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ABSTRACT We sequenced 109 type 2 Sabin-like poliovirus isolates that had been col-
lected from acute flaccid paralysis patients or healthy children in Nigeria. Understanding
the genetic makeup of these viruses may contribute to polio eradication efforts.

he Global Polio Eradication Program has reduced the number of annually diag-

nosed wild polio cases worldwide by >99.9% (1), from an estimated 350,000 cases
in 1988 to 5 wild poliovirus cases in Afghanistan and Pakistan in 2021. To support polio
eradication efforts, we sequenced and analyzed 109 type 2 Sabin-like poliovirus iso-
lates that had been collected from surveillance in northern Nigerian from 2016 to
2018. These sequences were divided into two groups, i.e., samples collected from rou-
tine acute flaccid paralysis (AFP) surveillance (AFP group, n = 84) and samples from a
stool survey of healthy children (HC) (HC group, n = 25). AFP surveillance is the primary
case-based syndromic surveillance system for detecting poliovirus worldwide (2, 3).
Targeted HC stool surveys collect and test stool samples from high-risk HC when there
is a high degree of suspicion of circulating poliovirus (4).

Polioviruses, the causative agent of polio, belong to the Enterovirus C species, in the
family Picornaviridae. Viruses were isolated using the recommended WHO isolation
protocol described previously (5-7). A stool suspension was inoculated in cell culture
with two cell lines that contain the poliovirus receptor. Cytopathic effect (CPE)-positive
cell cultures were screened by real-time PCR to determine the poliovirus serotype.
Whole-genome sequencing was performed on all isolates. The Qiagen QIAamp viral
RNA Mini kit was used to extract RNA. After RNA was extracted from the poliovirus tis-
sue culture samples, nonviral DNA was digested using the Ambion DNA-free DNA re-
moval kit. First-strand cDNA was synthesized using SuperScript Ill reverse transcriptase
(Invitrogen) and primers containing 8-nucleotide random sequences with an additional
20-nucleotide PCR tag (8). Second-strand synthesis was completed using the Klenow
fragment of DNA polymerase |, primed with the same tagged random primers. The result-
ing double-stranded cDNA was amplified using Applied Biosystems AmpliTaq Gold poly-
merase, primed with the same 20-nucleotide PCR tag. The random amplicon was cleaned
using 1.8x AMPure XP solid-phase reversible immobilization (SPRI) bead cleanup. lllumina
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TABLE 1 Recombination and reversion sites

Microbiology Resource Announcements

No. (%)

Reversion at 5’

Reversion at VP1

Reversion at 5" UTR position

Group Recombination? UTR position 481° position 143¢ 481 and VP1 position 143 Total
AFP 2(2) 30 (36) 23 (27) 17 (20) 84
HC 0(0) 9 (36) 1(4) 25

a Intertypic recombination between Sabin strains.
b Reversion site in 5" UTR.

¢ Reversion site in capsid VP1.

dTotal number of nearly complete genomes.

libraries were generated using the Nextera XT library preparation kit and sequenced on an
lllumina MiSeq instrument using a 500-cycle paired-end run with multiplexing. The
read length was 250 bp. Raw read counts ranged from 100,732 to 870,130 reads for
all samples. Average read coverages across the assembled genomes ranged from
107.24x to 2,124.79x.
Next-generation sequencing data were analyzed using VPipe (9). The preprocessing
steps for the reads included trimming, host removal, and read deduplication. Human
reads were removed using Bowtie 2 v2.3.3.1 (10). Primer trimming, adapter trimming,
and sequence quality score filtering were performed using Cutadapt v1.8.3 (11). The
Python script Dedup.py was used to deduplicate reads (8), which were assembled de
novo using SPAdes v3.7.0 (12) with default k-mer settings. In addition, reference map-
ping using Geneious v2020.0.5 was performed using the clean reads, the contigs from
SPAdes, and the Sabin reference genome (GenBank accession number AY184220.1).

Recombination and reversion sites were analyzed using Geneious.

We compared recombination and reversion sites within samples in the two groups.
Recombination was observed in 2 isolates from the AFP group but not in isolates from
the HC group, and some reversions were observed in both groups (Table 1). Only inter-
typic recombination between Sabin poliovirus strains (e.g., Sabin 2/Sabin 1 or Sabin 2/
Sabin 3 recombinants) was observed. Reversion at nucleotide position 481 in the 5’
untranslated region (UTR) (13) was observed in both groups; 10 of 25 HC sequences
had this position reverted from A to G, whereas 47 of 84 AFP sequences had this rever-
sion (Table 1). These observations are comparable to those of an early type 2 Sabin-like
poliovirus study (14).
Data availability. The sequencing data have been deposited in the NCBI SRA under
BioProject accession number PRINA779084 and SRA accession numbers SRR16902533
and SRR16902641 and in GenBank under accession numbers ON596331 to ON596439.
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