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Abstract: Automated fine-grained diabetic retinopathy (DR) grading was of great significance
for assisting ophthalmologists in monitoring DR and designing tailored treatments for patients.
Nevertheless, it is a challenging task as a result of high intra-class variations, high inter-
class similarities, small lesions, and imbalanced data distributions. The pivotal factor for
the success in fine-grained DR grading is to discern more subtle associated lesion features,
such as microaneurysms (MA), Hemorrhages (HM), soft exudates (SE), and hard exudates
(HE). In this paper, we constructed a simple yet effective deep attentive convolutional neural
network (DACNN) for DR grading and lesion discovery with only image-wise supervision.
Designed as a top-down architecture, our model incorporated stochastic atrous spatial pyramid
pooling (sASPP), global attention mechanism (GAM), category attention mechanism (CAM),
and learnable connected module (LCM) to better extract lesion-related features and maximize
the DR grading performance. To be concrete, we devised sASPP combining randomness with
atrous spatial pyramid pooling (ASPP) to accommodate the various scales of the lesions and
struggle against the co-adaptation of multiple atrous convolutions. Then, GAM was introduced
to extract class-agnostic global attention feature details, whilst CAM was explored for seeking
class-specific distinctive region-level lesion feature information and regarding each DR severity
grade in an equal way, which tackled the problem of imbalance DR data distributions. Further,
the LCM was designed to automatically and adaptively search the optimal connections among
layers for better extracting detailed small lesion feature representations. The proposed approach
obtained high accuracy of 88.0% and kappa score of 88.6% for multi-class DR grading task on the
EyePACS dataset, respectively, while 98.5% AUC, 93.8% accuracy, 87.9% kappa, 90.7% recall,
94.6% precision, and 92.6% F1-score for referral and non-referral classification on the Messidor
dataset. Extensive experimental results on three challenging benchmarks demonstrated that the
proposed approach achieved competitive performance in DR grading and lesion discovery using
retinal fundus images compared with existing cutting-edge methods, and had good generalization
capacity for unseen DR datasets. These promising results highlighted its potential as an efficient
and reliable tool to assist ophthalmologists in large-scale DR screening.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Diabetic retinopathy (DR) was one of the most severe complications associated with diabetes
caused by small blood vessel damage from high levels of blood glucose in the retina, which
could result in progressive vision loss or even irreversible blindness [1,2]. The main pathological
features such as microaneurysms (MA), hemorrhages (HM), soft exudates (SE) and hard exudates
(HE) were closely related to DR, each of which determined the DR grading in the patients [3].
In terms of type, size, and the number of lesions, DR could be categorized sequentially with
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incremental severity grades into no DR, mild DR, moderate DR, severe DR, and proliferative DR
[4]. Early detection and timely treatment were crucial for slowing down the progression of DR
and preventing eventual vision loss, and retinal fundus imaging was regarded as a common DR
examination method [5,6]. However, detecting different types of tiny lesions and grading the
severity of DR by manual visual analysis of retinal fundus images were a highly subjective and
time-consuming process, as well as prone to errors, which were often affected by individual bias
and clinical experiences. Even among highly skilled ophthalmologists, inter- and intra-grader
inconsistencies also occurred. Therefore, it was necessary to develop automatic DR grading
approaches to help ophthalmologists in making a timely DR early diagnosis and providing a
rationale for further treatment based on its severity, which was of vital importance in clinical
practice.

Recently, as artificial intelligence technology develops by leaps and bounds in the area of
computer vision and medical imaging community, deep learning, specifically convolutional
neural networks (CNNs), had gained great attention and has been proven to be a vigorous tool for
automatic DR grading [7]. Deep learning algorithms could automatically learn strong abstract
feature representations from a significant amount of training data without hand-crafted explicit
lesion features. There mainly existed two types of deep learning methods for DR severity grading,
including pixel-level supervision [8,9] and image-level supervision [9–11]. For pixel-level
supervision methods, they commonly used lesion information for assisting DR classification.
However, these methods required lesion annotations as learning guidance and formulated DR
grading and lesion discovery as a two-stage task, which was more intricate compared to a
one-stage strategy. In order to alleviate these issues, image-level supervision methods based on
retinal fundus images were presented to simultaneously distinguish DR grades and highlight
lesion areas. Unfortunately, they tended to pay more attention to the most essential lesion regions
and overlook tiny small lesion ones in the fundus images, which may impede the performance of
DR grading and lesion location. Moreover, the less distinctive areas detected at a certain severity
level could be essential for other severity gradings. Thus, it was desirable to build an effective
model to capture more complete lesion features and improve the DR grading performance.

Based on the above discussion, to further discover more detailed small lesion features, promote
the performance of DR grading and raise their application in clinical scenarios, we needed to
consider the following several aspects. (1) In retinal fundus images, there were many similarities
in color and texture among the five DR grades [12,13]. This had an adverse influence on the
inter-class diversity and thereby increased the difficulties of accurately discriminating them in
the grading task. Therefore, we should build a fine-grained network to capture detailed lesion
information from global feature maps, whilst restraining useless information. (2) The relative
sparse distribution of lesion regions and the importance of different lesion areas in each image
should also be considered. Besides, some lesions were very tiny and only occupied a few pixels.
These were prone to be ignored during performing convolution operations, which could damage
the final DR severity level. Accordingly, it was demanded to devise an effective model to acquire
more complete lesion regions, and evaluate and adaptively merge the contribution of each lesion
area. (3) Due to the number of fundus images with severe lesions accounting for a small portion,
the data distribution of DR among different grades was seriously imbalanced, which tended to
enforce the model to bias on the most important regions and DR grades with more samples. This
would impair the performance of lesion location and weaken the model’s generalization ability.
Hence, it was expected to learn class-specific discriminative features. (4) The high variation in
size and position of lesions in retinal fundus images was challenging for DR grading. Moreover,
multiple different lesions could be embraced in the fundus image. Even fundus images graded
into the same severity level may include inconsistencies in the type and quantity of lesions.
Consequently, we needed to consider multi-scale information on lesions, learn the corresponding
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lesion characteristics from the diversity of lesion regions, and combine different areas into a
complete lesion discovery.

Motivated by the aforementioned observation, we developed a novel deep attentive convolutional
neural network (DACNN) to grade DR severity levels and discover associated lesions using only
image-level supervision. In specific, we designed stochastic Atrous Spatial Pyramid Pooling
(sASPP) based on ASPP to fully extract the global lesion features at multiple scales by using
multiple atrous convolutions with different fields of view, and combat the co-adaptation of multiple
atrous convolutions. Global Attention Mechanism (GAM) inspired by [14] was applied to the
global lesion feature maps to highlight the class-agnostic global attention features. GAM together
with sASPP was able to capture more subtle lesion details while eliminating the interference of
irrelevant information. Category Attention Mechanism (CAM) focusing on category attention
was employed to learn class-specific feature representations, adaptively emphasize and fuse the
contribution of each lesion area, and increase the discrepancies in the distance between different
stages of DR. Through impactful information emphasized by CAM, more distinctive features for
a certain DR severity level with a handful of samples could be learnt, and thereby the issue about
the imbalanced data distribution could be addressed. In addition, instead of fixed connections
among layers in the deep learning model, we innovatively introduced a learnable connected
module (LCM) with a connected weight for each connected layer to automatically and adaptively
seek the optimal connections among layers. This strategy could not only strengthen feature
propagation but also amalgamate low-level features with high-level semantic information for
better parameter reuse, facilitating information flow and enhancing the power of DR grading and
lesion location. As a result, by incorporating the above blocks, our network achieved accurate
DR severity grades and complete lesion discovery simultaneously. We summed up the main
contributions of our study as follows:

1. We constructed a simple yet effective deep attentive convolutional neural network (DACNN)
to achieve DR grading and lesion discovery using only image-level supervision by combining
sASPP, GAM, CAM, and LCM.

2. In DACNN, we applied complementary GAM and CAM to learn class-agnostic global
attention features and class-specific distinguishing region-level semantic features for
preserving subtle lesion details and mitigating the problem of imbalanced data distributions.

3. Built upon ASPP, we presented sASPP for capturing lesion features of multiple scales,
preventing co-adaptation of the atrous convolutions, and alleviating the overfitting problem.
Further, LCM was introduced to effectively boost the model’s grading performance, which
could automatically perceive the optimal connections among layers during training.

4. Extensive experimental results on different challenging benchmarks containing DDR,
EyePACS, and Messidor datasets demonstrated that our approach surpassed current
mainstreaming methods and advanced the state-of-the-art performance in the DR grading
tasks. Comprehensive ablation studies also verified the importance and necessity of each
major component.

2. Related works

In this section, we overviewed recent studies related to DR grading, feature-connected model,
and attention mechanism in brief.

2.1. DR grading

Traditional machine learning methods for DR grading adopted common classifiers or their
variants, such as support vector machine (SVM) [15], k-nearest neighbor (kNN) [16], random
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forest [17] and Gaussian mixture model [15], etc., to carry out automatic taxonomy of severity
levels of DR. However, these methods were excessively dependent on hand-crafted, low-level
characteristics, which required experienced domain experts and had limited representation
capacity. Recently, deep learning algorithms have been widely used in DR grading and made
remarkable progress [18]. Instead of hand-crafted features, they leveraged more discriminative
deep features to determine DR severity levels. The majority of deep learning methods for
distinguishing DR grades may fall into two categories. The first category was to use location
information of subtle lesions (namely pixel-level supervision) to assist DR grading [19–25].
For instance, Antal et al. [19] presented an ensemble-based framework for detecting MA
while grading DR based on the existence of MA. Dai et al. [25] developed DeepDR to detect
retinal lesions and perform early-to-last stages of DR, which consisted of an image quality
assessment sub-network, lesion-aware sub-network, and DR grading sub-network. Yet, most
of these methods demanded lesion annotation on retinal fundus images, which was extremely
expensive. In addition, some methods [19–21] treated lesion location and DR severity grading
as two separate tasks, which were more complex and required high computational costs. The
second category was to only apply image-level supervision for DR grading [11,26–28]. For
example, Gulshan et al. [26] applied Inception-v3 architecture to identify DR and diabetic
macular edema (DME) with high sensitivity and high specificity in retinal fundus photographs.
Li et al. [11] presented a cross-disease attention network (CANet) to jointly classify different
stages of DR and DME by means of exploiting the internal relationship between two diseases
with only image-wise supervision. However, these methods were inclined to put emphasis on
the most discriminative lesion areas or DR grades with numerous samples, whereas neglecting
un-conspicuous lesion information or DR grades with few samples. Meanwhile, it remained
challenging due to the fact that retinal fundus images belonging to same DR severity grade could
have significant visual differences in sizes of lesions while those among different DR severity
grades could have visual similarities in shapes and colors. This together with the intrinsic locality
of convolution operations made the model difficult to capture complete lesion details. To this
end, we followed the second category and developed a simple yet effective DACNN to deeply
mine more discriminative small/tiny lesion semantic features and strengthen DR grading ability
with only image-wise supervision.

2.2. Feature connected models

With the revolutionary advances in CNNs in many computer vision tasks, a significant amount of
research had been motivated to obtain better performance. As CNNs went increasingly deeper,
the vanishing gradient happened. In order to address this problem, employing feature connections
to strengthen feature propagation and encourage parameter reuse had become an important
direction [29]. Instead of drawing representational ability from exceedingly deep or wide network
architectures, ResNet [30] (including its variations ResNeXt [31]) and Highway Networks [32]
introduced identity connections to allow better information and gradient flow between deep layers
and shallow layers in the network. FractalNets [33] repeatedly incorporated several parallel
interacting subnetworks with different amounts of convolutional blocks so as to generate an
enormous nominal depth, whilst sustaining numerous short-path in the network. DenseNet [34]
applied to concatenate operations to take the place of identity mapping in the residual module to
combine features, and connected all layers with matching feature map sizes. For the purpose
of preserving the feed-forward property, each layer could serve as the input of all subsequent
layers and the output of all preceding layers, which ensured maximum information propagation
throughout the network and yielded condensed models that were easy to train. However, it
was not learnable for the connection parameters of these connected modules, resulting in the
under-utilization of parameters in connected layers and the semantic information in the feature
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maps. In this case, our DACNN integrated feature connections and innovatively designed the
LCM.

2.3. Attention mechanism

The attention mechanism played a vital role in capturing fine-grained feature information, and had
been widely applied for image classification [35], semantic segmentation [36], speech recognition
[37], word representation learning [38], and object detection [39]. In particular, the SE block
recalibrated the importance of different channels by means of rescaling and simply employed two
fully connected (FC) layers to catch non-linear cross-channel dependency. SENet [40] proposed
channel-level dependencies by the usage of an attention-and-gating mechanism, which conducted
rescaling to different channels to recalibrate the channel dependency. Non-local network [41] also
termed as self-attention mechanism scanned through each element contained in a sequence and
updated it via making an aggregation on global information from the whole sequence. CBAM
[14] made the rescaling on the importance of different channels and positions. DA-GRU [42]
applied the spatial attention mechanism to preprocess data in the encoder stage while employed
temporal attention mechanism to obtain the internal relationship of the input information in the
time series in the decoder stage, which made the model more focus on useful information at
the time scale and the spatial scale and improved the accuracy of SOC estimation. GCNet [43]
integrated the Non-local block [41] and SE block [40] to model the global context dependency.
CANet [11] integrated the disease-specific attention module and the disease-dependent attention
module into a deep network to yield disease-specific and disease-dependent features for jointly
grading DR and DME. CABNet [12] combined two complementary the global attention block
(GAB) and the category attention block (CAB) to identify small lesion features for DR grading. A
lesion-aware transformer (LAT) [9] used a pixel relation-based encoder and a lesion filter-based
decoder for DR prediction and lesion discovery at the same time. RTNet [44] considered the intra-
class dependencies and inter-class relations among multi-lesion and employed a self-attention
transformer and cross-attention transformer to segment the four DR lesions simultaneously.
ASPP [45] stemming from spatial pyramid pooling (SPP) allowed the model itself to use multiple
atrous convolutions of different rates to extract the optimal representation of features at various
scales from the input directly. It could effectively enlarge the field of view in the kernel, without
incurring more parameters and computational complexity. Inspired by the above discussion
attention mechanism, in this work, our model applied the idea of the attention mechanism to
put more emphasis on the DR lesion region and repress the irrelevant lesion information, so
that the feature information which contributed to more discriminable feature extractions could
be highlighted and the imbalanced data distribution could be handled. Due to the fact that
DR severity level classification inherently depended on the global presence of retinal lesions
including multi-scale local texture and structures, our DACNN further introduced the ASPP
module, and on this basis, we innovatively designed the sASPP module to adapt to fine-grained
lesions of various scales, relieve the overfitting problem and avoid the co-adaptation of the atrous
convolutions in ASPP.

3. Methods

In this section, we provided details of our DACNN according to network architecture, and core
network components. As illustrated in Fig. 1, our DACNN mainly consisted of five major
components: Feature extraction module, sASPP, GAM, CAM, and LCM. In particular, we
selected ResNet-50 as the backbone network, which was used to extract high-level abstract
semantic feature representations from input fundus images. Built upon these high-level features,
the sASPP was designed for capturing the lesions of various scales and preventing the co-
adaptation of multiple atrous convolutions. The output features of this module were shared in the
following modules. The GAM was introduced to learn category-agnostic global channel-level
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and spatial-level attention feature maps so as to retain more detailed tiny lesion information and
repress the irrelevant noisy information. After that, the CAM was integrated into the network
such that discriminative region-level features could be produced in a category-level fashion.
Further, the LCM with connected weights was developed to reuse feature maps and search the
effective connections between different layers automatically and adaptively. During testing, given
an image, a predicted DR severity level and the corresponding lesion activation map would be
outputted.

Fig. 1. The overall structure of the proposed DACNN.

3.1. Overview of DACNN

The overall architecture of our DACNN was shown in Fig. 1. We chose to use ResNet-50 pre-
trained on ImageNet [46] as the backbone network for feature extraction, which took the fundus
image as input and generated the high-level global semantic feature maps FGlobal ∈ RH×W×C,
where H, W and C represented height, width, and the number of channels in the feature maps,
respectively. Afterward, we fed the resulting feature map into the sASPP module for helping
to detect the optimal representation of lesion features with different scales and prevent the
co-adaptation of the atrous convolutions. Next, on the feature maps FGlobal ∈ RH×W×C from
the sASPP module, we utilized a 1 × 1 convolutional layer to decrease the number of channels
and yield FReduce ∈ RH×W×C′ , where C′ = C/2. Then, the GAM took FReduce as the input and
learnt channel-level and spatial-level class-agnostic global attention feature maps FGAM such that
subtle lesion details could be preserved and the useless noisy information could be eliminated.
After that, FGAM was flowed through CAM, enforcing the model to gather different distinctive
region-level feature information for specific DR severity levels, resulting in the output FCAM .
The obtained feature maps FGAM and FCAM were complementary to each other, and they were
concatenated via LCM. Further, we fed the output feature maps FsASPP, FGAM and FCAM from
sASPP, GAM, and CAM into LCM for reusing feature maps and optimizing connections among
different layers automatically and adaptively. The output feature map FGC of LCM passed through
a global average pooling (GAP) layer and finally fed into a fully connected (FC) layer activated
by the softmax function to predict DR severity level with respect to each input fundus image.

3.2. Stochastic atrous spatial pyramid pooling (sASPP)

Typically, there often existed lesion features with various scales in the DR grading task. In order
to capture them concurrently, the traditional methods were to either make the resample on the
input images for model training, or apply ASPP for extracting multi-scale features from the
input directly. However, the former suffered from overwhelming computational cost, and the
latter was subject to the co-adaptation problem of multiple atrous convolutions. Motivated by
stochastic depth networks [47,48], we introduced randomness into ASPP and designed a novel
sASPP to stochastically drop features from each atrous convolution to avoid co-adaptation of
atrous convolutions, which could be seen in Fig. 2 (a). The developed sASPP could be regarded
as ASPP with varying widths. During the training stage (See Fig. 2 (b)), bi ∈ {0, 1} was a binary
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variable that determined the preservation or neglect of feature maps produced by each atrous
convolution. It satisfied the Bernoulli distribution parameterized by probability pi, which meant
that the feature map yielded from each atrous convolution in ASPP would be reserved with a
probability of pi and abandoned with a probability of 1 − pi when bi was 1 or 0, respectively.
Obviously, the second and fourth feature maps were abandoned, and the output feature map al in
ASPP was equal to [al

1, 0, al
3, 0]. Further, the al could be formulated as follows:

al = [b1al
1, b2al

2, . . . , bnal
n] (1)

It was worth noting that the dropout operation in sASPP adopted an independent random
variable to the entire feature instead of every pixel within the feature in the original dropout
method, which took the complete feature representation from each atrous convolution into
account. In sASPP, we introduced a new learnable parameter pi to control the retained probability
of feature maps from each atrous convolution. The larger pi was, the more contributions made by
the feature map obtained from the atrous convolution, and vice versa. In our study, we set pi as a
function of i, which could increase or decrease from p1 to pn in a linear manner and be described
as the follows:

pi = p1 +
pn − p1
n − 1

× (i − 1) (2)

In the training stage, we independently sampled n binary variables from Bernoulli distributions
with regard to each mini-batch and computed al+1 = [b1al+1

1 , b2al+1
2 , . . . , bnal+1

n ] according to
Eq. (1). In the testing stage, we preserved all the feature maps from each atrous convolution
as shown in Fig. 2 (c), whose values were scaled by pi. Herein, sASPP became a determining
module employing all the feature maps scaled by the reserved probability. Through the designed
sASPP, the discriminative multiple scale lesion-related feature map FsASPP could be obtained
from FGlobal ∈ RH×W×C extracted by the backbone network, and the overfitting problem in the
DR grading task could also be effectively alleviated.

3.3. Global attention mechanism (GAM)

Considering convolution operations only own the local perception field, its modeling of depen-
dency was limited, affecting DR grading accuracy. In order to strengthen the model and improve
the state-of-the-art, we made an attempt to associate lesion features with the channel and spatial
attention modules, constructing the GAM. As shown in Fig. 3, GAM was composed of channel
attention and spatial attention, which utilized a single-branch structure contrary to that in CBAM
[14]. It used the reduced feature map FReduce obtained by 1× 1 convolutional operation on FsASPP
as the input and highlighted category-agnostic global salient features. To be concrete, we first
computed the channel-attention feature maps as follows:

FCattention = (σ(Conv(Rel(Conv(GAP(FReduce)))))) ⊗ FReduce (3)

where σ and Rel represented the sigmoid activation function and ReLU activation function,
respectively. Conv denoted 1 × 1 convolutional layer. ⊗ stood for element-wise multiplication.
The channel attention learnt the channel-wise attention weights and put more emphasis on the
importance of each feature channel, whilst repressing useless informative channels. Thereafter,
the output of GAM namely the spatial attention feature maps FGAM could be calculated as follows:

FGAM = FCattention ⊗ (σ(CGAP(FCattention))) (4)

where CGAP indicated the cross-channel average pooling. The spatial attention learnt spatial
attention weights and more focused on the importance of each spatial position, which could make
complementation of the above channel-attention. Finally, FGAM was fed into CAM to produce
the DR category-specific severity grade attention feature maps.
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(a)

(b) (c)

Fig. 2. The schematic illustration of the designed sASPP. (a) sASPP consisted of four atrous
convolutions with dilation rates ranging from 6 to 24. The kernel size was 1, 3, 3, and 3
respectively. (b) sASPP in a certain state at the stage of training. Dilation rate and kernel
size were the same as (a). bi denoted whether the feature map existed, where bi = 0 was
defined as discard state and vice versa. (c) sASPP at the stage of testing. All the feature
maps generated by four atrous convolutions were reserved at the stage of testing in terms of
their magnitudes scaled by the retainable probability during the training stage.
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Fig. 3. Description of the Global Attention Mechanism (GAM)

3.4. Category attention mechanism (CAM)

The CNN commonly stacked all the feature maps together indiscriminately, resulting in information
confusion among different categories and devoting less attention to the categories with few
samples. In this context, we attempted to introduce CAM to learn the attention to the distinctive
areas from retinal fundus images in a category-wise way and regard different DR severity grades
equally, which was depicted in Fig. 4. Specifically, we firstly fed the output feature map FGAM
from GAM into a 1 × 1 convolutional layer for generating feature maps F′

CAM ∈ RH×W×kL, where
k was the number of channels required to identify discriminative areas relating to each DR
category and L denoted the number of severity grades of DR. Then, we calculated the scores
S = {S1, S2, . . . , SL} for each DR category in terms of the follows:

Si =
1
k

k∑︂
j=1

GMP(f ′i,j), i ∈ {1, 2, . . . , L} (5)

where GMP indicated global max pooling and f ′i,j was the j − th feature map concerning the i − th
category from the feature map F′

CAM . By Si, the importance of the feature maps with regard to
each DR category could be obtained. Since Si was not employed as the category attention directly,
it was necessary to apply a category-level cross-channel average pooling operation on F′

CAM such
that the feature maps for each DR severity grade could be derived, which may be represented by

F′
avg−i =

1
k

k∑︂
j=1

f ′i,j, i ∈ {1, 2, . . . , L} (6)

where F′
avg−i represented the semantic feature map regarding the i − th category. Subsequently,

we could calculate the class-attention feature map ATTCAM as follows, which emphasized the
distinctive and informative lesion areas for DR severity grading:

ATTCAM =
1
L

L∑︂
i−1

SiF′
avg−i (7)

At last, we transformed the input feature maps FGAM into the output feature maps FCAM of
CAM through ATTCAM , which could be expressed by

FCAM = FGAM ⊗ ATTCAM (8)

In CAM, we assigned a certain amount of feature channels to each DR severity grade,
which avoided biasing on the channels and forcing the distance among different DR grades to
enlargement. Thereby, it could effectively mitigate the issue of imbalanced data distribution. In
addition, CAM could also in-depth dug more category-specific discriminative areas to generate
attention features using extremely few parameters, and decreased the feature redundancy.
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Fig. 4. Illustration of Category Attention Mechanism (CAM)

3.5. Learnable connected module (LCM)

With the depth of CNN increasing, the gradient vanishing or gradient exploding may happen. To
strengthen feature propagation and encourage parameter reuse, feature connection was a good
candidate approach. In previous connected structures, they were commonly fixed or handcrafted,
which led to insufficient utilization of the information in feature maps. This occurred could be
owing to ineffective modeling of the inference among the connected layers. In this respect, we
developed LCM and tried to introduce it into our DACNN, as presented in Fig. 1. Concretely, we
applied batch normalization (BN) to normalize the feature maps FsASPP, FGAM , and FCAM from
sASPP, GAM, and CAM, respectively, whilst generating corresponding learnable connected
weights. We could make a description of the whole learnable operation using the identity function
as the following equation:

yi = αui + βvi + γωi (9)

where yi indicated the i − th pixel that resulted from three different input feature maps, ui, vi,
and ωi. u, v, and ω denoted three under-connected layers or modules. α, β, and γ corresponded
to the connected scalar weights shared across all channels. Assuming that the input feature
maps were given by a 3-D tensor, they would be assigned the corresponding connected weights
which could be automatically learnt and adaptive to these input features. Let α + β + γ = 1, and
α, β, γ ∈ [0, 1], we defined the following equation:

α =
eλα

eλα + eλβ + eλγ
(10)

where λα was a control parameter. From Eq. (10), it could be observed that α was calculated
by use of a softmax function with λα, which could be automatically learnt via standard back-
propagation. In a similar way, β and γ were defined by using another two control parameters λβ
and λγ, respectively. Note that each term (such as αui, βv, and γωi) in the Eq. (9) needed to be
activated through a nonlinear function including BN [49] and PReLUs [50]. The proposed LCM
was able to be trained for finding the optimal connections among different under-connected layers
or modules and adapted to the input feature maps. Meanwhile, it inherited the merits in previous
fixed connect architecture, strengthening the feature information from different connected layers
or modules reusing and facilitating the information flow. It was worth mentioning that the devised
simple LCM could be used as a universal plug and play CNN module, which could be utilized
directly in any existing feature connection schemes by taking their original counterparts in place
of connection components.

Adam was a versatile algorithm for first-order gradient-based optimization of stochastic
objective functions based on adaptive estimates of lower-order moments, which computed
individual adaptive learning rates for different parameters from estimates of first and second
moments of the gradients. It integrated the computation of first and second moments with the bias
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correction term, and used momentum and adaptive learning rates to speed up convergence. In
Adam, the magnitudes of parameter updates were invariant to diagonal rescaling of the gradients,
while the stepsizes were approximately bounded by the stepsize hyperparameter. It combined
the advantages of AdaGrad and RMSProp to deal with sparse gradients and non-stationary
objectives, which was well-suited for non-convex optimization problems with large datasets
and/or high-dimensional parameter spaces. Swarm intelligent algorithm was the collective
behavior of decentralized, self-organized systems with scalability, adaptability, and collective
robustness, which simulated the mutual behavior in groups of insects or animals to discourse
a widespread range of difficult optimization problems under stationary environments. It was
typically made up of a population of simple agents interacting locally with each other and with
their environment. Among these agents, heuristic information was exchanged in the form of local
interaction generating the behavior of adaptive search and resulting in global optimization. The
key elements of swarm intelligent algorithm contained: 1) A large number of simple processing
elements work without supervision. 2) Neighbourhood communication. 3) Though convergence
was guaranteed, the time to convergence was uncertain. However, swarm intelligent algorithms
were not appropriate for time-critical applications and their parameters were problem-dependent,
whilst suffering from a stagnation situation or a premature convergence to a local optimum.
Different from Adam or swarm intelligent methods, we developed an innovative learnable
connected module (LCM) for better feature detail extractions related with DR lesion, which
not only connected different modules in a feed-forward manner but also perceived the optimal
connections for each connected module leading to automatically and adaptively learning the
connections among different modules. In LCM, we directly connected the output of stochastic
atrous spatial pyramid pooling (sASPP), global attention mechanism (GAM) and category
attention mechanism (CAM) modules, and introduced a learnable connected weight for each
connected module that was simple scalar variable and shared across all channels. During
training, these connected weights were automatically learned and adaptive to the data by standard
back-propagation with the help of Adam optimizer. In this fashion, the feature information from
different modules could be reused and the information propagation could be strengthened, which
overcome the drawbacks of previous fixed connection scheme. In addition, the designed LCM
was simple and effective, and could be easily utilized in existing feature connection schemes as a
universal plug and play CNN module by substituting their original counterparts for connection
components.

3.6. Lesion visualization

Aiming to gain an insight into lesion features, we used Grad-CAM technique [51] to generate
heatmaps for visualizing the lesion-relevant areas for each DR severity prediction. Firstly, we
calculated the gradient ∂yc/∂Fk

ij of the score yc of any DR grade c relative to the feature map Fk

of LCM and then undertook a global average pooling operation on the dimensions of height and
width, obtaining the corresponding weight scores which could be calculated by the following
equation.

φc
k =

1
z

∑︂
i

∑︂
j

∂yc

∂Fk
ij

(11)

In the above equation, the weight scores φc
k reflected the contribution of the feature map to

the DR grade prediction. After eliminating the influence of negative values by use of the ReLU
activation function, we could obtain the final lesion region visualization results for DR grading,
which could be given by

Lc
Grad−CAM = ReLU(

∑︂
k
φc

kF
k) (12)
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4. Experiments and results

In this section, we firstly described three challenging benchmark containing DDR, EyePACS and
Messidor datasets, evaluation indicators, and implementation details. Then, the quantitative and
qualitative results of the proposed method were given and analyzed in detail.

4.1. Datasets

We carried out experiments on three benchmarks containing DDR [52], EyePACS [53], and
Messidor [54] datasets.

DDR dataset comprised 13,673 color fundus images from 9,598 patients with an average age
of 54. These fundus images were acquired by various fundus cameras with a 45-degree field of
view. It provided three types of annotations, including image-level annotations for DR grading,
pixel-level annotations for DR lesion-related segmentation, and bounding-box annotations for
lesion detection associated with DR. In addition to five stages specified by the international
clinical diabetic retinopathy (ICDR) disease severity scale [55], ungradable was also considered
in this dataset. All 13,673 images were graded by ophthalmologists, while 757 gradable images
were selected to perform lesion-related pixel-wise annotations (e.g., 486 EX annotations, 601
HE annotations, 570 MA annotations, and 239 SE annotations) and bounding-box annotations.
The entire dataset was divided into the training set (6,320 images), validation set (2,503 images),
and testing set (3,759 images) at a 5:2:3 ratio. It was worth noting that this dataset was mainly
adopted to train our model for verifying its generalization performance. Besides, we implemented
ablation studies in this dataset to investigate the effectiveness of each key component of our
DACNN.

EyePACS dataset contained 35,126 training images, 10,906 validation images and 42,670
testing images. All fundus images were taken by using different types of cameras with a diversity
of lighting conditions and weak annotation quality. Their grading scale had five grades from 0 to
4, which was in accordance with the ICDR disease severity scale. In this dataset, there existed
some images with artifacts, out of focus, under- and over-exposed. In this dataset, we compared
the proposed DACNN with recent state-of-the-art deep learning methods for multi-class DR
grading task, and evaluated its generalization performance.

Messidor dataset was made up of 1,200 color fundus images (540 normal images and 660
abnormal images) captured using 8 bits per color plane at 1440×960, 2240×1488 or 2304×1536
pixels. The grading labels of each image in this dataset were provided, where DR was graded
into four severity levels and diabetic macular edema (DME) was assigned into three categories.
Nevertheless, their grading scale was slightly different from ICDR protocol [54]. Hence, for a
fair comparison, we only performed a binary classification for making a distinction between
non-referable (grade 0 and grade 1) and referable (grade 2 and grade 3), adhering to previous
works [56,57].

4.2. Evaluation metrics

The performance of our DACNN in the binary classification task distinguishing between the
referral and non-referral was measured by using accuracy (Acc), precision (Pre), recall, F1-score,
and the area under the receiver operating characteristic (ROC) curve (AUC). For the five DR
categories, we utilized Acc and the quadratic weighted kappa, which could effectively reflect
the model’s performance on the unbalanced dataset. All statical analyses in this study were
implemented by Python version 3.7.1, Scikit-learn version 0.20.0, Pandas version 0.23.4, and
NumPy version 1.15.4.
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4.3. Implementation details

We implemented the proposed DACNN with Keras using TensorFlow backend. All experiments
were conducted on the workstation equipped with NVIDIA RTX 2080Ti GPUs. By default, our
network took fundus images with a resolution of 512× 512 as input to mitigate the computational
burden. The initial learning rate and weight decay were set to 0.005 and 0.00001, respectively.
In addition, the batch size was set to 16 and k was assigned as 5. In our experiments compared
with the state-of-the-art methods, we conducted binary-class DR grading task on the Messidor
dataset, while performed multi-class DR severity grading on the EyePACS dataset. For binary
DR grading task, the training and test images were 600 and 300, respectively. These test images
constituted an experimental dataset for evaluating binary-class DR grading performance of our
model. The model was trained for approximate 40 epochs with the Adam optimizer and binary
cross-entropy loss function. In the case of multi-class DR grading, we used 35,126 images
as training dataset to train our model, and 42,670 images as experimental dataset to test its
performance. Similarly, we finished the training process at nearly 40 epochs with the Adam
optimizer and multi-class cross-entropy loss function. In generalization experiments across DR
datasets, we utilized 13,673 images from the DDR dataset as exclusively training dataset, and
42,670 images from the EyePACS dataset as experimental dataset for assessing the model’s
generalizability capability. The whole training process was stopped when 40 epochs were reached
by using the Adam optimizer and cross-entropy loss function.

In order to avoid overfitting, we took several approaches as follows: 1) In DACNN, we
designed stochastic Atrous Spatial Pyramid Pooling (sASPP) module based on atrous spatial
pyramid pooling (ASPP), and the random operation added in sASPP could be used as an effective
regularization term to help alleviate the overfitting. 2) We replaced ReLU function between two
fully connected layers with PReLU function to adaptively learn the parameters of rectifiers and
reduced overfitting risk. Meanwhile, fine-tuning ResNet-50 backbone network pre-trained on the
ImageNet also mitigated the overfitting problem. 3) In addition, we also adopted the techniques
of dropout and batch-normalization in our DACNN, and the feature dropping operation and
batch-normalization operation during training could reduce overfitting resulting from insufficient
training data but too many features. 4) During training, we further used an early stopping criterion
to determine the optimized number of iterations to prevent the model from overfitting.

4.4. Comparison with the state-of-the-art methods

For the purpose of evaluating the grading performance of our model, we performed binary-class
and multi-class tasks on the Messidor dataset and EyePACS dataset, respectively, and compared
it with various current state-of-the-art deep learning methods, all of which were commonly used
in DR grading tasks. A total of four representative cutting-edge methods namely CANet [11],
CABNet [12], DR|GRADUTE [58], and the newly proposed method Lesion-Aware Transformer
(LAT) [9] were used as competing methods. The quantitative comparison results of our approach
and other cutting-edge methods were provided in Table 1. As can be seen from Table 1, for
binary-class task discriminating referral from non-referral, our approach achieved the best results
(AUC: 98.5%, Acc: 93.8%, Pre: 94.6%, F1-score: 92.6%, and Kappa: 87.9%) on the Messidor
dataset among these competing methods, even if some methods [9] applied additional lesion
information to assist DR classification. For example, compared with the state-of-the-art method
LAT, our model had a performance gain of 0.6% and 2.8% over it on AUC and Kappa metrics,
respectively. In addition, by comparison with CABNet, our DACNN achieved a substantial
increase of 1.6%, 0.7%, 1.7%, and 1.1% in terms of AUC, Acc, Pre, and F1-score, respectively,
while significantly surpassing CANet with 2.2%, 1.2%, 4.0%, and 1.3% improvements. In
the case of a multi-class DR grading task on the EyePACS dataset, our DACNN still achieved
remarkably improved performances using only image-level labels compared with other competing
methods. Specifically, our DACNN obtained 1.8% Acc and 1.8% Kappa performance gains
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over the recent CABNet, respectively. Compared with the state-of-the-art LAT, our method still
performed tolerably and outperformed it (Kappa: 0.886 vs 0.884) by a small margin. Further,
we had supplemented three classical approaches (including ResNet-50, MobileNet-1.0, and
Inception-v3) in the DR grading field, and reported the quantitative comparison results of our
method and these methods. As seen in Table 1, it was very clear that our model outperformed
these classical approaches by a large margin for DR binary-class and multi-class grading tasks in
all metrics. These quantitative experimental results indicated that our DACNN performed best
among recent state-of-the-art deep learning methods on DR severity grading task. The excellent
performance of our model mainly benefitted from its strong discriminating power of subtle
multi-scale lesion features by integrating GAM, CAM, sASPP, and LCM. This enabled our model
to pay more attention to various small lesion regions and effectively learn their representative
lesion features, thereby greatly enhancing the performance of comprehensive DR grading. At
last, we also listed the number of the parameters of different methods, as summarized in Table 1.
It could be observed that our approach produced significant performance improvements over
other methods at the cost of increasing a few extra parameters.

Table 1. The quantitative comparisons of our approach and other state-of-the-art methods for
binary-class and multi-class DR grading tasks on Messidor and EyePACS datasets. “-” denotes no

results reported in corresponding works. The best results were shown in bold.a

Methods Parameters
Messidor EyePACS

AUC Acc Pre Recall F1-score Kappa Kappa Acc

Our DACNN 157.86M 0.985 0.938 0.946 0.907 0.926 0.879 0.886 0.880
CABNet [12] 25.19M 0.969 0.931 0.929 0.902 0.915 - 0.868 0.862

LAT [9] 75.5M 0.979 - - - - 0.851 0.884 -

CANet [11] 29.03M 0.963 0.926 0.906 0.920 0.913 - - -

DR |GRADUATE [58] 7.82M 0.910 0.912 0.933 0.614 0.741 0.710 0.740 0.536

ResNet-50 [30] 25.54M 0.880 0.929 0.857 0.796 0.826 0.781 0.653 0.815

MobileNet-1.0 [59] 3.2M 0.867 0.927 0.872 0.764 0.815 0.769 0.513 0.798

Inception-v3 [60] 21.77M 0.876 0.932 0.883 0.780 0.828 0.786 0.657 0.824

aAUC: the area under the receiver operating characteristic (ROC) curve; Acc: accuracy; Pre: precision

4.5. Ablation studies

In this section, we performed a series of ablation experiments in the DDR dataset to deeper
insight into the effects of each major component of our model, as shown in Table 2. Results and
analysis were as follows:

1. Effectiveness of GAM: To explore the effectiveness of the GAM, we derived two baselines:
the baseline No.1 (backbone only) versus No.2 (baseline+GAM) in Table 2. We could
clearly observe that the performance in accuracy and Kappa score was consistently improved
(about 1.1% and 0.8%, respectively), which meant that introducing the GAM module could
enable our model to accurately distinguish true DR lesion-related regions.

2. Effectiveness of CAM: We investigated the importance of CAM. From Table 2, we could
find that No.3 (baseline+GAM+CAM) got a performance boost relative to the No.2
(baseline+GAM), upgrading to the values of 0.872 and 0.915 in terms of Acc and Kappa
score. This indicated that CAM could be applied for guiding to deeply mine more
discriminative lesion-related features, which was helpful in improving the DR severity
grading performance.
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3. Effectiveness of GAM and CAM: We also investigated the contributions of the combination
of the GAM and CAM components. As illustrated in Table 2, No.3 performed better
than other settings (such as, No.1∼No.2) in most indicators. In contrast to No.1, No.3
could obtain higher performance gains by a large margin, exceeding No.1 by 1.4% and
1.0% in Acc and Kappa score, respectively. These improvements demonstrated that GAM
together with CAM could significantly boost the model’s performance and show that they
complemented each other.

4. Effectiveness of LCM: To understand the relative importance of LCM, we integrated LCM
into No.3, producing No.4 (baseline+GAM+CAM+LCM). From these results in Table 2
(No.4 versus No.3), it was noted that No.4 using the feature connections generated by
LCM outperformed No.3 without the feature connections. This may be ascribed to the fact
that LCM learned optimal control parameters adaptively by standard back-propagation,
strengthened image feature propagation and parameter reutilization, and thereby generated
more robust features to adapt to lesion appearance variations.

5. Effectiveness of sASPP: We further validated the effectiveness of sASPP module. From
Table 2 (No.5 versus No.4), it could be seen that sASPP scheme led to an increase in Acc and
Kappa score, from 0.873 to 0.889, and 0.921 to 0.930, respectively, proving its effectiveness
and necessity in improving performance. This superiority mainly benefitted from the
ability to capture multi-scale lesion features associated with DR, and the randomness
helping to alleviate the overfitting, in sASPP, which was favorable in the DR grading task.

6. Effectiveness of Different k in DACNN: We made an analysis on the impact of different
hyper-parameter k which described the number of feature channels for each stage of DR
severity grades. The influence of various k on DR grading performance was displayed in
Supplement 1. These results indicated that with the value of k increasing, the performance
of DR grading was gradually improved. When k = 5, the best result (Acc: 0.889 and
Kappa: 0.930) for DR grading was obtained. Nevertheless, when the score of k was further
increased, the degradation of grading performance occurred. We argued that this was
mainly because the overfitting and feature redundancy in our model may exist when the
value of k was over 5. Accordingly, we assigned k as 5 in our model for achieving better
performance.

7. Effectiveness of our DACNN on Different Imbalanced Data Distributions: For the purpose
of evaluating the effectiveness of our DACNN on different imbalanced data distributions,
we decreased the amount of the training images relevant to the categories with less images.
In the DDR dataset, the number of samples graded as DR 0 and DR 2 was more, whereas
those assigned as DR 1, DR 3, and DR 4 were less. We defined the imbalanced ratio as
M/L. M represented the number of samples in the union of DR 0 and DR 2 with more
samples. Similarly, L denoted the number of samples in the union of DR 1, DR 3, and DR
4 with less samples. We kept the amount of training images in DR 0 and DR 2 fixed, and
adjusted the imbalanced ratios to 5:1, 6:1, and 7:1, in a bid to train model. For carrying out
a fair comparison, the same training images were adopted for the baseline and our DACNN.
In Supplement 1, it was obviously observed that as the imbalanced ratio increased, the DR
grading performance degraded for both baseline and our DACNN. Yet, by comparison with
the baseline, our DACNN had a smaller drop. As a specific, when the imbalanced ratio
was 7:1, the performance of baseline dropped by approximately 3.5% in Acc, whereas our
model only slightly descended by 2.5%. This demonstrated the superiority of our DACNN
on the imbalanced data distribution.

8. Effectiveness of Different Backbones: For demonstrating the generalization of the afore-
mentioned modules, we utilized several state-of-the-art backbone architectures, mainly

https://doi.org/10.6084/m9.figshare.21311274
https://doi.org/10.6084/m9.figshare.21311274
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including MobileNet [59], Inception-v3 [60], and DenseNet [34]. From Supplement 1,
we could obviously observe that the baseline models integrating all the above-mentioned
modules were able to achieve consistent substantial improvement, while ResNet-50 with
all modules gained the best results in the DDR dataset. Note that the improvement for
DenseNet-121 was particularly obvious in performance by 11.3% and 15.1% in Acc and
Kappa score, respectively. In addition, they also brought a large performance boost for
MobileNet-1.0, with 5.3% Acc and 5.6% Kappa score improvements. These results implied
that the developed GAM, CAM, sASPP, and LCM could be utilized in a wide range of
backbone networks and consistently promote the performance of DR grading.

Table 2. The ablation studies of our DACNN in the DDR dataset. The best
results were shown in bold.a

Method Acc Kappa

(No.1) Baseline (Resnet-50) 0.858 0.905

(No.2) Baseline+GAM 0.869 0.913

(No.3) Baseline+GAM+CAM 0.872 0.915

(No.4) Baseline+GAM+CAM+LCM 0.873 0.921

(No.5) Baseline+GAM+CAM+LCM+ sASPP 0.889 0.930

aAcc: accuracy

4.6. Generalization across DR datasets

As for practical clinical application, realizing the generalization across domains under diverse
imaging conditions was challenging yet meaningful. With the goal of testing the generalizability
capability of our model, we further investigated its performance by using the images from the
DDR dataset for exclusively training and the publicly accessible EyePACS dataset for external
validation. Table 3 provided the comparison results of different methods on the generalization.
Among these results, our model performed the best by means of narrowing down the gap between
fundus photographs under different conditions, with an AUC of 96.1%, an Acc of 86.5%, and a
kappa score of 88.1%. For instance, our method achieved a large performance boost than the
DeepDR, with 2.4% AUC improvement for identifying referral and non-referral. Similarly, it
remarkably exceeded the AFN by 2.2% on Kappa score and approached to that generated by the
LAT. In contrast to the CABNet, our method slightly outperformed it by 0.3% and 1.3% on Acc
and Kappa indicators, respectively. However, the DR grading performance of our model had a
slight drop in the EyePACS dataset than that yielded in the DDR dataset (Acc:0.865 vs 0.889,
Kappa:0.881 vs 0.930), but still exhibited outstanding results. This happened could be explained
by the fact that the fundus images from the EyePACS dataset were captured by different types of

Table 3. Generalization comparisons of our DACNN and other advanced
methods on EyePACS dataset. “-” denotes no results reported in

corresponding works. The best results were shown in bold.a

Method AUC Acc Kappa

AFN [61] - - 0.859

LAT [9] - - 0.884
CABNet [12] - 0.862 0.868

DeepDR [25] 0.937 - -

Our DACNN 0.961 0.865 0.881

aAUC: the area under the receiver operating characteristic (ROC) curve; Acc: accuracy

https://doi.org/10.6084/m9.figshare.21311274
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(a) no DR (b) mild DR (c) moderate DR (d) severe DR (e) proliferative DR

Fig. 5. Visualization results between baseline, sASPP, GAM, CAM, and LCM. The six
rows denoted the original images, heatmaps of sASPP, GAM, CAM, and LCM, respectively.

cameras and their image qualities were relatively low which contained some noises like uneven
illumination, artifacts, out of focus, under- and over-exposed. The above results indicated that
our model owed good generalizability to unseen DR datasets, and had a great potential to be
incorporated in clinical settings to complement and strengthen existing DR screening programs
by virtual of saving resources and increasing workflow efficiency.
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4.7. Lesion visualization

To better gain insight into the model and understand the effectiveness of major modules in our
model, we used Grad-CAM [51] to generate activation maps from different modules to visualize
discriminative image regions for qualitative analysis. Some representative samples were as
illustrated in Fig. 5. We took the heatmaps of baseline (with only backbone), baseline with
sASPP, baseline with sASPP and GAM, baseline integrating sASPP, GAM, and CAM, and
baseline incorporating sASPP, GAM, CAM and LCM to present the improvements of different
components of our model. In Fig. 5, from left to right in the top row, we provided five images
relative to the five severity levels (from DR 0 to DR 4) from the DDR dataset. The second
row corresponded to the heatmaps generated by the baseline. The third row described the
visualization results by the baseline with sASPP. The fourth row displayed the results produced
by the baseline with sASPP and GAM. The fifth row provided the heatmaps resulting from the
baseline integrating sASPP, GAM, and CAM. The last row indicated activation maps acquired by
the baseline incorporating sASPP, GAM, CAM, and LCM. We could see from Fig. 5 that for the
baseline, it neglected some critical information and emphasized some unrelated areas. Compared
with the results obtained by the baseline, sASPP obviously refined global features but still only
identify a small part of the lesion without fully covering the corresponding DR lesion areas.
GAM highlighted global attention maps rather than region-level features, and still generated
some irrelevant characteristics. Although CAM could recalibrate the global attention maps from
GAM to focus on some obvious discriminative lesion areas, it still located few useless feature
regions. After being refined by LCM, our model could recognize fine-grained discriminative
lesion regions and more precisely fine-tune the location of suspicious small lesion areas, which
could be helpful for the clinical DR diagnosis. Through the above analysis, the outstanding
ability of our model to capture small lesion features could be demonstrated qualitatively.

5. Discussion

With the development of deep learning technology, the performance on automated DR gradeability
assessment had been greatly improved. Nevertheless, as for fine-grained DR grading, it was
still challenging as a result of small lesions such as MA, HM, SE, and HE that were difficult to
capture using traditional CNNs, and an imbalanced DR data distribution. The key to resolve
fine-grained DR grading was to identify more subtle distinctive DR lesion features and tackle
the problem of imbalanced data distribution. In this work, we presented and validated a novel
DACNN for automated fine-grained DR grading and lesion discovery only by using image-level
supervision. It combined sASPP, GAM, CAM and LCM into a unified network frame to learn
multi-scale subtle discriminative lesion features and cope with the issue of imbalanced data
distributions. Further, the suspicious-looking lesion regions involving DR in retinal fundus
images were generated by means of the DACNN, which increased the model’s interpretability.
Comprehensive experimental results on three public challenging datasets verified that our method
significantly improved the performance on DR grading and lesion discovery by comparison
with current state-of-the-art models trained using different supervision ways, and had good
generalizability, which could potentially be incorporated in clinical workflow for complementing
and enhancing existing DR screening programs as well as assisting primary care physicians or
ophthalmologists in making better diagnosis objectively and rapidly.

In previous studies, the majority of deep learning methods [19,20] graded the severity of DR
with the assistance of location information of lesion in a two-stage way, termed as pixel-level
supervision. It allowed the network to learn more information from corresponding lesion location.
However, these two-stage deep learning methods required annotations of lesion locations in
retinal fundus images according to expert knowledges or output of lesion segmentation, and
errors introduced by annotations or segmentation would affect the performance of subsequent DR
grading. Moreover, the structures of these networks were commonly highly complex. In addition,
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some approaches [24,25] used multi-branch subnetworks to classify different stages of DR grades
and identify retinal lesions. They formulated lesion location and DR grading into different
individual tasks, which increased the model’s complexity and demanded higher computation
costs. On the contrary, there also existed some deep learning methods for DR grading with
image-level supervision [11,12]. Yet, these methods had a common point that they suffered from
locality of convolution operations and limited the receptive field of the models, which brought
great challenges to capture small/tiny discriminative lesion features at various scales. Unlike
these methods, instead, we tried to develop a simple yet effective DACNN integrating sASPP,
GAM, CAM and LCM so as to seek deeply more discriminative and representative semantic
feature information associated with DR for enhancing DR grading capacity with only image-level
supervision. It was important to underline that the designed sASPP, GAM, CAM and LCM were
effective and universal, and could be easily utilized in a wide range of backbone networks as
a universal plug and play modules and substantially boost the performance in fine-grained DR
grading task. In the current study, our DACNN was able to gain excellent results with the overall
accuracy of 0.889, and Kappa score of 0.930 for multi-class DR grading task in the DDR dataset.
Moreover, the AUC, Acc and Kappa values in the Messidor dataset reached up to 0.985, 0.938
and 0.879, respectively. These were supported by the ablation study and comparison results with
state-of-the-art methods, presented in the above results section.

In our work, we quantitatively compared our DACNN with recent mainstream deep learning
methods for DR grading, and analyzed the influence of each main module on the DACNN, as
presented in Table 1 and Table 2. The results fully indicated that the presented method was able
to perform better than these current state-of-the-art methods, and each of the devised modules
was effective. On the other hand, only giving an accurate DR severity grade prediction was
insufficient for real-world clinical application. If we were capability of providing some evidences
on how the proposed model made certain predictions, this would offer ophthalmologists better
help and confidence on the prediction DR severity grade. To this end, we performed lesion
visualization with the Grad-CAM technique [51], which could highlight the lesion regions within
the input retinal fundus images when predicting DR severity grade. From Fig. 5, we could
intuitively observe that our developed DACNN located accurately lesion areas corresponding
DR. Owing to integrated sASPP, GAM, CAM and LCM, our model could automatically evolve
with the help of these modules and discovery more small discriminative lesion regions. The
good performance generated by our DACNN could be attributed to the following reasons. First,
the input of sASPP in DR grading task was the high-level abstract semantic features extracted
from ResNet-50 backbone which could fully represent lesions, while sASPP was able to capture
multi-scale lesion features and attempted to combine different feature maps produced from
multiple atrous convolutions adaptively to avoid their co-adaptation. Second, by merging GAM
and CAM modules that were complementary each other, the more tiny lesion feature details
could be obtained. Third, LCM could automatically and adaptively learn optimal connections
among different layers to strengthen feature propagation and fusion. To sum up, combing sASPP,
GAM, CAM, and LCM enabled our model to search diversity of target DR lesion regions in an
optimal manner, adaptively aggregate contextual information and corresponding lesion features
associated with these target areas, leading to feature discriminability boost and substantial
improving performance of DR lesion discovery.

In real world settings, medical images often displayed variations in appearance under various
imaging conditions, and domain shift between different datasets occurred. Consequently, it was
challenging but meaningful to achieve good generalization among multiple domains. From
generalization comparisons of different methods from the DDR dataset to the EyePACS dataset
(See Table 3), it could be observed that our methods on the EyePACS dataset also achieved nearly
best results (AUC: 0.961, Acc: 0.865, and Kappa: 0.881) in AUC, Acc, and Kappa metrics
through cutting down the gap among images from diversity of conditions. In spite of the fact
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that our model obtained an almost equal performance as LAT [9] on EyePACS dataset (Kappa:
0.881 versus 0.884), we could notice that it achieved much better results on the Messidor dataset
(Kappa:0.879 versus 0.851). This suggested that the developed method manifested more robust
and generalization ability than existing advanced approaches when directly applied to other
datasets. Additionally, it must be emphasized also that our model’s performance decreased
slightly when training was implemented in the DDR dataset, and testing on another EyePACS
dataset. This was mainly due to the class imbalance among different DR grades and large
variation in illumination, resolution, intensity and quality, on the EyePACS dataset. Such simple
yet effective method could be applied on diverse retinal fundus images captured by different
cameras, facilitating its adaptability. Notwithstanding a slight drop, the performance of the
proposed DACNN was still adequate to be considered a viable DR screening method to some
extent.

Despite our model manifesting impressive performance, it had still several limitations. First, we
only used image-wise supervision to train the model, leading to challenge to find the accurate tiny
lesion location. One feasible solution is to attempt to integrate lesion segmentation information
into our model to help improve the capacity in more tiny lesion discovery. Second, in current
study, we only investigated the model’s generalization ability in the EyePACS datast. In the
future, we will apply it on different publicly available DR datasets and real-world clinical DR
datasets to fully evaluate its generalization performance. At last, the number of samples in mild,
severe and proliferative DR was insufficient, which may have a negative influence on model’s
performance. As a future research, we will introduce generative adversarial networks (GANs)
to synthesize more high-quality retinal fundus photographs for model training so that the DR
grading performance could be further boosted.

6. Conclusion

In this paper, a simple yet effective DACNN combining sASPP, GAM, CAM, and LCM was
developed to predict DR severity grade in retinal fundus images. The proposed DACNN could
be trained in an end-to-end fashion for gathering discriminative lesion features and performing
fine-grained DR grading. Specifically, we integrated stochastic operation into ASPP, designing
sASPP to extract multi-scale lesion features and prevent the co-adaptation of multiple atrous
convolutions in ASPP. Then, GAM was introduced to capture class-agnostic global attention
features and retain lesion details, while incorporating CAM to learn class-specific features
and enlarge the distance among different stages of DR severity grades. Further, LCM was
presented with the goal of adaptively searching the optimal connections from different layers,
and strengthening feature information propagation and reuse. Extensive experiments on different
datasets demonstrated that our DACNN could manifest remarkable performance in DR grading
tasks, and had a good generalization. Through ablation study, the effectiveness of the critical
module in our DACNN was also clearly shed light on. From our experiments, we could conclude
that our DACNN was able to become a good alternative for assisting ophthalmologists in making
better diagnoses and treatment of DR patients. It was sufficiently feasible and could be potentially
extended to the detection of other diseases using corresponding medical images, such as chest
X-ray, MRI, and CT.
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