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Abstract

While essential to our understanding of solid tumor progression, the study of cell and tissue 

mechanics has yet to find traction in the clinic. Determining tissue stiffness, a mechanical property 

known to promote a malignant phenotype in vitro and in vivo, is not part of the standard algorithm 

for the diagnosis and treatment of breast cancer. Instead, clinicians routinely use mammograms to 

identify malignant lesions and radiographically dense breast tissue is associated with an increased 
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risk of developing cancer. Whether breast density is related to tumor tissue stiffness, and what 

cellular and non-cellular components of the tumor contribute the most to its stiffness are not 

well understood. Through training of a deep learning network and mechanical measurements of 

fresh patient tissue, we create a bridge in understanding between clinical and mechanical markers. 

The automatic identification of cellular and extracellular features from hematoxylin and eosin 

(H&E)-stained slides reveals that global and local breast tissue stiffness best correlate with the 

percentage of straight collagen. Importantly, the percentage of dense breast tissue does not directly 

correlate with tissue stiffness or straight collagen content.
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1. Introduction

A significant disconnect exists between sophisticated biomechanical and biophysical 

experiments “at the bench” [1], and clinical methods used to determine effective therapeutics 

for patients with solid tumors. Women with breast cancer are typically diagnosed via 

dedicated breast imaging modalities (mammogram, ultrasound, MRI, tomosynthesis). 

Mammograms are radiological images that reveal regions of dense, fibrous, and glandular 

breast tissue typically shown in white against non-dense, fatty tissue in black [2]. Methods 

for evaluating breast density include visually binning images into categories (fatty, scattered, 

heterogenous, extremely dense) based on the percentage of white versus black features in the 

breast image, or quantifying the exact percentage of dense tissue in white via image analysis 

(Fig. 1a).

Dense breast tissue poses two major risks for patients. The first is an impaired ability to 

detect malignant lesions through imaging [3]. The second is as an independent risk factor 

for breast cancer. Increased breast density is associated with a worse patient prognosis 

[4–13], poor progression free survival rate [14,15], and increased mortality [16,17]. These 

denser tissue regions are purported to be more fibrous than the surrounding tissue [18], and 

have been linked to an increase in the amount of collagen and numbers of epithelial and 

non-epithelial cells [19].

While mammography remains the standard for breast cancer screening, other imaging 

methods like elastography have been developed to leverage changes in tissue stiffness 

[20–23]. Breast ultrasound elastography, a method utilizing sonographic imaging, identifies 

changes in elastic moduli to detect lesions in the breast [24,25] and shows promise as an 

imaging modality alongside traditional ultrasound or mammograms to further characterize 

masses [26,27]. After using multiple imaging modalities, core needle biopsies are still an 

essential next step in the diagnostic algorithm [28].

In the laboratory, the application of cell and tissue mechanics has yielded great insight 

into tumor development and progression [29–40]. Tissue stiffening, widely attributed to an 

increase in collagen deposition and cross-linking [41–44], has been proposed as a marker of 

tumor biogenesis. Recent studies assessing mechanical tissue stiffness often use previously 
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frozen or fixed samples [44–46]; however these preservation processes significantly impact 

the resulting mechanical measurements [47]. Despite the lack of a direct link, many conflate 

breast tissue density (radiographically defined fibrous and glandular tissue) and breast tissue 

stiffness (the resistance of tissue to deformation [48]; often broadly referring to the elastic 

modulus). The disconnect in terminology, between breast density vs. breast stiffness, and 

assessed features in the clinic vs. the bench significantly hampers the generation of new and 

effective mechanobiology-inspired cancer therapies [49–53].

Here, we relate medical imaging, treatment history, and histology to global and local 

mechanical measurements using a deep learning, convolutional neural network (CNN) that 

accurately identifies tissue components from hematoxylin and eosin (H&E)-stained sections 

of breast cancer tissues (Fig. 1a). Our goal was to relate microanatomical features of breast 

cancer histology to global and local breast stiffness and breast density. Patients with luminal 

A subtype (estrogen receptor (ER) and/or progesterone receptor (PR) positive and HER2 

negative) have dense breasts that have been linked to an increased breast cancer risk [54]. 

Patients with triple-negative (TNBC) subtype (ER, PR, HER2 negative) tend to have lower 

mammographic breast density than non-TNBC patients, yet, for complex reasons including 

the inability to use anti-HER2 drugs and an increased risk of recurrence, TNBC has a lower 

overall survival rate (76.9%) than other breast cancers (90.3%) [55–57]. Here we utilize 32 

tissue samples from nine patients with a luminal A subtype and one patient with a triple 

negative (ER, PR, HER2 negative) subtype. For each patient, we analyze tumor tissue, and, 

as a control, grossly normal tumor-adjacent breast tissue from the same patient.

Global stiffness is determined by a compression test, which consists of taking one uniaxial 

measurement per tissue sample to obtain Young’s modulus. Local stiffness, obtained through 

microindentation, reports the elastic modulus from multiple, evenly spaced indentation 

measurements across the same tissue surface. Based on these measurements, we then 

identify correlations between tissue stiffness, microanatomical tissue composition, and 

breast density.

2. Materials and methods

2.1. Patient tissues

Patients with abnormal screening or diagnostic breast imaging findings require pathologic 

examination (either core needle aspiration or less frequently fine needle aspiration) to 

definitively characterize the abnormal radiographic lesion. If positive for breast cancer, the 

pathologist will determine the histologic subtype, assign a Nottingham histologic grade, 

and perform additional breast biomarker studies (Fig. 1a). The combination of physical 

examination and imaging modalities helps to assign the clinical staging regarding the 

size of the tumor (T), abnormal axillary lymph node (N) and the presence of metastatic 

disease (M). If the patient undergoes surgical resection, lumpectomy or mastectomy, the 

pathological staging will be reported by the size of the mass (T) and any lymph node 

involvement (N). During the pathologic evaluation, the histologic type and Nottingham 

score are confirmed, and the overall pathology cancer stage is assigned as defined by the 

American Joint Committee of Cancer Staging Manual, 8th edition [58] (Primary Tumor [T] 

Status and Regional Lymph Nodes [N] Status) (Fig. 1a).
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All patient tissue samples were obtained with written consent from the patient and approved 

by the Johns Hopkins Medicine Institutional Review Board (IRB). Tumor-adjacent and 

tumor tissue samples received from the patients were kept in 4 °C DPBS immediately 

after mastectomy or lumpectomy. Tumor samples were then transferred for mechanical tests 

within 4 h of resection. The tumor tissue was then sectioned to expose the regions of interest 

for micromechanical mapping and bulk compression tests.

Fifteen tissues from six luminal A patients that did not receive neoadjuvant chemotherapy 

were chosen for the global stiffness analysis. Six tissues from two patients, one with 

luminal A subtype and one with TNBC subtype, that received neoadjuvant chemotherapy 

were used in a separate analysis of the relationship between global stiffness and tissue 

composition to avoid any confounding tissue composition distributions associated with 

neoadjuvant chemotherapy previously reported in the literature [25,59,60]. Two tissues 

from one patient with a luminal A subtype and no neoadjuvant chemotherapy were used 

for complementary local stiffness analysis. Only luminal A patients who did not receive 

neoadjuvant chemotherapy were used to analyze quantified breast density. Tissue samples 

from all patients were used to train the neural network.

2.1. Microindentation of tissues

The tumor section was mounted on a customized stage and DPBS was applied to keep 

the tissue hydrated throughout the measurement. Dynamic indentation by a nanoindenter 

(Nanomechanics Inc.) was used to characterize the tumor elastic modulus [61]. Sneddon’s 

stiffness equation [62] was applied to relate dynamic stiffness of the contact to the elastic 

storage modulus of the samples [63,64]. 500 μm flat cylindrical probe was used in the 

indentation experiments. Briefly, procedure of indentation is comprised of 3 steps: 1) 

approaching and finding tissue surface at the indenter’s resonant frequency to enhance 

contact sensitivity and accuracy, 2) pre-compression of 50 μm to ensure good contact, 3) 

dynamic measurement at 100 Hz oscillation frequency with amplitude of 250 nm. The 

indentation procedure mentioned above was done consecutively on multiple regions of a 

single tissue surface in a grid pattern to obtain elastic moduli map of the tumor. Because 

obtaining a perfectly flat tissue surface was difficult due to tissue heterogeneity, individual 

indentation processes were observed using a microscope camera to determine inappropriate 

contact of the probe to the tissue for inaccurate measurement which were excluded from 

data. Typically, the number of indentation points per tissue mapping was 20–40 with the 

resolution of 1–3 mm spacing between points depending on the size of tumor sample. The 

duration of stiffness mapping was 30 min on average. A single measurement was obtained 

for each indentation.

2.2. Compression test of tissues

Tissue samples were sectioned to obtain flat and parallel surfaces on all sides. Once 

the sample was sectioned, it was immediately staged on tensile/compression tester (MTS 

Criterion) for measurement [65]. Top compression plate was lowered until in full contact 

with tissue sample at minimal load. Once in contact, the samples could relax and stabilize 

for 1 min before actual compression test. Tissue samples were compressed at 0.25 mm/s 

deformation rate until 20% strain. Young’s modulus calculation was done on the best-fitted 
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slope of the initial linear region (~5–10%) of the obtained stress-strain curve. A single 

measurement was obtained for each tissue.

2.3. Patient tissue processing

After obtaining mechanical measurements, each tissue was fixed in formalin for 24 h. The 

tissue was transferred to PBS prior to embedding in paraffin, sectioning (4 μm), and staining 

with hematoxylin and eosin (H&E). To minimize the batch effects of H&E image staining 

and scanning conditions, all tissues were stained in and scanned by the same laboratory.

2.4. Quantifying breast density from mammograms

Pectoral muscle was removed from mammogram images prior to receipt. Images were 

then cropped to remove any identifiers and keep only the breast image. The image was 

then converted to type 8-bit. Thresholding was performed using MinError(l) in ImageJ and 

a histogram was taken to determine the total breast pixel size. Reverting to the original 

8-bit image, thresholding using Moments and taking a histogram determined the number 

of dense breast tissue pixels. A breast density percentage was obtained by dividing the 

number of white pixels from the Moments thresholding by the number of white pixels using 

MinError(l) thresholding and multiplying by 100.

2.5. Second-harmonic generation

Mounted tissue slides were imaged using a LD LCI Plan-Apochromat 25×/0.8 Imm 

objective mounted on a Zeiss LSM 710 NLO upright microscope. Excitation was provided 

by a Chameleon Vision II mode-locked Ti:Sapphire laser tuned to 880 nm, and the 

SHG signal was captured by an epi-mounted non-descanned detector with a 420–480 nm 

bandpass filter.

2.6. Manual annotations

Manual annotations of tissue slides were performed using Aperio ImageScope 

[v12.3.3.5048]. Briefly, cellular and extracellular components were identified manually in 

H&E-stained tissue slides by outlining the feature using the built-in annotation function. 

Within each tissue slide, we annotated 30 or more instances of a feature type to create the 

tissue and non-tissue-based classes. The annotations were verified by a trained pathologist.

2.6. Convolutional neural network architecture

We used H&E stained slides of breast tumor-adjacent and tumor tissues to train the CNN 

[66]. The slides were scanned at 20×, with a spatial resolution of 0.5μm/pixel, and down-

sampled using the openslide library [67] to a pixel size of 1μm/pixel. Example regions 

of different tissue classes were manually annotated (30+ annotations per tissue class) in 

each individual slide. In this study, we annotated seven tissue classes including blood 

vessels, ducts, fat, tumor cells, wavy collagen, straight collagen, and fibrotic tissue; and 

one non-tissue class which we term white space. The CNN was trained and validated in 

MATLAB 2019b with 3600 randomly selected non-repeating image tiles per annotation 

class from all patient slides. Of these 3600 images per class, 3000 were used for training, 

and 300 were used for validation and testing. Dropout layers and a window size of 103 
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× pixels 103 pixels x 3 channels were used to facilitate the classification of both cellular 

and extracellular classes in the model. We utilized data augmentation approaches similar 

to previous augmentation techniques in order to increase our training data size and help 

prevent overfitting [68,69]. The training images were augmented via positive or negative 

90° rotations to increase the training size and prevent overfitting [70–73]. Adam (adaptive 

moment estimation) optimization was used with an initial learning rate of 0.013 to train 

the model. Training finished when validation accuracy did not improve for five epochs. The 

network architecture of the CNN model contains four convolutional layers each followed by 

a batch normalization and rectified linear unit (ReLu) layers. The second convolutional layer 

is followed by a dropout layer of 0.1. Then there are six convolutional layers in parallel, 

each with a batch and ReLu layer. An additional layer and ReLu layer are added before 

five more convolutional/batch/ReLu layers. There is a max pooling layer, convolutional 

layer, dropout layer of 0.1, batch and ReLu layers. Next, a convolutional/batch/ReLu/max 

pooling set before a fully connected layer with batch normalization and ReLu layers. The 

architecture ends with a fully connected layer, batch normalization layer, and softmax output 

layer. By utilizing distinct training, validation, and testing sets, we were able to assess 

our model for signs of overfitting. As our training and validation sets came from manual 

annotations of the same images, the validation data assessed CNN performance on unseen 

combinations of annotations from the same images as the training set. As our testing set 

came from annotations of images not included in the training set, the testing data assessed 

the CNN’s ability to classify wholly unseen examples of our tissue and cellular features. 

Our model testing accuracy (93.0%) was similar to our training accuracy (94.2%) and our 

validation accuracy (93.7%), suggesting that our model was not overfit to our training data.

2.8. Computation of tissue composition

Classified images were imported into ImageJ. Histogram analysis of the whole tissue 

section provided tissue composition values for global stiffness (15 tissue samples, 6 

patients). For local stiffness composition, the fresh patient tissue image contains the 

original microindentation map overlay. The CNN classified image was scaled and manually 

registered to match the original fresh patient tissue image. Histogram analysis inside of 

500 μm (62.5 px) diameter circles on the CNN classified image provided the local stiffness 

composition (3 tissue samples, 2 patients).

2.9. Bivariate and univariate analysis

MATLAB’s built-in function ‘corr’ was used to perform univariate analysis resulting in 

either a Pearson or Spearman correlation and statistical significance. MATLAB’s built-in 

functions ‘glmfit’ and ‘glmval’ were used to perform bivariate analysis resulting in a 

correlation coefficient, fit error, and statistical significance for each pair. The global and 

local stiffness measurements are converted to log base 10 values before analysis. The 

distribution used was ‘normal,’ and the link was ‘identity.’ The general form of the equation 

is:

μ=Xb
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where μ is the response with a normal distribution, X is a matrix of predictors, and b is a 

vector of coefficient estimates.

The number of patient tissue samples and patients for each parameter are as follows: global 

stiffness – 15 tissue samples, 6 patients; local stiffness – 2 tissue samples, 1 patient; breast 

density quantification – 20 tissue samples, 8 patients.

2.10. Heatmaps of tissue composition, mechanical measurements, and pathologic 
features

Heatmaps of global and local stiffness data were created in RStudio using R version 3.6.3 

and function superheat. Clustering was performed using Euclidean distance with a complete 

linkage method.

2.11. Statistical analysis

Statistical analysis for univariate and bivariate analysis plots and tables was performed using 

MATLAB’s “corr” function. The line of best fit was plotted using Prism 6 (GraphPad 

Software, Inc.). For the breast density bar chart analysis, ordinary one-way ANOVAs using 

Turkey’s multiple comparison test with a single pooled variance were performed in Prism 6 

(GraphPad Software, Inc.). All bar chart graphs are reported as mean ± SEM. *p < 0.05, **p 

< 0.01, ***p < 0.001, and ***p < 0.0001.

3. Results

3.1. Deep-learning model classifies essential cellular and extracellular matrix features

Patients received diagnostic breast imaging via mammogram, pathologic examination, and 

characterization, and finally surgery prior to release of tissue samples for mechanical 

measurements, H&E staining, and deep learning analysis (Fig. 1a, See Methods). This study 

presents analysis of ten patients, with stiffness measurements on samples from nine of the 

ten patients (Table 1).

Breast tissue histology is complex and heterogeneous, as many components change in 

content and organization during tumor progression [58]. Whole slide tissue images regularly 

contain hundreds of thousands to millions of cells within semi-organized stroma. As such, 

exhaustive manual annotation of all cellular and fibrous features within histological images 

is so time intensive as to be infeasible. Semi-automatic computational techniques such 

as deep learning classifiers address this problem, and have been successful in identifying 

normal and cancerous components in histological sections [74,75]. This paper utilizes a 

CNN-based deep learning pipeline which has previously shown success in classification of 

histological images into pathologically relevant subtypes [66]. We identified seven clinically 

relevant and computationally identifiable tissue classes consistent across most tested breast 

tissues (Fig. 1b and c). The four cell component classes are blood vessels (capillaries and 

venules/arterioles), ducts (excretory, terminal/acini/alveoli), fat, and tumor cells (viable, 

necrotic) (Fig. 1b). The three extracellular matrix (ECM) classes are wavy collagen, straight 

collagen, and fibrotic tissue (Fig. 1c). Second harmonic generation confirmed that the wavy 

and straight ECM classes were fibrillar collagen (Fig. 1d). The wavy and straight stromal 
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phenotypes, a distinction which has been noted by others [76], were identified from a 

visual assessment of the histology sections. Our eighth class, white space, encapsulates all 

non-tissue space on the images (not shown).

The CNN successfully identified and classified the seven cell and tissue classes stated 

above in 32 patient tissue samples consisting of 13 tumor-adjacent and 19 tumor samples 

from all ten patients (Fig. 2a). The confusion matrix details class accuracy in the testing 

dataset (Fig. 2b). Overall testing accuracy was 93.0% (Fig. 2b). All tissue classes were 

identified with greater than 90% sensitivity, except for fat cells at 89.7%. In this case, fat 

tended to be misclassified as white space due to the chosen image window size in the 

neural net. Histological subtyping revealed that a subset of luminal A tumors has ductal 

morphologies, which could explain why ducts and tumor cells were misclassified as each 

other 2.5% of the time (Fig. 2b). Wavy collagen was misclassified as straight collagen 3.2% 

of the time, however, straight collagen was never mistaken for wavy collagen (Fig. 2b). 

The successful separation of these ECM phenotypes was important for ensuring that we 

could analyze the contribution of the stroma to global and local modulus measurements. Any 

incorrectly classified straight collagen tended to be attributed to the tumor cell class, which 

was most likely a biological result of short straight fibers amongst tumor cells. White space 

misclassified as other cellular classes may be due to the presence of lumen (Fig. 2b). Visual 

comparison highlights the trained network’s ability to distinguish histological features even 

in complex tissue microenvironments (Fig. 2c and Supplementary Fig. 1a).

3.2. Straight collagen strongly correlates with global stiffness

Histograms of fully classified whole-tissue slides provided cell and ECM composition for 

all tissue samples which can be visualized by order of global stiffness, breast density, and 

patient information (Fig. 3a). Stiffness measurements of tumor tissues and tumor-adjacent 

tissues (which served as controls) revealed that both global stiffness and composition 

were heterogeneous within each patient between tumor tissue sections and tumor-adjacent 

sections (Fig. 3a). Mechanically soft tissue included the highest percentages of fat and 

wavy collagen (Fig. 3a). The tissues with the highest Young’s moduli contained greater 

percentages of blood vessels, tumor cells, straight collagen, and fibrotic tissue (Fig. 3a).

Further analysis of the data suggested that the Young’s modulus, the global stiffness 

measurement of each tissue, has a logarithmic relationship with each tissue component 

[77,78]. Plots of the log stiffness value versus the percent composition of each class yielded 

a linear line of best fit and associated Pearson correlation. Blood vessels had a significant 

but only moderately strong positive correlation with global stiffness (r = 0.61, p = 0.016), 

suggesting that this relationship was important but did not fully describe the system (Fig. 

3b,i). Highlighted by the fact that tissue with the greatest tumor cell composition belonged 

to a tissue with a stiffness value of 5.8 kPa, while the lowest composition belonged to a 

stiffness of 7.2 kPa (r = 0.46, p = 0.084) (Fig. 3b,ii), tumor stiffness did not always increase 

with the percentage of tumor cells. Neither the percentage of fat nor ducts correlated 

significantly with global stiffness (Supplementary Fig. 2a and b). Combining all matrix 

(non-cellular) classes into one category revealed that there was no clear correlation (r = 

−0.12, p = 0.67) between the total extracellular matrix content and global breast tissue 
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stiffness (Fig. 3c). This finding may be a result of the high percentage of wavy collagen, 

an ECM class that did not significantly correlate with stiffness in each tissue sample 

(Supplementary Fig. 2c). While the percentage of fibrotic tissue showed a moderately 

strong correlation (r = 0.54, p = 0.039) with the Young’s modulus of the tissue (Fig. 

3d,ii), there was a strong positive correlation (r = 0.84, p = 0.0001) between the percentage 

of straight collagen and the Young’s modulus (Fig. 3d,i). Parsing the extracellular matrix 

classes demonstrated that the necessity of evaluating ECM components separately from the 

bulk.

In the clinic, neoadjuvant chemotherapy is known to be a confounding factor in the resulting 

breast tissue composition as it contributes to the generation of fibrotic tissue [59,79]. In two 

patients who received neoadjuvant chemotherapy, there was a significantly strong positive 

correlation (r = 0.95, p = 0.0031) between straight collagen and Young’s modulus (Fig. 3e). 

This result suggests that the relationship between straight collagen and global stiffness is 

independent of whether a patient has received neoadjuvant chemotherapy.

The eight patients in the luminal A, non-neoadjuvant chemotherapy cohort had 

mammographically heterogeneously dense breasts (Table 1). When quantified, this category 

spanned a range of 20–50% dense breast tissue (Fig. 3f, Table 1). Binning of the percent 

density into three categories showed that there was no significant relationship between breast 

density and global tissue stiffness in our study (Fig. 3f). The Spearman correlation between 

the two parameters was effectively zero (Fig. 3f).

A general linearized model was used to perform bivariate analysis of tissue composition 

classes in the patients without neoadjuvant chemotherapy (see methods). The stiffness 

measurements were converted into log scale values prior to running the analysis. The 

correlation between Young’s Modulus and any two tissue classes only slightly increases in 

strength (r = 0.87, p = 0.000026) (Fig. 3g). The effect of straight collagen dominates the 

top five strongest bivariate correlations (Fig. 3h), suggesting that straight collagen, and not 

cellular components, is the main determiner of Young’s modulus. The percentage of blood 

vessels in combination with straight collagen yielded the highest correlation (Fig. 3g and h). 

This result is supported by the above univariate analysis (Fig. 3b,i and 3d,i).

3.3. Straight collagen content correlates with other cellular and extracellular classes

Given the importance of straight collagen composition in determining breast tissue stiffness, 

we investigated the relationship of straight collagen composition to other cellular and 

extracellular classes (Fig. 3i and j). Tissue stiffness is often discussed and compared 

based on orders of magnitude changes, and frequently visualized on a logarithmic scale 

[77,78]. Unlike Young’s modulus, the quantitative relationship between various cellular and 

extracellular classes has not been extensively studied. Thus, we cannot assume that the 

percentage of straight collagen has a linear, proportional response with the other tissue 

components, and have chosen to report the Spearman correlation instead of the Pearson 

correlation.

There is a significant, moderately strong Spearman correlation (ρs) (ρs = 0.69, p = 0.0045) 

between the percentage of blood vessels and straight collagen (Fig. 3i). The positive 
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correlation means that a higher percentage of blood vessels moderately parallels a higher 

percentage of straight collagen. The best fit line to describe the relationship was logarithmic 

(Fig. 3j,i). Increased vascular density has been linked to poor tumor differentiation and 

an increase in cancer cell proliferation [80], which suggests that there may be a trade-off 

between vascularization and an effort by cancer cells to align collagen.

The percentage of tumor cells has a strongly positive correlation with straight collagen 

(ρs = 0.91, p = 0.0000024) (Fig. 3i). This relationship suggests a near perfect monotonic 

relationship between these parameters, and agrees with our understanding of tumor biology 

that tumor cells are responsible for restructuring the extracellular matrix to create aligned 

fibers [42,81,82]. The line of best fit for the data based on the R-squared value is an 

exponential curve, however the root mean squared error (RMSE) is high using this fit (Fig. 

3j,ii). This finding is distinct from the earlier observation that the percentage of tumor cells 

does not strongly or significantly correlate with tissue stiffness (ρs = 0.55, p = 0.035; r 

= 0.46, p = 0.084) (Fig. 3b,ii). The correlations between each combination of the three 

parameters suggest complex relationships between tumor development through changes in 

tissue composition and mechanical properties like tissue stiffness.

With respect to the other ECM classes, the percentage of straight collagen increased as wavy 

collagen decreased (ρs = −0.55, p = 0.034) and fibrotic tissue increased (ρs = 0.68, p = 

0.0054) (Fig. 3i). The best fit line for wavy collagen was linear but had a high RMSE (Fig. 

3j,iii). The degree of collagen curvature, i.e. straight versus curly, was previously related 

to its location from the tumor [76,83,84], and found to be independent of the grade of 

malignancy [76]. For fibrotic tissue, the best fit line was logarithmic (Fig. 3j,iv).

3.4. Local stiffness is best described by straight collagen content

Local measurements reveal the large variations in stiffness values of a fresh patient 

tissue sample (Fig. 4a). Manual registration of the microindentation values on to the 

CNN-classified histology image allowed for the direct comparison between local elastic 

moduli and local tissue composition (Fig. 4b). Manual registration was necessary since 

the microindentation images and map are performed on whole tissues lacking resolution 

required to identify tissue components, and therefore the section must be aligned to the 

whole tissue image based on whole tissue shape and knowledge of microindentation 

sampling. Compositions were determined for the region directly under the microindenter, 

i. e. a 500 μm-diameter circle (Fig. 4b, inset). Two tissue samples from one patient in the 

luminal A non-neoadjuvant cohort, not previously used in the global stiffness analysis, were 

chosen for the local stiffness analysis since the processed samples could be directly matched 

to the unprocessed images obtained from microindentation mapping.

Visualizing the increasing local stiffness demonstrates that the indentations with the greatest 

stiffness values had the highest percentages of straight collagen (Fig. 4c). The greatest 

percentages of tumor cells and fat coincided with some of the lower and middle stiffness 

values (Fig. 4c). As with the global Young’s modulus, we considered the logarithm of 

the local elastic modulus versus the tissue classes. The log of the elastic modulus had 

a significant, moderately strong linear relationship with straight collagen (r = 0.57, p = 
0.000023) (Fig. 4d). This was the only cellular or extracellular relationship to the elastic 
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modulus that was significant. Bivariate analysis only slightly increased the correlation of 

the tissue composition classes to the elastic modulus (r = 0.60, p = 0.0000055) (Fig. 4e). 

Straight collagen again dominated the top five correlations (Fig. 4f), suggesting that straight 

collagen, and not cellular components dominates the elastic modulus within the local regions 

measured. The strongest bivariate pair is ducts combined with straight collagen (Fig. 4e and 

f).

3.5. Breast density does not strongly correlate with tissue classes

The concept of breast density is often conflated with breast tissue stiffness. We showed 

using global stiffness measurements that quantified breast density does not have a clear 

correlation with Young’s modulus of the tissue (Fig. 3f). We sought an answer to the 

question of which cellular or extracellular classes relate to quantified breast density. The 

relationship between component and percentage breast density was determined using two 

methods. The first was through a Spearman correlation (ρs), highlighting a monotonic 

relationship between ranked values (Fig. 5a). The second was by binning the percent breast 

density into three intervals and comparing the composition (Fig. 5b–h).

The percentage of blood vessels and fat alone did not correlate with percent density (Fig. 

5a) and was not significantly different from 20 to 50% dense breast tissue (Fig. 5b). The 

percentage of ducts had a significant, moderately positive correlation with percent of dense 

breast tissue (Fig. 5a). Furthermore, 40–50% dense breast tissue has significantly greater 

percentage of ducts than 20–30% or 30–40% dense breast tissue (Fig. 5c). While this 

initial finding is in line with the current understanding that dense breast tissue highlights 

an increase in glandular tissue [2], future work spanning a larger patient population (i.e. 

wider range of breast densities, more patients with lower mammographic breast densities) is 

necessary to validate this claim. Even though we did not find a correlation between tumor 

cells alone and breast density (ρs = 0.04, p = 0.84) (Fig. 5a), there were more tumor cells in 

tissues with a breast density of 20–30% than 30–40% and 40–50% (Fig. 5e). There was no 

significant correlation between any of the extracellular matrix classes and the percent breast 

density (Fig. 5a), nor was there a significant relationship between breast densities within 

each of the components (Fig. 5f–h). Assuming a normal distribution, tumor cells and fibrotic 

tissue combined had a significant and moderately positive correlation with breast density 

(ρs = 0.59, p = 0.0018) (Fig. 5i and j). After this first combination, the percentage of ducts 

dominated the bivariate relation (Fig. 5j).

4. Discussion

Through tissue component identification using a deep learning model, we were able to 

connect mechanical measurements to patient tissue composition. We identified the highest 

univariate correlate of both global and local stiffness to be straight collagen (Fig. 3d,i 

and Fig. 4d). Our findings improve upon and depart from previous work with these key 

discoveries: straight collagen is a biomechanical marker in human tissue; straight collagen 

has strong monotonic relationships with other cellular and extracellular classes; Young’s 

modulus is dependent on tissue composition; the fibrillar phenotype is identifiable using 

H&E without SHG or additional staining; and that straight collagen does not directly relate 
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to breast density. Furthermore, we use whole tissue slides in our analysis affording us both 

the ability to analyze a greater fraction of each tumor than tissue microarrays (TMAs), and 

to utilize the same slides already procured in the clinic for diagnostics and treatment.

Our results strongly correlating straight collagen to global breast stiffness are supported 

by current knowledge in the field. Previously, through the use of TMAs, straightened and 

aligned collagen was linked to poor disease-specific and disease-free survival independent 

of the cancer type, stage of cancer, hormone status, and node status [85]. Aligned collagen 

perpendicular to the tumor acts as a mechanism for local invasion by cancer cells [82,86]. 

This class was proposed as a predictor for breast cancer survival, i.e. that increased aligned 

collagen suggests poor prognosis [85,87]. In mice, the elastic modulus of mammary glands 

was shown to increase in tumors due to collagen cross-linking, which then forms more 

fibrillar and aligned collagen [42]. Further, in vitro models have been used to show that 

collagen alignment has a positive correlation to matrix stiffness and that stiffness measures 

differ from a macro to a micro scale [88,89]. In ex vivo measurements of human breast 

tissues, the mean Young’s modulus was shown to vary based on the tissue and histologic 

tumor type [90]. In an earlier attempt to relate breast tissue stiffness and breast density, 

the stiffness was approximated from a theoretical calculation of breast volume and area 

in a mammogram, not through actual mechanical measurements of the tissue [91]. Our 

results and the above studies show clear links between (1) collagen alignment and patient 

outcome and (2) collagen alignment and tissue stiffness. Extrapolating these results to 

clinical observations, these findings provide a possible explanation for the clinical link 

between tissue stiffness and patient outcome.

Treatment of all stroma as a single class would have led to the incorrect conclusion that 

the extracellular matrix does not contribute to mechanical stiffness in patient tissue (Fig. 

3c). The predominance of the wavy collagen phenotype, which on average accounts for 

56.6% of the classes identified in each tissue section, causes this misleading result when 

the ECM is bundled into a single category. Our results following separation of wavy and 

straight fibrillar collagen and fibrotic tissue highlights the importance of separating ECM 

classes into pathologically relevant subtypes. Future analysis, through immunohistochemical 

and immunofluorescent staining, could incorporate the identification of immune and stromal 

cells.

The relationship between tumor cells, straight collagen, and Young’s Modulus is worth 

briefly discussing as these classes defining stiffer tumor sections are in line with the current 

understanding of tumor biology [29,92–95]. Tumor cells have a weak correlation with tissue 

stiffness, despite their strong correlation with straight collagen. We think that there is a 

difference between the maximum stiffness achievable by a cell component versus that of an 

extracellular class. Tumor cells can align collagen but are not stiff themselves; therefore, the 

aligned collagen has a greater contribution to tissue stiffness.

All patients used in the study of breast density had a luminal A subtype and were designated 

as having categorical heterogeneously dense breasts. Within this specific category, the 

quantified breast density ranged between 20 and 50%. In contrast to previously reported 

literature, we did not find that mammographic density correlated with aligned collagen 
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[96,97]. The different findings could be a result of earlier works identifying low and high 

mammographic density from a patient cohort with values predominantly below 20% density 

[96], or with patients across multiple breast density categories [97].

Our result urges caution when discussing breast density versus breast stiffness. Additionally, 

this outcome supports the clinically accepted separation between findings from palpations 

and cancer occurrence or prognosis [98–100]. Of note, the tissue samples are from regions 

in or near the excised tumor region and may not fully represent the non-excised regions of 

the breast, whereas the breast density determination is based on the whole breast. We are 

unable to specifically trace back the excised tissue sample to an exact area of high or low 

mammographic density in the mammogram image. Future studies would need to know the 

exact location of the excised tissue to relate the tissue composition findings to regions of 

breast tissue density in mammograms, and utilize a larger patient cohort with a range of 

categorical and quantitative breast density. Furthermore, while we did relate breast density 

to both the Young’s modulus for global tissue stiffness and the elastic modulus for local 

tissue stiffness, there are other types of stiffness measurements that could have distinct 

relationships with breast density.

5. Conclusion

In conclusion, we are able to identify the unique correlations between stiffness, 

mammographic breast density, and cellular and extracellular matrix features by utilizing 

a convolutional neural network. We propose that straight collagen best correlates with global 

and local tissue stiffness. We find that there is no readily identifiable connection between 

tissue stiffness and breast density.
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Fig. 1. 
Breast tissue acquisition, characterization, and selected classes for deep learning 

composition analysis. a, Schematic detailing the breast tissue acquisition and 

characterization starting with medical imaging via mammogram, diagnosis, treatment, 

mechanical measurements, histology, and machine learning. b, Hematoxylin and eosin 

(H&E)-stained images of cell component classes including (i) blood vessels (capillaries, 

venules/arterioles), (ii) ducts (excretory, terminal/acini/alveoli), (iii) fat, (iv) tumor cells. 

Scale bars in black are 50 μm. c, Hematoxylin and eosin (H&E)-stained images of 

extracellular matrix component (ECM) classes including (i) wavy collagen, (ii) straight 

collagen, and (iii) fibrotic tissue. Scale bars in black are 50 μm. d, Second harmonic 

generation (SHG) images confirming (i) the wavy ECM class is wavy collagen, (ii) the 

straight ECM class is straight collagen, and (iii) the fibrotic tissue is not collagen detectable 

with SHG. Scale bars in white are 100 μm.
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Fig. 2. 
Convolutional Neural Network construction, quantitative and qualitative analysis. a, 

Schematic showing the division of H&E stained tissue slides (32 tissues, 10 patients) into 

data tiles for training, validation, and testing. While each dataset is from the same patient 

tissue slides, the testing set was developed from a separate set of annotations than the 

training and validation sets. The training images are augmented by rotation [−90°,90°] 

before use in the convolutional neural network (CNN). The accuracy of the CNN is 

determined against the testing sets. Finally, the whole tissue images are classified according 

to the CNN. b, Confusion matrix determining quantitative accuracy of the CNN for the 

testing set. Cell component classes include blood vessels, ducts, fat, tumor cells, wavy 

collagen, straight collagen, fibrotic tissue, and white space (blank space). 300 images were 

analyzed per class. Overall model accuracy of 93.0%. c, Qualitative analysis of CNN model 

accuracy showing original histology images side-by-side with the CNN classified image. 

The first set of images highlights the model’s ability to identify blood vessels in both fat 

and wavy collagen (Fig. 2c,i). The second set of images recognizes the distinction of ducts, 

both excretory and terminal, in wavy collagen (Fig. 2c,ii). The third set of images shows 
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the detection of cancer cells, straight collagen, and fibrotic tissue (Fig. 2c,iii). Scale bars in 

black are 100 μm. Color legend for each classified feature is included in the figure. (For 

interpretation of the references to color in this figure legend, the reader is referred to the 

Web version of this article.)
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Fig. 3. 
Young’s modulus (global stiffness) characterization and composition analysis of breast 

tissue. a, Heatmap including (columns) 15 tissue samples from 6 patients (P#) clustered 

using Euclidean distance with complete linkage by (rows) related features. Each parameter 

is normalized using a z score. The values within each feature are color coded by low to high. 

The heatmap key on the left denotes the following color-coded parameters of each feature: 

cell component, extracellular matrix (ECM) component, pathologic feature, or mechanical 

measurement. b, Univariate analysis comparing Young’s modulus (global stiffness; kPa) 

to the percent composition of cell component class: (i) blood vessels, (ii) tumor cells; c, 

extracellular matrix combined; d, (i) straight collagen and (ii) fibrotic tissue; e, straight 

collagen from patients who received neoadjuvant chemotherapy; and f, percent breast 

density. g, Highest correlated pair of tissue composition classes with Young’s Modulus. 

The Pearson Correlation (r), p-value, r2 value, and error is listed at the top of plots b-e 
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and g. One-way ANOVA was used to perform statistics in f. h, Table of top five correlated 

tissue composition pairs from bivariate analysis using normal distribution and identity link 

using MATLAB’s glmfit and glmval functions. Rank ordered by correlation. The error is 

the fit-error. i, Plot of Spearman Correlation (ρs) versus the p-value for all cellular and 

extracellular classes versus straight collagen. Values below the dashed line where p = 0.05 

are significant. j, Plots showing the monotonic relationship between straight collagen and (i) 
blood vessels, (ii) tumor cells, (iii) wavy collagen, and (iv) fibrotic tissue. Plots in j show the 

r2 value and root mean squared error (RMSE) at the top of the plot. Plots with square data 

points represent luminal A patients who have not received chemotherapy. Plots with circles 

represent patients who received neoadjuvant chemotherapy. Each data point is color coded 

by patient. The lines denote the best fit trend line. (For interpretation of the references to 

color in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 4. 
Microindentation mapping, characterization, and composition analysis of breast tissue. a, 

Fresh patient tissue with elastic modulus (local stiffness; kPa) map overlay. Scale bar in 

black is 5000 μm. b, Corresponding Convolutional Neural Network (CNN) classified image 

of the patient tissue in a with the microindentation stiffness (kPa) map overlay. Scale bar in 

black is 5000 μm. b inset, Inset shows the composition of a representative microindentation 

point. Scale bar in black is 500 μm. Bad measurements are listed as NA and do not 

contribute to the analysis. c, Heatmap clustered using Euclidean distance with complete 

linkage by (row) each cell or extracellular matrix class detailing the percent composition (0–

100%). Each column is a different microindentation point organized from the lowest to the 

highest stiffness (kPa) value (49 measurements, 2 tissues, 1 patient). d, Univariate analysis 

comparing elastic modulus (local stiffness; kPa) to the percent composition of straight 

collagen. e, Bivariate analysis showcasing the tissue composition pair with the highest 

correlation to local stiffness. The line denotes the best fit line. The Pearson Correlation (r), 

p-value, r2 value, and fit-error is listed at the top of the plot. f, Table highlighting the top five 

tissue composition pairs correlated with the elastic modulus. Rank ordered by correlation. 

The error is the fit-error.
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Fig. 5. 
Breast density does not correlate with tissue composition. a, Plot of Spearman Correlation 

(ρs) versus the p-value for all cellular and extracellular classes versus percent breast density. 

Values below the dashed line where p = 0.05 are significant. Percent breast density versus 

cell classes (b) blood vessels, (c) ducts, (d) fat, (e) tumor cells; and extracellular classes 

(f) wavy collagen, (g) straight collagen, (h) fibrotic tissue. When binned, the quantified 

breast density is related via bar chart using a one-way ANOVA. i, Bivariate analysis showing 

the highest pair of features that correlate with the percent breast density. The r2 value and 

fit-error are at the top of the plot. The line denotes the best fit line. j, Table highlighting the 

top five tissue composition pairs correlated with the percent of breast density. Rank ordered 

by correlation. The error is the fit-error.
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