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ABSTRACT Antimicrobial susceptibility testing (AST) in RPMI 1640, a more physiologically
relevant culture medium, revealed that a substantial proportion of carbapenem-resistant
Acinetobacter baumannii isolates were susceptible to azithromycin, a macrolide antibiotic
not currently considered effective against A. baumannii. Experiments using Galleria mellonella
validated these in vitro data. Our finding that RPMI 1640’s predictive accuracy for in vivo
outcomes is superior to that of Mueller-Hinton II broth also supports the use of more physi-
ologically relevant AST culturing conditions.
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Increasing resistance to important antibiotics like carbapenems and last-resort drugs such
as colistin is especially of concern and has led the U.S. Centers for Disease Control to list

carbapenem-resistant Acinetobacter baumannii as an urgent threat in its 2019 Antibiotic
Resistance Threats Report (1).

Recent in vitro studies using traditional culturing methods have suggested that colistin
(COL) resistance imparts A. baumanniiwith azithromycin (AZM) susceptibility, despite macro-
lides being considered largely ineffective against the species (2, 3). AZM is the second most
frequently prescribed antibiotic in the United States, has a broad spectrum of activity, and
has favorable safety characteristics (4, 5). Macrolides are traditionally thought active against
atypical pneumonia agents (6) but not against nonfermenting Gram-negative pathogens
such as A. baumannii. Therefore, no clinical laboratory standards exist for evaluating AZM activity
against A. baumannii (7).

Our group previously characterized rifabutin’s iron-dependent efficacy against A. baumannii
using more physiologically relevant RPMI 1640 mammalian culture medium, which does
contain a physiologically normal concentration of bicarbonate, to perform antimicrobial
susceptibility testing (AST) (8, 9). AZM’s mechanism of entry into bacterial cells depends
on transmembrane proton motive force, powered by bicarbonate, which is present in
the host environment and RPMI 1640 but absent from Mueller-Hinton II (MHII) medium
(10, 11). We therefore evaluated AZM activity against carbapenem-resistant A. baumannii
clinical isolates in RPMI 1640 versus MHII media.

MIC distributions. It was not previously known how broadly active AZM was against
carbapenem-resistant A. baumannii isolates, as no single study has tested more than 6
unique clinical isolates (2, 12, 13). Therefore, we determined the AZM MICs against a larger
panel of 77 carbapenem-resistant A. baumannii clinical isolates, using the broth microdilu-
tion method per the Clinical and Laboratory Standards Institute (CLSI) in either MHII or RPMI
1640 as the culture medium (7–9, 14).

Because the AZM susceptibility breakpoints have not been determined by CLSI for
A. baumannii, we used the AZM breakpoints established for H. influenzae, a Gram-negative
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coccobacillus (7). There was a significant difference in the distribution of the AZMMICs in MHII
versus RPMI media (P, 1.24E–10; Mann-Whitney) (Fig. 1A). Of the 77 total isolates, 34 (47% of
the 72 capable of growing in RPMI) were considered AZM susceptible (MIC, #4 mg/L) in
RPMI, whereas only 10 (13% of 77) were susceptible in MHII (Fig. 1A). Select isolates’ inability
to grow in RPMI is unsurprising, given that previous reports have found that iron-limited envi-
ronments, such as that in RPMI, can interfere with A. baumannii’s ability to grow (15).

Of these 77 isolates, 50 were already sequenced by the CDC-FDA AR Isolate Bank for
known resistance genes. Within this 50-isolate subpopulation, 24 (48%) harbored the known
macrolide resistance genes mphE and msrE, and all of these isolates contained both mphE
andmsrE. Per the Comprehensive Antibiotic Resistance Database,mphE andmsrE are preva-
lent in 38.12% and 38.44%, respectively, of sequenced A. baumannii whole genomes
(n = 5,422) submitted to NCBI Genomes and IslandViewer (16). Thus, our panel is a
fair representation of the greater population of A. baumannii clinical isolates and was not bi-
ased. Of these 24 isolates harboring a macrolide resistance gene, none (0% of the 23 capable
of growing in RPMI) were susceptible to AZM in either MHII or RPMI media (Fig. 1B). Of the
remaining 26 isolates that did not harbor known macrolide resistance genes, 5 and 22 (19%
of 26 and 100% of the 22 isolates capable of growing in RPMI) were susceptible to AZM in

FIG 1 MIC distributions and relationship between colistin (COL) resistance and azithromycin (AZM)
susceptibility. Dashed lines delineate the CLSI susceptible breakpoints for each respective drug. (A) MICs for
both COL (left) and AZM (right) were determined against 77 carbapenem-resistant A. baumannii (CRAB)
clinical isolates using either MHII or RPMI 1640 media. The MHII and RPMI data points lie to the left or right,
respectively, of their assigned x axis tick mark. (B) Per the CDC-FDA AR Isolate Bank, the sequenced strains
tested here harbored either both the macrolide resistance genes mphE and msrE or neither. The panel
labeled “Harbors macR gene” includes only strains that harbor both mphE and msrE (n = 50 carbapenem-
resistant clinical isolates for MHII; n = 45 carbapenem-resistant clinical isolates for RPMI). (C) MICs performed
in traditional MHII medium (n = 81 clinical isolates; 77 carbapenem-resistant and 4 carbapenem-
susceptible isolates).
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FIG 2 In vivo AZM efficacy. (A to C, H to J) Galleria mellonella larvae were challenged with various bacterial inocula
to determine strain-specific LD100 values. (D to F, K to M) To determine AZM efficacy, Galleria mellonella larvae were

(Continued on next page)
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MHII and RPMI media, respectively (Fig. 1B). While previous reports suggested that COL re-
sistance in MHII medium might correlate with A. baumannii susceptibility to AZM in MHII,
this was not true among the strains we tested (Fig. 1C) (2, 3). We instead found that COL re-
sistance was more associated with AZM resistance in the limited number of COL-resistant
isolates included here (Fig. 1C).

In vivo AZM efficacy. To determine whether MIC testing in MHII or RPMI media was
more predictive of in vivo drug efficacy, we selected 6 clinical isolates at random to be used
in a Galleria mellonella infection model: 3 isolates resistant to AZM in both MHII and RPMI
media and 3 isolates resistant to AZM in MHII medium but susceptible to AZM in RPMI me-
dium (17–21). Larvae weighing 210 to 270 mg were disinfected with 70% ethanol and infected
subcutaneously using a syringe pump with phosphate-buffered saline (PBS) as a control or
10 mL A. baumannii suspension to determine the respective 100% lethal dose (LD100) values.
In subsequent experiments, larvae were infected with the previously determined LD100 CFU of
each strain and treated with 10mL PBS or 5, 15, 50, 150, or 450 mg/kg AZM 1 h postinfection.
No infection control larvae received 2 doses of 10 mL PBS. For all experiments, larvae
were incubated in 100-mm petri dishes at 37°C, and survival was monitored up to day 4
postinfection.

A. baumannii 45, 305, and 101 were resistant to AZM in MHII medium (32, 64, and
>64 mg/L, respectively) but appeared susceptible in RPMI medium (0.25, 1, and 1 mg/L,
respectively). In contrast, A. baumannii 310, 35, and 286 were resistant in both MHII medium
(>64 mg/L) and RPMI medium (32, 64, and 64 mg/L, respectively) (Fig. 2). If MHII medium
were more predictive of in vivo outcomes, then we would expect no strain to respond to
treatment with AZM; however, should RPMI be more predictive, then we would expect the
RPMI-susceptible A. baumannii isolates but not the RPMI-resistant ones to respond to treat-
ment. AZM treatment significantly improved the survival of the Galleria mellonella larvae that
were infected with A. baumannii RPMI-susceptible isolates, but not the RPMI-resistant ones,
compared to the PBS control group (log-rank test: A. baumannii 45, 50 mg/kg, P = 0.004;
150 mg/kg, P = 0.003; 450 mg/kg, P , 0.0001; A. baumannii 305, 150 mg/kg, P = 0.0285;
450 mg/kg, P = 0.0059; A. baumannii 101, 50 mg/kg, P = 0.0285; 150 mg/kg, P = 0.0285;
450 mg/kg, P = 0.0022) (Fig. 2D to F). Larvae challenged with A. baumannii 310, 35, or 286
were not rescued in a statistically significant manner at any AZM dose tested (Fig. 2K to M).
Importantly, MIC testing performed in RPMI medium, but not MHII medium, accurately pre-
dicted these in vivo survival outcomes (Fig. 2).

To evaluate the bacterial clearance, hemolymph from each larva was collected at 0 h, 1 h,
and 4 h postinfection into its own well of a 96-well plate. The CFU from hemolymph were
determined by plating serial dilutions on CHROMagar Orientation medium and incubating
them at 37°C overnight. The CFU burden in Galleria mellonella larvae challenged with A. bau-
mannii 45 (susceptible to AZM in RPMI medium) was significantly lower in groups treated
with AZM at 50 mg/kg or higher than in those treated with PBS (450, 150, and 50 mg/kg,
P = 0.0022; Mann-Whitney) (Fig. 2G). In contrast, the CFU burden in larvae infected with A. bau-
mannii 310 (resistant to AZM in RPMI medium) and treated with AZM at any tested dose
was not significantly lower than that in the PBS-treated control group (Fig. 2N). These data
are consistent with the survival results.

FIG 2 Legend (Continued)
infected with lethal inoculum using A. baumannii strains 45 (1.90E6 to 2.08E6 CFU/larva), 305 (3.33E6 CFU/larva), 101
(3.90E6 CFU/larva), 310 (4.05E6 to 6.15E6 CFU/larva), 35 (2.95E6 CFU/larva), or 286 (2.20E6 CFU/larva) before being
treated with PBS or AZM. No infection control received 2 doses of PBS. Statistical comparisons were made using the
log-rank (Mantel-Cox) test to compare survival between PBS-treated and each AZM-treated group; *, P # 0.05; **,
P # 0.01; ***, P # 0.001; ****, P # 0.0001. N values in parentheses are in order of A. baumannii strains 45, 305, and
101 (top) or A. baumannii strains 310, 35, and 286 (bottom) and are nonuniform across groups because multiple
experiments testing different dosages are represented in the figure. (G, N) Survival experiments were performed as
described, and hemolymph was collected and plated at 0 h postinfection (PI) before treatment (t0), 1 h PI before
treatment (t1), and 4 h PI after treatment (t4). Tx, treatment. Statistical comparisons were made using the Mann-
Whitney test to compare the CFU burden between the PBS-treated group and each AZM-treated group at 4 h PI.
The CFU limit of detection (1E1 CFU/mL) is delineated by a horizontal black line. Pretreatment and posttreatment
groups are separated by a vertical red line (n = 5 for each pretreatment group; n = 6 for each posttreatment group).
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Conclusion. Given the increasing rates of antibiotic resistance, the high cost of develop-
ing new antibiotics, and the years-long development timeline, it is critical that we make use
most efficiently of the antibiotics that are currently available (22–24). Here, we found that AST
performed in RPMI 1640 medium, but not MHII medium, revealed that a high proportion of
carbapenem-resistant A. baumannii strains were susceptible to AZM. These results suggest
that, based on the limited number of strains tested, AZM warrants clinical investigation and
may be a promising therapy for resistant A. baumannii infections. Furthermore, these results
add to a growing body of literature demonstrating that traditional susceptibility testing meth-
ods using rich media to maximize the bacterial growth may result in poor ability to predict
the in vivo efficacy. Additional study is needed to define the potential role of AZM in the treat-
ment of carbapenem-resistant A. baumannii infections and to define optimal in vitro testing
methodologies that most accurately predict the in vivo efficacy.
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