated to 
those from cause-specific proportional hazard models via 
the negative logarithm of the reduction factor from the 
cause-specific model [51]. In our model, hazard ratios 
were similar regardless of the regression method used, 
likely because breast cancer death was an uncommon 
competing risk to non-BC death and non-BC death was 
an uncommon competing risk to breast cancer incidence. 
However, our work highlights that the relation between 
risk factors for breast cancer and non-BC death is com-
plex. Some model risk factors had congruous effects on 
breast cancer risk and non-BC death, while others had 
opposing effects. For example, older age was associated 
with increased risk of both outcomes. Higher BMI was 
associated with increased breast cancer risk but had a 
more nuanced effect on non-BC death. Low BMI which 
may be associated with frailty was highly associated with 
non-BC death, while BMI > 40 was associated with only 
a slight increased risk of 10-year non-BC death likely 
because many of the mediators of high BMI on mortal-
ity were included in the model [52]. Greater alcohol con-
sumption was associated with increased breast cancer 
risk, while drinking < 15 g of alcohol per day (<1 drink) 
was associated with lower non-BC death risk.

In addition, while the hazard ratios associated with 
many of the risk factors for non-BC death differed signifi-
cantly between the predominantly white women in NHS 
and the Black women in BWHS, qualitative trends were 
similar. When predicting breast cancer, only the HRs for 
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increasing BMI and prior mammography differed sig-
nificantly between the cohorts; however, increasing BMI 
was associated with increasing breast cancer risk in both 
cohorts and having a mammogram in the past 2  years 
was associated with women being less likely to be diag-
nosed with breast cancer in 5 years. Simulation modelers 
have also found that it is necessary to consider women’s 
prior use of mammography in estimating breast can-
cer incidence [53]. While we initially planned to include 
all the non-BC death risk factors in our competing risk 
breast cancer prediction model, we found that doing so 
led to our model performing less well likely because the 
model was overfit. Instead, the model performed better 
in validation when only including breast cancer risk fac-
tors; importantly, some breast cancer risk factors (e.g., 
age, alcohol use, age at menopause) also predicted non-
BC death.

While our rigorously developed model predicts breast 
cancer and non-breast cancer death, it also has limi-
tations. Since actual mammographic density was not 
available for most participants, we considered predicted 
mammographic density. However, we did not find an 
association with breast cancer risk likely because our 
model already included several factors associated with 
breast density (e.g., BMI) and because the prevalence of 
high mammographic density decreases with age as does 
its effect on breast cancer risk [54–56]. Furthermore, 
inclusion of polygenic risk scores (PRS) in breast cancer 
prediction models has been shown to increase model dis-
crimination slightly; however, the association of PRS with 
breast cancer risk declines with age and few women have 
obtained this information [57–59]. If PRS data become 
more available in practice, we would test adding PRS to 
the model in the future. In addition, model performance 
needs to be tested in older Asian and Hispanic women 
before being used in these populations.

Conclusions
We formally modeled prediction of breast cancer and 
non-BC death in a competing risk model we are devel-
oping for clinical use. As demonstrated with the exam-
ples in Table  4, model risk estimates may be helpful in 
identifying women at high risk of non-BC death who are 
unlikely to benefit from screening and in providing older 
women with realistic estimates of their breast cancer 
risk. Before making our model available online, we plan 
to formally compare performance of our model to exist-
ing breast cancer prediction models such as the BCRAT 
and Tyrer-Cuzick [60] and to further examine its perfor-
mance in other diverse cohorts such as Women’s Health 
Initiative and Multiethnic Cohort [61, 62].
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