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Abstract

The uptake transporter OATP1B1 (SLC01B1) is largely localized to the sinusoidal membrane of 

hepatocytes and is a known victim of unwanted drug-drug interactions (DDIs). Computational 

models are useful for identifying potential substrates and/or inhibitors of clinically relevant 

transporters. Our goal was to generate OATP1B1 in vitro inhibition data for [3H] estrone-3-

sulfate (E3S) transport in CHO cells and use it to build machine learning models to facilitate a 

comparison of seven different classification models (DNN, Adaboosted decision trees, Bernoulli 

naïve bayes, k-nearest neighbors (knn), random forest, Support Vector Classifier (SVC), Logistic 

Regression (lreg) and XGBoost (xgb)) using ECFP6 fingerprints to perform 5-fold, nested 

cross validation. In addition, we compared models using 3D pharmacophores, simple chemical 

descriptors alone or plus ECFP6, as well as ECFP4 and ECFP8 fingerprints. Several machine 

learning algorithms (SVC, lreg, xgb, knn) had excellent nested cross validation statistics, 

particularly for accuracy, AUC and specificity. An external test set containing 207 unique 

compounds not in the training set demonstrated that at every threshold SVC outperformed the 

other algorithms based on a rank normalized score. A prospective validation test set was chosen 

using prediction scores from the SVC models with ECFP fingerprints and were tested in vitro with 

15 of 19 compounds (84% accuracy) predicted as active (≥20% inhibition). Of these compounds 6 

(abamectin, asiaticoside, berbamine, doramectin, mobocertinib and umbralisib) appear to be novel 

inhibitors of OATP1B1 not previously reported. These validated machine learning models can 

now be used to make predictions for drug-drug interactions for human OATP1B1 alongside other 

machine learning models for other important drug transporters in our MegaTrans software.
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Introduction

Membrane transporters that belong to the solute carrier and ATP-binding cassette 

superfamilies work to control the uptake, efflux and homeostasis of many nutrients that 

are physiologically relevant, as well as xenobiotics to which we are constantly exposed. 

These transporters can also influence the pharmacokinetics of many drugs and, in addition, 

may be used as potential targets for prodrug approaches. These transporters are often quite 

promiscuous in their selectivity, which increases the probability for potential interactions. 

Unfortunately, unlike enzymes involved in xenobiotic metabolism, transporters have not 

been as well characterized, either experimentally or computationally, which then impacts our 

ability to predict drug-drug interactions (DDIs) 1. In addition, several transporters have been 

associated with toxicity or diseases 2 supporting the need for additional characterization. 

Transporter genotypes can also impact biomarker levels, which may in turn affect our ability 

to predict these interactions 3. Recent regulatory guidance recommendations 4 have also 

suggested additional membrane transporters with emerging clinical relevance for assessment 
5.

The membrane transporter, OATP1B1 (SLCO1B1), is widely regarded as an ‘uptake’ 

transporter largely restricted to the sinusoidal aspect of hepatocytes. It transports 

a wide variety of structurally unrelated compounds, including members of several 

clinically important drug families: hydroxymethylglutaryl-CoA reductase inhibitors (statins), 

angiotensin II receptor blockers (sartans) and angiotensin converting enzyme (ACE) 

inhibitors 6. OATP1B1 is a known victim of unwanted DDIs 7 as therapeutically important 

drugs such as cyclosporine, gemfibrozil, some statins, antibiotics, and antiretroviral 

drugs are clinically relevant inhibitors of OATP1B1 8, 9. Several examples highlight the 

importance of this: gemfibrozil caused an eightfold increase in the AUC of repaglinide, 

and approximately 2-3-fold increase in the AUC of drugs that are not, or only partly, 
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metabolized by CYP2C8, including pravastatin and rosuvastatin 10. Co-administration of 

statins with fusidic acid in patients treated for methicillin-resistant Staphylococcus aureus 
infection is linked to myopathy and rhabdomyolysis due to potent inhibition of OATP1B1 

by the antibiotic 11. The potentially lethal interaction between cerivastatin and gemfibrozil 

led to the withdrawal of cerivastatin from the market and was attributed to concomitant 

inhibition of OATP1B1 and CYP2C8 by gemfibrozil glucuronide 12. The known influence 

of OATP1B1 on hepatic uptake and disposition of drugs led to its inclusion in the FDA 
13, 14 and EMA 15 guidances for the evaluation of all drug candidates as inhibitors of drug 

elimination via initial in vitro assessments of DDI.

Computational models of drug-transporter interactions are useful for identifying potential 

substrates and/or inhibitors of clinically relevant transporters and can provide insight on 

transporter substrate selectivity 16-32. There have been many efforts to use computational 

approaches to predict drug interactions with transporters, including pharmacophores, 

quantitative structure activity relationships (QSARs) using various descriptors, machine 

learning models and docking in crystal structures or homology models 17, 22, 24, 26-33. In 

addition, drug metabolite preferrences of OAT1 and OAT3, based on knockout mice plasma 

analysis, was shown to be useful in predicting OAT1/3 compound preference using machine 

learning 23. For example, several recent examples used in vitro data to generate Bayesian 

machine learning models that can, in turn, be used to score libraries of compounds and 

predict additional compounds as substrates and/or inhibitors of selected transporters 34-36. 

These models were shown to be useful in identifying important molecular features in the 

training sets and can be applied to the drug discovery and development process to identify 

valuable information on favorable and unfavorable drug-transporter interactions before 

additional in vitro and in vivo studies are conducted. DDIs that involve transporters can 

increase exposure and the risk of toxicity and or facilitate drug disposition 37. Computational 

modeling that is implemented early in the drug discovery and development process can 

refine the process of screening compounds and reduce the amount of time and effort 

required for lead identification and optimization. Our experience of using machine learning 
38-55 has previously been focused on Bayesian approaches, which classify compounds as 

either active or inactive based on user-defined thresholds, by means of a simple probabilistic 

classification model based on Bayes' theorem. More recently we have also explored large-

scale comparisons with many other state-of-the-art machine learning methods 56-58 which 

have been part of our software development efforts 56, 57. There has been limited comparison 

of different machine learning algorithms for human drug transporter datasets, unlike for 

other relevant drug discovery datasets 56, 59, 60. As yet there have been few larger-scale 

machine learning approaches that have been applied for OATP1B1 and this study uses 

the most recent machine learning approaches 61 and tests the models using prospective 

testing, which was the focus of our current research. In the process we have identified new 

OATP1B1 inhibitors and provide our training and test sets for others to utilize (Supplemental 

data).
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Methods

Chemicals.

[3H]Estrone-3-sulfate (E3S) (specific activity (S.A.), 49 Ci/mmol) was purchased from 

Perkin-Elmer (Waltham, MA). Unlabeled E3S was purchased from Sigma-Aldrich 

(St. Louis, MO). The Spectrum Collection (MicroSource Discovery Systems, Inc., 

Gaylordsville, CT; consisting of the compounds in their US and International Drug 

Collections, plus their Natural Product and Discover libraries) was provided by Arizona 

Cancer Center Drug Discovery Program of the University of Arizona. Ham’s F12 Kaighn’s 

modified medium was obtained from Sigma-Aldrich Co. Other reagents were of analytical 

grade and obtained commercially.

Cell Culture.

Chinese Hamster Ovary that stably express OATP1B1 were generously provided by Prof. 

Bruno Steiger 62. Cells were passaged every 3-4 days and maintained at 37°C in a 

humidified environment with 5% CO2. Expression of OATP1B1 in cells was maintained 

through G418 (purchased from Invitrogen, Carlsbad, CA, 100 μg/mL) selective pressure. 

When seeded into 96-well plates (Greiner; VWR Intl., Arlington Heights, IL) for transport 

assays, these cells were grown to confluence in antibiotic-free media.

Transport Experiments.

Cells were seeded in 96 well plates with 200 μL of cell media containing 550,000 cells/mL 

or 275,000 cells/mL, and 5mM sodium butyrate was added after 24 hours for optimal protein 

expression. Experiments were typically performed after 24 hours of incubation in sodium 

butyrate media. To begin an experiment, media was aspirated, and the wells were washed 

for three cycles with 300 μL of room temperature Waymouth Buffer (WB; 135 mM NaCl, 

13 mM HEPES, 2.5 mM CaCl2 ·2H2O, 1.2 mM MgCl2, 0.8 mM MgSO4·7H2O, 5 mM KCl, 

and 28 mM D-glucose; pH 7.4) using an automatic fluid aspirator/dispenser (Model 406, 

BioTek, Winooski, VT). Transport was then initiated by the addition into each well of 60 

μL of WB containing a 20 μM concentration of test agent plus ~0.018 μM [3H]E3S. Kinetic 

parameters for OATP1B1-mediated E3S transport were based on estimates of initial rates of 

[3H]E3S uptake from six substrate concentrations, as determined by analysis of the 90 sec 

time courses of net E3S accumulation at each concentration (see 63).

For the purpose of determining the kinetics of E3S transport, the initial rate at time zero was 

estimated by fitting a hyperbolic function to each time course (refer to Sandoval et al., 2019 
64): Ut = (Umax [S])/(Ku + [S]), where Ut is net substrate accumulation at time t; Umax is the 

extrapolated maximum accumulation (including carrier mediated uptake and any additional 

accumulation arising from diffusion, non-specific binding and/or incomplete rinsing of the 

test solution); and KU is a fitted constant. The ratio Umax/KU provided an empirical estimate 

of the rate at time zero, i.e., ‘the initial rate’ of total substrate accumulation. The relationship 

between these estimated initial rates and E3S concentration were adequately described by 

the Michaelis-Menten equation:
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J =
Jmax[S]
Kt + [S]

where J is the initial rate of mediated transport from a substrate concentration of [S], Jmax is 

the maximum rate of mediated substrate transport, and Kt is the Michaelis constant.

In all protocols, after selected time intervals, transport was terminated by rinsing with three 

cycles of cold WB (300 μL). Accumulated radioactivity was quantified by adding 200 μL 

of scintillation cocktail per well and sealing the plates (Topseal-A, Perkin Elmer). After 

allowing the plates to sit for at least two hours, radioactivity was determined in a twelve 

channel multi-well scintillation counter (Wallac Trilux 1450 Microbeta, Perkin-Elmer).

Drug Screening.

Compounds from the Spectrum Collection, distributed in 80 wells of 96 well plates (100 

nmol per well in 10 μl of DMSO), were screened for their inhibitory effectiveness against 

transport of E3S into CHO cells expressing OATP1B1; a total of 560 compounds were used. 

Each compound was diluted to a concentration of 20 μM, pH 7.4, to a final concentration 

of 2% dimethylsulfoxide (DMSO) using a VIAFLO multichannel electronic pipet (Integra 

Biosciences, Hudson, NH) 65. The following compounds for prospective testing were 

purchased from MedChemExpress (Monmouth Junction, NJ): abamectin, asiaticoside, 

baloxavir, berbamine, bremelanotide, bromocriptine, cabazitaxel, doramectin, etoposide, 

lapatinib, mobocertinib, novobiocin, posaconazole, rifaximin, teniposide, umbralisib, 

vancomycin, vinblastine and vincristine. Pyronaridine tetraphosphate was purchased from 

BOC Sciences (Shirley, NY) and tilorone hydrochloride from Caymen Chemical Company 

(Ann Arbor, MI). These compounds were solubilized in DMSO at 20 mM prior to tested.

Curation for the external validation test set

Data for the external test set was a subset of the dataset downloaded from ChEMBL for 

target “Solute carrier organic anion transporter family member 1B1” (CHEMBL1697668). 

This dataset was initially filtered to only include experimental parameters that were the most 

comparable to those used in this study (concentration of experimental compound: 20μM, % 

inhibition readout). Following this, only unique compounds were retained (i.e., not identical 

to those in the training set). These filters left 207 unique molecules to be used as an external 

test set. It is noted that while some experimental parameters aligned, the cell lines and 

tracer used for these experiments did not, but since a strong correlation was identified with 

the activity found in the overlapping compounds (Figure S1) this was considered to be 

acceptable.

Molecular property analysis

We analyzed the active and inactive molecules from the dataset as separate groups using 

simple molecular descriptors generated from the ChemAxon software (Budapest, Hungary) 

to determine if there are any significant differences between the active/inactive groups. The 

molecular descriptors used to describe each dataset were molecular weight, logP, molecular 

fraction polar surface area, logD (pH 7.4), as well as the number of aromatic rings, hydrogen 
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bond acceptor and donor, rings and rotatable bonds. To test for statistically significant 

differences, comparison tests assumed non-parametric data distributions (Mann Whitney and 

Kolmogorov-Smirnov tests). All graphing and statistical analysis was done using Graphpad 

Prism 9.3.1 for macOS. 4 compounds were removed from the analysis dataset for the 

following reasons: 1) after removing salts the compounds were duplicates or 2) a minimum 

carbon count was not met (≤1 carbon atom).

t-SNE visualization

t-SNE 66 embeds data into a lower-dimensional space. 1024 ECFP6 fingerprints were 

generated for all compounds. The 1024-bit fingerprints were then embedded into a 2-

dimensional vector using t-SNE. All t-SNE values were generated using the scikit-learn 

library in python with default hyperparameters (n_components = 2, perplexity = 30, early 

exaggeration = 12.0, learning rate = 200, n_iter = 1000). In addition, simple chemical 

descriptors generated by ChemAxon (molecular weight, AlogP, molecular fraction polar 

surface area (PSA), logD (pH 7.4), numbers of aromatic rings, hydrogen bond acceptor 

and donor, rings and rotatable bonds) were also used in conjunction with, or independently 

of, ECFP6 fingerprints in the same manner as with ECFP6 alone to visualize molecular 

properties. Chemical descriptors were z-normalized prior to dimensional compression. In 

short, each descriptor value was transformed by subtracting the sample mean and dividing 

by the sample standard deviation. When merging with ECFP6, this was a necessary step as 

it prevented the descriptors from subduing the impact of the sparse bit-vector fingerprints. In 

addition, some descriptors, such as molecular weight, could massively bias the t-SNE plots 

irrespective of ECFP6 due to disparities in the magnitude prior to normalization.

Machine learning

Our proprietary software, Assay Central, uses multiple machine learning algorithms that are 

integrated in our web-based software to build classification models, as described previously 
67, with the recent addition of the algorithm XGboost. These methods are described 

in more details in the Supplemental Materials. Machine learning model validation was 

performed using a nested 5-fold cross validation and with external test sets (prospective and 

retrospective). Nested 5-fold cross validation initially selects a random, stratified 20% hold 

out set that is removed from the training set prior to model building. The model is then built 

with the other 80% of the training data and the hyperparameters (if applicable) are optimized 

using a grid search using 5-fold dataset splits (20% validation sets). This optimized model 

is then used to predict the initial 20% hold out set. This is repeated until all compounds 

have been in a hold-out set (total 20 models trained). The final nested 5-fold cross validation 

scores are an average of each of the hold-out set metrics. In contrast, deep learning (DL) 

uses a 20% leave out set only due to its high computational requirement. External test sets 

are independent of the training data and represent true external evaluations of the models. 

For these external test sets we also generated consensus predictions (Ave), with a “majority 

rule” decision boundary based on each algorithm’s predicted classification (a tied score 

= 1). Models were built using various molecular descriptors including 3D-Pharmacophore 

(described below), ECFP4, ECFP6, ECFP8 and or simple chemical descriptors generated by 

ChemAxon. A detailed definition of each metric is defined in the Supplemental Methods. 

The applicability domain is calculated based on the reliability-density neighborhood (RDN) 

Lane et al. Page 6

Mol Pharm. Author manuscript; available in PMC 2023 November 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



method, which considers not only the model overlap but also the individual bias and 

precision of the overlapping fingerprints 68.

3D-Pharmacophore descriptors: We first randomly enumerated 50 3D-conformers 

generated using RDkit and the ETKDG method 69. Pharmacophore fingerprints were then 

generated for each conformer in the training set as outlined previously 70, 71. Random 

combinations of conformers were used for training and model validation using the SVC 

model and the best performing model was selected for evaluating compounds.

Prospective Model Validation Selection

Two compound libraries were scored using the OATP1B1 inhibition models generated 

during this study. First, a dataset was compiled for all small molecule drugs (261) that 

were approved by the US FDA between 2017-2021 for the purpose of finding drugs that 

have not previously been characterized as OATP1B1 inhibitors, as older FDA-approved 

drugs are often in many commercial high throughput screens used for repurposing. 

Salts were removed from all structures prior to predictions with our OATP1B1 models. 

These compounds were scored using models at the thresholds of 20 and 25%, as these 

models had the best statistics for the ChEMBL external test set as well as good cross 

validation performance. In addition, the Clinical Compound Library Plus #HY-L026P from 

MedChemExpress (Monmouth Junction, NJ), which contains 1747 compounds, was also 

scored in the same manner as the recent FDA-approved drugs dataset. From this library 15 

compounds were chosen in total to be tested. Selection was not only based on prediction 

score but was also filtered to remove compounds with limited diversity, including steroids 

and flavonoids. In total, 19 compounds were selected for prospective OATP1B1 machine 

learning model validation.

OATP1B1 Transport Inhibition Experiments (Prospective Model Validation)

Prospective test set validation assays were performed by Eurofins (St. Charles, MO, USA) 

and were based on a previously published protocol 72. In short, the uptake of the substrate 

fluorescein methotrexate (FMTX) at 5μM was assessed in Chinese Hamster Ovary (CHO-

K1) cells stably expressing OATP1B1 with or without 20μM of the experimental compound. 

Following a 20 min incubation at 37°C, uptake was stopped by removing the uptake solution 

and washing the cells four times with buffer. The cells were then solubilized in 1% Triton 

X-100 in PBS. Fluorescence was then measured in a microplate reader at an excitation 

wavelength of 485 nm and an emission wavelength of 528 nm. The percent of negative 

control was calculated using the following equation:

Control( % ) = Compound−Background
T1 − Background ∗100

The percent of inhibition was calculated by subtracting the percent of control from 100. 

The positive control included 10μM of rifampicin. As we have seen substrate-dependent 

differences in Organic Cation Transporter inhibition previously 73, we also tested two 

compounds, pyronaridine and tilorone, in both assays to assess the compatibility between 
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the fluorescent (Eurofins) and radioactive OATP1B1 uptake assays (Wright lab) with the 

resulting comparisons shown in Figure S2A.

Results

Characterization of OATP1B1 transport activity

OATP1B1 activity was assessed using estrone-3-sulfate as a representative transported 

substrate. Figure 1A shows time courses of net uptake of six concentrations of E3S into 

CHO cells that stably expressed OATP1B1. These time courses were not linear, owing to 

the backflux of accumulated E3S. In three separate experiments, the Jmax for E3S was 5.4 

± 0.47 pmol cm−2 min−1, and the Kt was 0.31 ± 0.12 μM, which was similar to previously 

reported results 74.

Inhibition of transport activity

We determined the effect of 480 structurally distinct compounds from the Spectrum 

Collection on OATP1B1-mediated E3S transport. Figure 2 shows the effect of a 20 μM 

concentration of each compound on mediated transport of 10-15 nM [3H]E3S (total uptake 

corrected for uptake in wild type CHO cells). Data is presented in rank order of increasing 

inhibitory potency; 32 of these compounds (6.7%) inhibited E3S transport by at least 50% 

and 77 compounds (16.0%) inhibited transport by at least 20%. The OATP1B1 inhibition 

novelty was evaluated for compounds that showed the highest inhibition (≥80%) with details 

elaborated on in the discussion. The inhibition of each compound is shown in detail in Table 

S1.

Analysis of the OATP1B1 dataset

Using a 20% threshold cutoff, we found that there are multiple statistically significant 

differences in the chemical properties between the active and inactive compounds (Figure 3). 

Of the properties examined, we found that only the median of hydrogen bond donors was 

not statistically significantly different between these groups. The most substantial relative 

median differences were with molecular weight and lipophilicity (AlogP, logD), a trend that 

has been seen previously 75, 76.

Machine learning model comparison

We used the previously described experimental approach 64, 77 to first fully characterize 

OATP1B1-mediated transport of [3H]E3S in CHO cells. The data used to generate the 

OATP1B1 transporter machine learning models assessed the inhibition produced at 20 μM 

of experimental compounds. The average percent inhibition, which was normalized to an 

experimental control, was used to set a threshold, or cut-off, to distinguish active from 

inactive compounds prior to building classification models. Several different thresholds were 

chosen to assess which had the best predictive ability based on cross validation statistics. 

We initially compared all the models generated at five cutoffs (20%, 25%, 30%, 35% 

and 40%) for the OATP1B1 dataset (Table S2). Each threshold created different ratios of 

active to inactive compounds, affecting the “balance” of the training set. We then compared 

the cross-validation statistics of different algorithms, including DL, Adaboosted decision 

trees, Bernoulli naïve bayes, k-nearest neighbors, random forest, SVC, Logistic Regression 

Lane et al. Page 8

Mol Pharm. Author manuscript; available in PMC 2023 November 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and XGBoost using ECFP6 fingerprints (Table S2). The 20% cutoff had generally good 

statistics for multiple algorithms for cross validations, without any clear winner (Table 1). 

Interestingly, while several algorithms have good statistics with cross validation, this was 

not true with the prediction of the external validation dataset, which was a subset of unique 

molecules tested for OATP1B1 inhibition downloaded from ChEMBL (see methods) (Table 

S3). As a consensus model may often have improved predictive ability than a single model, 

we also generated statistics for this as well (Table S3; Ave). In this case, SVC outperformed 

all the other algorithms, including the consensus, and was therefore selected for compound 

prioritization for prospective testing (Table 2).

In addition to comparing algorithms based on an activity threshold, we also expanded 

our criteria to include additional descriptors. Since the 20% and 25% thresholds seemed 

to produce good validation statistics, these were used for a comparison of molecular 

descriptors. We compared the nested 5-fold cross validation scores of EFCP4, EFCP6, 

EFCP8, 3D pharmacophores, as well as simple chemical descriptors alone or with 

ECFP6 (Tables S4-S5). While the fingerprints of different radii performed similarly, the 

3D pharmacophore descriptor approach generally gave poorer model statistics for cross 

validation. This same trend was also seen using the prediction scores for the external 

test sets (Tables S4-S5). These comparisons suggest that 2D molecular fingerprints are 

more appropriate for these data to optimize their predictive ability. Interestingly, the simple 

descriptors plus ECFP6 outperformed all the others with the cross-validation statistics, but 

the scores were generally poorer for the external test sets.

Prospective Model Validation

As SVC outperformed the other algorithms with the ChEMBL external test set, only the 

prediction scores from these models were considered for compound selection for prospective 

model validation. This test set was comprised of compounds predicted to be active from 

a recently approved FDA drug library (2017-2021) and from Clinical Compound Library 

Plus from MedChemExpress (Monmouth Junction, NJ) (see Methods for more details). Of 

those compounds from the recently approved FDA drug library, four were selected for in 
vitro testing after being filtered down by prediction score, drug cost and or availability and 

two of four were shown to be inhibitors at 20μM. While baloxavir (18.75% ± 2.47) and 

bremelanotide (10.8% ± 0) showed inhibition below the 20% threshold, both umbralisib 

(92.6% ± 1.69) and mobocertinib (79.4% ± 1.69) far exceeded it. From the 15 compounds 

selected from the compound library “Clinical Compound Library Plus #HY-L026P” from 

MedChemExpress (Monmouth Junction, NJ) 14 of 15 showed inhibition of ≥20% at 20μM, 

with the majority (11/15) of these compounds showing ≥70% inhibition. Of these active 

compounds, six were novel as we could not find any previous mention of their inhibition 

of OATP1B1 in the literature. We were unaware that four of the compounds chosen 

for prospective testing had previously been tested in a related assay, so their inhibition 

was used to assess assay compatibility (Figure S2B). These compounds were not in our 

training set and therefore still represent a valid external test set for model evaluation. A 

synopsis of these results, as well as the validation statistics for the prospective test set, 

are shown in Figure 4. A more comprehensive list of validation statistics using SVC, 

including models built with different molecular descriptors and either a 20% or 25% activity 
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threshold, is shown in Tables S4-S5. The structures, prediction scores, model applicability 

domain, chemical descriptors, inhibition values, as well as ChemAxon descriptors for the 

experimental validation set are also shown in Table S6.

As the experimental validation assay varied from that used to generate the inhibition data 

and build the machine learning models, we also assessed assay compatibility using the 

arbitrarily chosen molecules pyronaridine and tilorone (Figure S2A). While tilorone showed 

no inhibition in both assays, the inhibition of pyronaridine showed a statistically significant 

difference between these assays (unpaired t-test). It should be noted that the standard 

deviation for pyronaridine in the fluorescent assay using FMTX was the highest of all 

the compounds tested (±10%), suggesting the possibility of assay interference. Regardless, 

this does suggest a partial incompatibility between the assays, though the accuracy of the 

prospective test set suggests this incompatibility to be minor.

t-SNE Plot for OATP1B1 Model Property Space Analysis

Using the OATP1B1 inhibition data generated in this study we were able to observe 

some separation between active and inactive compounds using simple chemical descriptors 

visualized in a 2D t-SNE plot, which compresses multiple dimensions to two (Figure 5A). 

ECFP6 descriptors alone do not show any obvious enrichment using a t-SNE plot (Figure 

5B) and a combination of both EFCP6 and the chosen chemical descriptors also did not 

enhance the separation between groups (Figure 5C). To assess if this separation could be 

enhanced, the external test set from ChEMBL (148/59; active/Inactive) was added to our 

dataset and these plots were regenerated (Figure 5D-F). In addition, compounds chosen 

for prospective testing based on model predictions were also plotted in these figures. The 

compounds chosen for the prospective test set were not based on the t-SNE plots, but by 

model predictions built with ECFP6 alone. Interestingly, the same separation appears as 

when using simple chemical descriptors (Figure 5D), but this became more pronounced 

with the addition of predominantly new actives. The combination of these data does not 

enhance the separation when using ECFP6 fingerprints (Figure 4E) or with ECFP6 plus 

simple chemical descriptors (Figure 5F). A more comprehensive assessment of this data 

shows that the separation created by the t-SNE plot seems to be able to predict not only 

activity, but the degree as well (Figure S3). Categorizing actives from the training and 

ChEMBL external test sets as either weakly (≥20 - <40%) or moderately/highly (≥40) 

active shows additional separation. All of the compounds chosen for the prospective test 

set that fell within the region highly enriched with moderate to strong inhibitors, with the 

exception of vincristine, were all shown to have moderate to high inhibition. In summary, 

this suggests that both classification models and t-SNE plots used in conjunction may lead to 

an enhanced predictive ability. Interestingly, while the t-SNE plot based on simple chemical 

descriptors appears to be able to distinguish between inhibitors and non-inhibitors in both 

the prospective and external test sets, ML models built with these same descriptors were 

unable to predict this (Tables S4-S5).

To ensure that there was sufficient diversity within the prospective test set, we also compared 

the Tanimoto similarity of each molecule (Figure S4), which shows that few molecules have 
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greater than 0.15 and 0.7 when using the ECFP6 and MACCS fingerprints, respectively, 

suggesting a low overlap in the chemical space of the prospective test set.

DISCUSSION

To our knowledge the first computational model for human OATP1B1 substrates was 

a series of pharmacophores generated with small datasets from different cell lines that 

suggested multiple hydrophobic and hydrogen bond features were key 78. Following this (in 

roughly chronological order) several other studies were published, for example a set of 146 

molecules were assessed as inhibitors of OATP1B1 and used to build an orthogonal partial 

least squares projection to latent squares which showed inhibitors were more lipophilic, 

larger, and have a larger polar surface area 79. Another group tested 2000 molecules for 

OATP1B1 and OATP1B3 inhibition, which was then used to train a proteochemometrics-

based random forest model with FCFP6 and simple chemical descriptors. These models 

achieved excellent prospective accuracy, with an 80% accuracy with a 54-compound test set 
80. A further study used a genetic algorithm-SVM approach for modeling 284 compounds 

from a proprietary database and then performed an external validation with 1738 compounds 

from ChEMBL resulting in a classification accuracy of 77.72% 81. The logD descriptor 

was also indicated as important 81. We are not aware of any efforts to ensure the training 

and test sets were performed under similar assay conditions. A more recent further study 

used a small set of 80 FDA approved drugs to understand the features related to liver 

transporters like OATPs versus organic anion transporters (OATs) and suggested the former 

prefer more hydrophobic molecules, larger structure with greater complexity76. As a final 

example, a very recent study used a training set of 1377 compounds with known OATP1B1 

activity and focused on utilizing multiple types of models, including proteochemometric, 

conformal prediction, and XGBoost models, in conjunction with molecular docking to 

predict OATP1B1 inhibitors. This approach yielded promising results, with strong cross 

validation statistics as well as the correct prediction of 36% of the 44 compounds tested 

prospectively 82.

In this current study we generated OATP1B1 inhibitor models using the % inhibition data 

that we determined for 476 compounds. The OATP1B1 inhibition novelty was evaluated 

for compounds in this set that showed the highest inhibition (≥80%). Many of these are 

drugs sold in the US market and include the compounds docusate, atorvastatin, mesalamine, 

tiratricol, aceclofenac, leoidin and epalrestat. While several of these compounds have 

previously been identified as OATP1B1 inhibitors or substrates, tiratricol, aceclofenac 

and epalrestat have not. Each compound represents different drug classes where tiratricol, 

aceclofenac and epalrestat are a thyroid hormone analog, a nonsteroidal anti-inflammatory 

drug (NSAID) and an aldose reductase inhibitor, respectively. While all these compounds 

are available in the US, only aceclofenac is an FDA-approved drug. Interestingly, the Cmax 

for the typical oral dosing of aceclofenac leads to plasma levels of between 25-30 μM 
83, 84 suggesting that the high inhibition identified at 20μM may be clinically relevant 

at the approved dosing concentrations, though as this compound is known to be highly 

protein-bound (>99%) (based on information in the FDA package insert) the relevance is 

unknown. Aceclofenac is also available as a gel, and various formulations have been shown 

to have significant effects on the unbound plasma levels in mice 85.
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We have also curated 207 compounds with OATP1B1 inhibition data from ChEMBL to 

act as an external test set. Our machine learning models demonstrated that cross validation 

generated poorer statistics than using external validation with the 207 molecules from 

ChEMBL and that a 20% cutoff was optimal for SVC (Tables S2-S3). This SVC model was 

then used to predict the activity of compounds from several libraries, including a recent FDA 

approved drugs list, and ultimately 19 compounds were chosen for experimental validation 

of this model. Of these 19 compounds tested, 15 were shown to be inhibitors of OATP1B1 

with ≥ 20% inhibition.

After further analysis of the literature and package inserts for the FDA approved drugs 

we had selected for our prospective test set, we found additional information relating to 

OATPs for several of these molecules. For example, the kinase inhibitor lapatinib and the 

antifungal posaconazole were both shown previously to be OATP1B1 inhibitors with IC50s 

of ~4μM 86 and <3μM 87, respectively. Rifaximin at 3μM was also shown to inhibit the 

uptake of multiple OATPs, with OATP1B1, OATP1B3 and OATP1A2 substrate uptake being 

inhibited by 64%, 70% and 40%, respectively. The inhibitory potential of rifaximin on 

these transporters at the clinically relevant concentrations is unknown. In addition, rifaximin 

has been shown in vitro to be a substrate of P-glycoprotein, OATP1A2, OATP1B1, and 

OATP1B3, but not a substrate of OATP2B1. The insecticide and anthelmintic abamectin 

has not been shown to inhibit OATP1B1 directly, but does inhibit the related transporter 

OATP1B3 88 and is structurally similar to ivermectin, which is a known inhibitor of 

OATP1B1 inhibition 75. The anticancer drug cabazitaxel was originally found not to 

be a substrate of mouse Oatp1b2 89, but has been suggested to inhibit OATP1B1 and 

OATP1B3 at high concentrations 90. Based on the FDA package insert, the kinase inhibitor 

mobocertinib was found not to be a OATP1B1 substrate or inhibitor, which is contrary to 

our findings. Mobocertinib was also not shown to inhibit OATP1B3, OAT1, OAT3, OCT1, 

or OCT2. Finally, umbralisib was identified as not being a substrate P-gp, BCRP, OAT1, 

OAT3, OCT2, OATP1B1, OATP1B3, MATE1, or MATE2-K, although we showed inhibition 

of 92.6 ± 1.7% of OATP1B1 substrate uptake at 20μM.

In addition to building and testing our ML models with various molecular descriptors, we 

have also performed an extensive analysis of simple molecular descriptors independently. 

Comparison of individual molecular properties did suggest significant differences between 

actives and inactives at the 20% inhibition cutoff for both molecular weight and lipophilicity 

(AlogP, logD), which is in line with the earlier studies 76. Once compressed to two 

dimensions, the visualization of all the chemical descriptors generated led to some 

surprising results. We found reasonable separation between actives and inactives using a 

t-SNE plot that not only appears to help to classify OATP1B1 inhibitors but also offers 

a semi-quantitative element to the inhibition prediction. Surprisingly, machine learning 

models built with the same descriptors used to generate these t-SNE plots showed 

essentially no predictive ability for the prospective or external test sets. This suggests 

that the multidimensional compression utilized to generate these t-SNE plots can aid 

in distinguishing differences between inhibitors and non-inhibitors of OATP1B1 in a 

manner that is not recapitulated in SVC ML models even with the same descriptors. Such 

predictions can perhaps be enhanced by utilizing both methodologies in conjunction with 

one another in future.
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These combined in vitro and in silico efforts demonstrate the value of comparing multiple 

classification model cut-offs for activity, different algorithms, and molecular descriptors, 

to find the optimal predictive model. In the process of developing these machine learning 

models for OATP1B1 we identified several previously unknown inhibitors from the initial 

screen and, additionally, from the machine learning model prospective validation.

During our compiling of the FDA approved data set we discovered a trend of recently for 

approved FDA approved drugs which shows an increase in Lipinski’s rule of 5 violations 

(Figure S5). Following this, we also carried out an analysis to assess if the chemical 

characteristics we confirmed are important to predict OATP1B1 inhibition also showed a 

similar trend. This analysis of drugs approved by the FDA between 2013-2021 showed 

that while the percent of rule of 5 violations has increased in recent years, the mean 

molecular weight, number of hydrogen bond donors, hydrogen bond acceptors and LogP 

have remained fairly constant (Figure S5). These findings would suggest, based on the size 

of the molecules and lipophilicity alone, that we are not likely to see an increase in the 

number of potential inhibitors of OATP1B1 if these trends continue.

Conclusion

The enrichment from the machine learning approach undertaken suggests that it may 

represent a reliable approach to select or avoid compounds that are potential inhibitors of 

OATP1B1 for use in early drug discovery to avoid potential drug-transporter interactions. 

The approach we have used can also be applied to other drug transporters of relevance 

for predicting DDIs and is being used to develop our MegaTrans software (Supplemental 

Methods) which contains additional uptake and efflux transporters. Providing a suite of 

computational models for clinically relevant transporters like OATP1B1 and others 16-32 

will go some way towards enabling the computational prediction of potential DDIs as 

highlighted in the regulatory guidances from the FDA 13, 14 and EMA 15.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS USED

ABDT AdaBoost

ADME absorption, distribution, metabolism, and excretion

ANN artificial neural networks
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AUC area under the curve

BNB Bernoulli Naive Bayes

DT Decision Tree

DNN Deep Neural Networks

ECFP6 extended connectivity fingerprints of maximum diameter 6

HTS high throughput screening

kNN k-Nearest Neighbors

RF Random forest

ROC receiver operating characteristic

RP Recursive partitioning

SVM support vector machines

XV ROC AUC cross-validated receiver operator characteristic curve’s area 

under the curve
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Figure 1. 
(A). Forty-five second time courses of OATP1B1-dependent net uptake for six 

concentrations of [3H] labeled E3S. Each point is the mean (±SD) of uptakes measured 

in three separate experiments (each in triplicate). Individual data points from each time 

course were corrected for time zero background, based on first-order extrapolation to 

time zero of that time course. Lines describe hyperbolic rises to steady state (see text). 

(B) Kinetics of OATP1B1-mediated E3S transport. Symbols represent mean rates of E3S 

transport calculated from the data shown in Figure 1A. The solid line was fit to these data 

using the Michaelis-Menten equation.
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Figure 2. 
The inhibitory effect of 480 test compounds from the Spectrum Collection on the OATP1B1-

mediated transport of ~12 μM [3H]E3S. The 60 sec accumulation of substrate was measured 

in the presence of a 20 μM concentration of each test agent. The height of the shaded 

grey region indicates the average (±SD; black lines) accumulation (expressed relative to 

uptake measured in the absence of inhibitor, i.e., ‘control’) determined in two-three separate 

experiments, each measured in triplicate and corrected for uptake measured in wild-type 

CHO cells. The histograms are arranged from no inhibition (left side) to complete inhibition 

(right side). The horizontal red dashed line indicates 20% inhibition, while the vertical red 

dashed line divides the ‘active’ inhibitors (≤20 % of control uptake; to the right) from the 

‘inactive’ inhibitors (>20 % control, to the left).
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Figure 3. 
Comparison of the distribution of molecular properties for 476 unique compounds in the 

OATP1B1 dataset split into active (77 compounds) and inactive (399 compounds) groups. 

Median values are highlighted along with statistical analyses. The gaussians are meant to 

visually highlight each group and are not meant to imply a normal distribution.
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Figure 4. 
Prospective test set inhibition. (A) in vitro inhibition (CHO-K1 cells stably expressing 

OATP1B1) of the uptake of 5μM fluorescein-methotrexate (FMTX) by OATP1B1 via 

test compounds (20μM, n=2, error bars represent SD) predicted to be inhibitors by SVC 

model(s). Compounds with names in green are previously unknown OATP1B1 inhibitors. 

(B) Truth tables and various statistics showing the performance of models at thresholds 20% 

and 25% inhibition. It should be noted that there were either none or only a single compound 

predicted to be inactive by the 20% and 25% models, respectively, some of these statistics 

are not very descriptive of the model’s performance.
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Figure 5. 
t-SNE plots of compounds tested against OATP1B1 classified by activity (Active ≥ 20% 

inhibition at 20μM) using various descriptors. The descriptors used were either simple 

chemical descriptors alone (A,D), fingerprints (ECFP6) (B,E) or simple chemical descriptors 

plus ECFP6 (C,F). The compounds in the training set (tested in this study alone) (A-C) 

show the most separation using chemical descriptors alone as highlighted by a white box 

(A). In addition to those compounds used in the training set, D-F also have the compounds 

from the external test as well as those chosen for a prospective test set. The most visible 

separation was also seen with the simple descriptors alone as highlighted by the white box. 

The highlighted separation has been manually selected and is meant as a visual aid and not a 

separation metric.
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Table 1.

OATP1B1 Inhibition (20μM); 20% Threshold had 77 ‘active’ and 399 ‘inactive’ compounds. Values represent 

5-fold nested cross validation averages (*DL = 20% hold-out set). The rank normalized score is a normalized 

average of each of these metrics.

Method
Name AUC F1-

Score ACC Recall Specificity Precision Cohen's
Kappa MCC  

Rank
Normalized

Score

ada 0.71 0.07 0.84 0.04 1.00 0.40 0.05 0.10 0.52

bnb 0.81 0.34 0.85 0.26 0.97 0.67 0.28 0.33 0.65

DL* 0.74 0.42 0.85 0.31 0.96 0.63 0.34 0.37 0.66

knn 0.73 0.40 0.86 0.30 0.97 0.64 0.33 0.37 0.65

lreg 0.77 0.36 0.85 0.27 0.96 0.65 0.29 0.34 0.65

rf 0.79 0.41 0.86 0.30 0.97 0.69 0.34 0.38 0.67

svc 0.80 0.41 0.63 0.81 0.59 0.28 0.23 0.30 0.60

xgb 0.78 0.37 0.85 0.29 0.95 0.55 0.29 0.31 0.64
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Table 2.

Comparison of SVC models at different thresholds using metrics from nested, 5-fold cross validation. The 

rank normalized score is a normalized average of each of these metrics.

Threshold Method Validation
type AUC F1-

Score Accuracy Recall Specificity Precision Cohen's
Kappa MCC  

Rank
Normalized

Score

20%

svc Cross 
validation

0.80 0.41 0.63 0.81 0.59 0.28 0.23 0.30 0.60

25% 0.83 0.44 0.84 0.51 0.89 0.40 0.35 0.36 0.66

30% 0.82 0.44 0.84 0.56 0.87 0.37 0.35 0.36 0.66

35% 0.80 0.37 0.83 0.53 0.86 0.29 0.28 0.30 0.62

40% 0.84 0.35 0.84 0.55 0.87 0.26 0.27 0.30 0.62

20%

svc External 
test set

0.75 0.80 0.72 0.78 0.59 0.83 0.35 0.36 0.73

25% 0.71 0.50 0.55 0.36 0.89 0.85 0.20 0.27 0.64

30% 0.77 0.52 0.61 0.39 0.88 0.78 0.25 0.30 0.65

35% 0.78 0.53 0.67 0.4 0.89 0.76 0.31 0.35 0.67

40% 0.78 0.55 0.69 0.45 0.86 0.7 0.32 0.34 0.67
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