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Abstract

Covalent modification of carbon nanotubes is a promising strategy to engineer their electronic 

structures. However, keeping modification sites in registration with a nanotube lattice is 

challenging. We report here a solution using DNA-directed, guanine (G)-specific crosslinking 

chemistry. By DNA screening we identify a sequence C3GC7GC3 whose reaction with an (8,3) 

enantiomer yields minimum disorder-induced Raman mode intensities and photoluminescence 

Stokes shift, suggesting ordered defect array formation. Single-particle cryo-EM shows that the 

C3GC7GC3 functionalized (8,3) has an ordered helical structure with a 6.5Å periodicity. Reaction 

mechanism analysis suggests that the helical periodicity arises from an array of G-modified 

carbon-carbon bonds separated by a fixed distance along an armchair helical line. Our findings 

may be used to remodel nanotube lattices for novel electronic properties.

One-Sentence Summary:

A DNA-guided synthetic pathway leading to lattice remodeling of carbon nanotubes is discovered.
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Synthesis of carbon-based quantum materials can in principle employ rich organic chemistry 

to realize novel properties via atomic-precision structural engineering. Over 50 years ago, 
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W. A. Little proposed a room-temperature organic superconductor model composed of a 

one-dimensional conducting chain with an array of polarizable side chains attached (1). In 

the ensuring years, numerous efforts had been made but failed to verify Little’s proposal 

(2). In 2016, the mechanism underlying Little’s model –electron attraction mediated by 

polarizable groups– was confirmed for the first time (3). The study used a single-wall carbon 

nanotube (SWCNT) as the one-dimensional conducting chain, along which a nanotube 

circuitry was constructed to provide a single polarizable “side chain”. This work suggests 

a route to the Little model by chemically implanting polarizable groups in registration with 

a SWCNT lattice, but the task is deemed formidable (4). A major challenge is to control 

reaction sites along the nanotube, which seems insurmountable because half population of 

carbon atoms on a SWCNT are chemically equivalent and are enantiomers of the remaining 

half. Here we report a DNA-guided chemical reaction to overcome the challenge. We 

screen reaction products by resonance Raman and photoluminescence (PL) spectroscopy, 

and inspect the structures of promising candidates by single-particle cryo-EM. Our findings 

demonstrate feasibility to create a wide range of SWCNT derivatives in general, and to build 

a Little model in particular.

Broadly speaking, covalent modification of SWCNTs is a promising route towards organic 

quantum materials (5–7). With all atoms on their surfaces, SWCNTs are more amenable 

than other solid-state materials to precision molecular engineering by wet chemistry. In 

addition, various chiral forms of SWCNTs made available by sorting (8) offer a diverse 

range of electronic structures for further chemical tailoring. Recently, Weisman et al. 
reported a photochemical reaction of DNA-wrapped SWCNTs with singlet oxygen that 

covalently links guanine (G) to the side wall of SWCNTs (6). Even though the chemical 

nature of the covalent link was not fully revealed, and the structure of the reaction product 

rather disordered (9), we are nevertheless inspired to pursue ordered SWCNT lattice 

modification with the idea of finding more effective ways to explore the nanotube chirality 

and DNA sequence space.

To speed up sequence screening and to promote ordered structure formation, we have 

explored conditions for the guanine functionalization reaction of SWCNTs. We find that the 

previously reported aqueous phase photochemical reaction of Rose Bengal (RB) mediated 

guanine crosslinking with SWCNTs (6) also works in methanol/water mixed solvents. In 

50 % v/v methanol, the reaction proceeds slower than that in water (reaction time 60 

min versus 15 min in water); consumption of RB sensitizer is decreased dramatically; 

and RB binding to SWCNTs, which may adversely affect DNA wrapping structure and 

crosslinking site, is also minimized. All these changes should favor homogeneous product 

formation. Combining this new reaction condition with a previously established process 

(10) for DNA/surfactant exchange, we have devised a one-pot chemistry (Fig. 1A, Figs. 

S1–5) that can efficiently react any G-containing sequence with any single-chirality SWCNT 

species [e.g., (6,5), (9,1), (8,3), etc..] purified independently via various techniques (8). 

Excess DNA is present during the reaction in order to refill exposed nanotube surfaces 

arising from reaction-induced DNA structure contraction, eliminating a potential source of 

inhomogeneous functionalization.
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We have employed spectroscopic tools to monitor the reaction (Fig. 1, Figs. S6–7). 

Figs. 1B–D present a data set from a reaction on an (8,3) enantiomer (normalized 

circular dichroism signal at the E22 = – 42 mdeg, which according to theoretical analysis 

corresponds to a right-handed enantiomer(11)). Hereafter we denote the enantiomer simply 

as (8,3) unless indicated otherwise. Figs. 1B and 1C show, respectively, the expected red-

shift of the E11 absorption and PL peak after functionalization. Fig. 1D shows resonance 

Raman spectra of unfunctionalized (black trace) and functionalized (8,3) (red trace). In 

addition to the well-documented D peak, we find another disorder-induced peak: the 

intermediate frequency mode (IFM)(12, 13) at 387 cm−1, its overtone 2 IFM at 775 cm−1, 

and its combination modes with D: D ± IFM at 905 and 1680 cm−1, respectively. There is a 

dramatic intensity enhancement of the D and IFM modes in functionalized tubes. In contrast, 

2IFM and D ± IFM peaks remain weak and unchanged after functionalization, consistent 

with their origin from two-phonon, second-order scattering processes (12).

To gain insight into the reaction mechanism, we have functionalized (8,3) using a set of 

DNA sequences with varying G content. With increasing G content, the functionalized (8,3) 

shows a gradual increase in both D and IFM peak intensity (Figs. 2A and 2B), and more 

red-shifted and broadened PL and absorbance peaks (Figs. 2C and 2D). These observations 

are consistent with the previous study using mixed chirality tubes (6). However, using 

chirality-pure SWCNTs allows us to determine unambiguously the absorption and PL peak 

positions of the functionalized tube, and calculate its absorption peak shift and Stokes shift 

SS, i.e., the energy difference between the absorption and PL peak, as a function of G 

content or defect density. The absorption peak shift increases with G content (Fig. 2E), 

but its amplitude is less than 27 meV, about 10 times smaller than that typically observed 

for an sp3 defect (14). This difference is striking considering that the defect density (≈ 
100/nm) in guanine modified tubes (15) is about two orders of magnitude higher than that 

in sp3 modified tubes (5). The SS also increases with defect density (Fig. 2E) – a trend 

opposite to that observed for sp3 defect (14). In addition, we find a quantitative relationship 

between SS and full width at half maximum (FWHM = W) of the PL peaks, suggesting that 

modified and unmodified carbon atoms are isovalent as reasoned below. In Fig. 2F, we plot 

SS vs W2 and fit the data well (R2 = 0.98) with T = 349.3K using eq. (1), where k is the 

Boltzmann constant and T is the effective exciton temperature equal to or above the ambient 

temperature.

SS = W 2

8 ln 2 kT ≅ 0.18W 2

kT (1)

Eq. (1) has been used to describe excitons in 2D quantum wells and 3D alloy 

semiconductors where disordered isovalent substitution creates shallow traps (16, 17). 

It attributes the observed SS to the thermalization of excitons in an inhomogeneously 

broadened band. Combining all of these spectroscopic observations, we exclude sp3 defect 

formation by guanine functionalization and conclude that the chemistry creates a modified 

sp2 defect that is isovalent to the original sp2 carbon in the pristine SWCNT.

To differentiate two types of disorder originating from the defect density itself and defect 

distribution pattern, we have designed a set of 15-mer G/C sequences containing two Gs 
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separated by a varying number of Cs (Fig. 3A) for the (8,3) functionalization chemistry. 

We find that disorder-induced D and IFM peak intensities change as a function of the 

inter-G spacing, reaching a surprisingly deep minimum when the spacing is 7 (Figs. 3B 

and 3C). The SS and PL peak linewidth also show minimum values at that spacing (Figs. 

3D and 3E). These observations appear to be dependent on nanotube chirality, since left- 

and right-handed (6,5)s functionalized by the same set of sequences yield different spectral 

patterns (Fig. S7).

We offer a qualitative analysis of the data shown in Fig. 3. According to the mechanism 

of defect-induced Raman modes (12, 18), the observed peak intensity is proportional to the 

extent of elastic electron scattering by defects. For sequences used in our study, we estimate 

that a SWCNT contains 1–5 guanine modified sites per nm tube length based on molecular 

dynamics simulations of a typical DNA wrapping structure on a SWCNT (15). Because 

the size of excitons is 2 to 3 nm (19), electron scattering is expected to involve multiple 

defect sites, and is sensitive to not only the defect density but also the degree of order of the 

defect array. The minimum D and IFM peak intensities shown in Fig. 3 are thus interpreted 

as resulting from an ordered defect array generated by the 2G-7 sequence. This conclusion 

is also consistent with the observed minimum SS for the same sequence, as SS is another 

measure of disorder for semiconductors with isovalent substitution (16, 17).

To independently evaluate the spectroscopy-derived result, we have applied single-particle 

cryo-EM to measure 2G-7-(8,3) hybrid structure before and after functionalization. Cryo-

EM imaging of 2G-7 functionalized (8,3) reveals filaments of approximately 20Å in 

diameter (Fig. S11). In the non-functionalized structure coated with 2G-7, an averaged 

power spectrum from ≈ 2×105 images of particle segments yields no detectable features 

(Fig. S12), implying a disordered DNA wrapping structure. In the functionalized structure, 

we have detected a layer line pattern characteristic of a 1-start helix with 6.5 Å helical 

pitch visible from the averaged power spectrum of selected segments (Fig. 4A). The helical 

structure is also visible in the two-dimensional (2D) class average (Fig. 4B). Ab initio 
reconstruction, an unbiased and reference free approach, was employed to generate a 3D 

reconstruction of the DNA coated nanotube (Fig. 4C). Fig. 4D shows a highly averaged 

version of that reconstruction, with an atomic model for the SWCNT. Due to the low signal-

to-noise ratio in these cryo-EM images, and the apparent lack of any other periodicities 

present, we have imposed a helical averaging of the density along the 6.5 Å pitch helix. 

The unfiltered 3D map (Fig. 4C) shows a coherence length that is about 10 nm long, shorter 

than the full length of the segments used. The density in Figs. 4C and 4D is shown as a 

left-handed helix, however, true handedness was not determined.

The 6.5 Å periodicity observed by cryo-EM provides support for the model of ordered 

defect array formation and an important clue to the mechanism of guanine functionalization. 

As discussed earlier, a correct reaction mechanism should yield a modified carbon that 

largely maintains its sp2 character. Indeed, such chemistry has been well-documented (20, 

21) and forms the basis for our proposal shown in Figs. 4E, 4F, and S14B. Guanine 

oxidation by singlet oxygen has a plethora of pathways and products depending on reaction 

conditions and structural context, but a common initial step is oxidation of the C8 carbon 

on the imidazole ring (22). We propose that the C8 carbon becomes electrophilic upon 
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oxidation, and then undergoes a 2+1 cycloaddition with a nearby C-C bond on a SWCNT 

to yield a three-membered ring. This is followed by the C-C bond cleavage and concomitant 

ring opening due to ring strain, leaving C8 to bridge the two carbons from the SWCNT and 

restore their sp2 character. Theoretical calculation (20) predicts that this type of reaction 

is most favorable on C-C bonds with large curvature or bond strain, consistent with a 

previous observation from the guanine functionalization chemistry (Figure 2C in reference 

(6)). In (8,3), there are three types of C-C bonds with distinct curvatures. C-C bonds along 

a helical armchair line shown in Fig. 4E possess the largest curvature. We note that the 

pitch p of this helical line is an intrinsic length scale of (8,3) determined solely by its chiral 

index (n, m) and C-C bond length ac: p = ac n2 + m2 + nmn − m
n + m = 6.45 Å  for ac = 1.44 Å , 

matching that observed by the cryo-EM. We therefore propose a 2G-7 wrapping structure 

where each of the 2Gs is covalently linked to a C-C bond along the armchair line, 

resulting in pinning of the DNA backbone along the same armchair line. Consistent 

with this functionalization-induced DNA pinning is our observation that 2G-5 and 2G-6 

functionalized (8,3) also exhibit the same 6.5 Å helical pitch (Fig. S13). Manual model 

building for 2G-7 functionalized (8,3) followed by energy minimization yields a model 

shown in Fig. S14A, in which two adjacent G modification sites are separated by 5 

C-C bonds along the armchair line. This equal G spacing explains minimum spectroscopy-

derived structure disorder for 2G-7 functionalized (8,3).

In summary, we show that ordered SWCNT modification can be achieved by taking 

advantage of DNA sequence control over the spacing between adjacent reaction sites, 

and SWCNT’s bond curvature dependent reactivity. Our finding demonstrates chemical 

feasibility to build a Little model. DNA-guided remodeling breaks the original symmetry 

of the nanotube lattice, and therefore should lead to new modes of low-energy electronic 

excitation. Theoretical analysis shows that helical modification of a SWCNT in registry 

with its lattice may induce topological electronic behavior (23, 24), suggesting that the 

chemistry we report here might be used to explore topological physics. We envision that 

future work will introduce diversity of functional groups, increase the coherent length of 

ordered modification, and eventually enable discovery of organic quantum materials and 

carbon-based metal-free catalysts (25, 26).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. One-pot photochemical reaction scheme and spectral characterization.
(A) Reaction scheme starting from resolving DNA-wrapped to guanine-functionalized 

(guanine-lized) SWCNT carried out in a single pot; (B) Absorption (normalized at E33); (C) 
PL (with peak intensity normalized to 1); and (D) Resonance Raman spectra (normalized at 

the “G” peak) of (8,3) before and after reaction. Spectra in C and D are measured with 671 

nm excitation corresponding to E22 of (8,3). The DNA sequence used in this experiment is 

(GCC)12. Also see Fig. S8 for data shown in B and C before normalization.
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Fig. 2. Spectroscopic characterization of (8,3) functionalized with DNA of varying G content (see 
Table S1 for sequence information).
(A) and (B) IFM and D peak intensity (normalized by the intensity of the “G” peak) profile; 

(C) and (D) PL and absorbance profile; (E) Absorbance shift and SS profile; (F) SS vs 

W2 and a linear fit (R2 = 0.98) using eq. (1) with T = 349.3K. Error bar shown here 

and elsewhere in this work represents standard deviation derived from three independently 

measured values for each of three independently prepared samples. Spectra in A, C and D 
are measured with 671 nm excitation. Also see Fig. S9 for original data.
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Fig. 3. Screening DNA sequences for ordered defect array.
(A) DNA sequence used for the screening; (B) D and IFM peak intensity profile; (C) Raman 

spectra of 2G-5, 2G-6, and 2G-7 functionalized (8,3) (normalized by the “G” peak); (D) SS 
and W profile; (E) PL spectra of the three samples. Spectra in C and E are measured with 

671 nm excitation. Also see Fig. S10 for original data.
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Fig. 4. Cryo-EM derived structure model for 2G-7 functionalized (8,3) and reaction mechanism.
(A) Averaged power spectrum from approximately 44000 particles. Red arrow points to a 

layer line with a spacing of 1/(6.5 Å) from the equator; (B) Image of 2D class average; (C) 
Low-resolution 3D map generated by unbiased, reference-free approach displays coherence 

that extends over an axial length of ≈ 10 nm; (D) 3D map corresponding to averaged 

density along the 6.5 Å pitch helix; (E) Carbon-carbon bonds that have maximum bond 

curvature, highlighted in blue along an armchair helical line of (8,3), along which every 

sixth carbon-carbon bond is modified by a guanine (red balls) according to modeling (Fig. 

S14A); (F) A proposed reaction mechanism.
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