Skip to main content
. 2023 Jan 10;13:1035615. doi: 10.3389/fendo.2022.1035615

Table 1.

Summary of previous studies for the prediction of preterm birth by obtaining linear, time-frequency, and nonlinear EHG features.

Authors Classifier type Dataset Length Features Accuracy Sensitivity Specificity AUC
Acharya et al., (2017) (6) Support vector machine (SVM)
Radial Basis Function (RBF)
TPEHG DB
(34 recordings of preterm and
262 of the term)
Complete recording Empirical Mode Decomposition (EMD)
Wavelet Packet Decomposition (WPD)
Entropy-based methods
96.25 95.08 97.33 0.96
Jager et al., (2018) (7) Quadratic Discriminant TPEHG DB
TPEHG DS
Complete recording Sample Entropy
Medium Frequency
Maximum Frequency
100.00 100.00 100.00 1.00
Nieto del Amor et al., (2021) (9) Linear Discriminant TPEHG DB 120-seconds window
Complete recording
Dominant frequency
Normalized Energy
Power spectrum deciles (D3, D6, D8, D9)
Entropy-based methods
89.2% ± 2.4 98.4% ± 1.9 79.9% ± 4.9 0.93
Hoseinzadeh & Amirani (2018) (10) RBF SVM TPEHG DB N/A EMD
WPD
Feature extraction by autoregressive models
97.1 95 99 N/A

N/A, Not available.