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ABSTRACT Eight Faecalibacterium sp. strains were isolated from feces of healthy human
volunteers. Here, we describe their genome sequences. The genome sizes ranged from 2.78
Mbp to 3.23 Mbp, with an average GC content of 56.6% and encoding 2,795 protein-coding
genes on average.

Faecalibacterium sp. are commensal microorganisms found ubiquitously in the human
gastrointestinal tract (GIT). These microbes are important species contributing to human

health through the production of butyrate, which is thought to have health-promoting
properties. A reduction in Faecalibacterium in patients with different forms of inflammatory
bowel disease has led researchers to believe these microorganisms confer health benefits (1–7).

This study isolated and sequenced eight strains of Faecalibacterium from human fecal
samples collected in Palmerston North, New Zealand. Donors were recruited according to
Massey University Ethics Approval (SOA 19/03). Volunteers were deemed healthy if they
had a body mass index between 18.5 and 30; had no history of antibiotics, laxatives, or GIT
infections or disorders 3 months prior to sample collection; and had moderate fiber con-
sumption (>15 g/day). Samples were collected and processed as described by Fitzgerald
et al. (8) using yeast casitone fatty acid medium supplied with glucose (YCFAG). Strain
HTF-F (9) was also sequenced for comparison as a strain of interest due to its unique extrap-
olymeric matrix (2).

To isolate DNA, bacteria were cultured in YCFAG at 37°C overnight in an anaerobic work-
station (75% N2, 15% CO2, and 5% H2; DonWhitley Scientific, UK). Samples were concentrated
via centrifugation at 8,000� g and processed using the Nucleospin soil genomic DNA purifi-
cation kit (Macherey-Nagel) as per the manufacturer’s protocol. Library preparation and
sequencing, including quality control (QC), was handled by Massey Genome Service (MGS;
Massey University, New Zealand), using the Illumina Nextera XT kit on the Illumina MiSeq 2�
300-bp paired-end (PE) v3 platform. Each sequence was trimmed to their longest contiguous
segment within a quality cutoff (0.01), using the dynamictrim application from the
SolexaQA11 software (v3.1.7.2; http://solexaqa.sourceforge.net/). Quality checking was
conducted using standard parameters with FastQC (v0.11.9) (10).

For long-read sequencing, bacteria were grown again as described above, and DNA was
extracted using Qiagen Genomic-tip 100/G columns per the manufacturer’s protocol.
Mutanolysin (100 U; Sigma-Aldrich) and MetaPolyzyme (10 mL/sample; Sigma-Aldrich)
were added to enhance bacterial lysis. Samples were sent to MGS for sample quality assessment
and to Novogene (Singapore) for PacBio sequencing.

PacBio sequencing, including library preparation and QC, were performed by Novogene.
The PacBio SMRTbell library was created by shearing template DNA, and the hairpin-legated
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dimers were purified by magnetic beads with 10-kilonucleotide size selection conditions.
The library was checked with Qubit and Bioanalyzer for quantification and size distribution,
respectively. Quantified libraries were pooled and sequenced on PacBio Sequel II/IIe system.
The PacBio subreads and N50 values are listed in Table 1.

Raw PacBio reads were filtered via Filtlong (https://github.com/rrwick/Filtlong) using
a minimum subread length of 1,000 bases and a 95% cutoff. High-coverage long reads
were assembled using Trycycler v0.5.3 (11), Miniasm v0.3-r179 (12), and Flye v2.9-b1768 (13)
and polished with Polypolish v0.5.0 (14). Strains with low-coverage long-read data were
combined with their Illumina data and hybrid assembled using Unicycler (v0.5) (12). Assembly
integrity was assessed (QUAST and CheckM) on the online platform Kbase (https://kbase.us).
Default parameters for all software were used. Genome annotation was performed using the
NCBI Prokaryotic Genome Annotation Pipeline (PGAP) (Table 1) (15–17). Trycycler and Unicycler
confirmed all genomes to be circular.

Data availability. All the annotated genomes and the respective long and short raw
reads have been deposited in GenBank under BioProject PRJNA819544. Assembly, BioSample,
and SRA details are specified in Table 1.
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