Skip to main content
. 2023 Jan 10;13:1035615. doi: 10.3389/fendo.2022.1035615

Table 4.

Summary of k-fold cross-validation for different classification models trained using the selected features of linear, nonlinear, and frequency indices of EHG.

Classification models Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) AUC F-Score
S1F1 Quadratic Supportive Vector Machine (SVM) Train 95.56 ± 0.25 94.72 ± 0.36 96.36 ± 0.42 96.16 ± 0.42 95.01 ± 0.32 0.94 ± 0.03 0.93 ± 0.03
Validation 93.52 ± 3.24 92.97 ± 6.09 94.13 ± 5.64 93.99 ± 5.64 93.44 ± 5.37 0.94 ± 0.03 0.93 ± 0.03
Test 82.04 ± 1.11 64.09 ± 2.21 100.00 ± 0.00 100.00 ± 0.00 73.59 ± 1.19 0.82 ± 0.01 0.78 ± 0.02
S1F2 Cubic SVM Train 97.56 ± 0.29 97.21 ± 0.34 97.89 ± 0.35 97.79 ± 0.35 97.34 ± 0.32 0.93 ± 0.04 0.93 ± 0.05
Validation 93.17 ± 4.25 92.56 ± 5.99 93.76 ± 5.33 93.51 ± 5.72 93.08 ± 5.69 0.93 ± 0.04 0.93 ± 0.05
Test 55.04 ± 3.31 25.83 ± 3.76 84.26 ± 4.95 62.69 ± 9.33 53.17 ± 2.04 0.55 ± 0.03 0.36 ± 0.05
S1F3 Fine Gaussian SVM Train 94.90 ± 0.170 94.63 ± 0.26 95.16 ± 0.31 94.94 ± 0.3 94.86 ± 0.22 0.92 ± 0.03 0.91 ± 0.04
Validation 91.84 ± 2.75 91.22 ± 6.55 92.07 ± 4.70 91.90 ± 3.98 92.05 ± 4.55 0.92 ± 0.03 0.91 ± 0.04
Test 81.13 ± 1.39 94.52 ± 1.24 67.74 ± 2.03 74.57 ± 1.30 92.52 ± 1.69 0.81 ± 0.01 0.83 ± 0.01
S2F1 Fine Gaussian SVM Train 96.63 ± 0.20 97.76 ± 0.25 95.55 ± 0.30 95.47 ± 0.29 97.80 ± 0.23 0.88 ± 0.04 0.88 ± 0.04
Validation 88.20 ± 4.28 88.88 ± 5.85 88.04 ± 6.69 87.75 ± 6.95 88.99 ± 6.09 0.88 ± 0.04 0.88 ± 0.04
Test 87.52 ± 1.20 75.04 ± 2.40 100.00 ± 0.00 100.00 ± 0.00 80.06 ± 1.54 0.88 ± 0.01 0.86 ± 0.02
S2F2 Quadratic SVM Train 91.70 ± 0.21 92.59 ± 0.38 90.84 ± 0.84 90.66 ± 0.33 92.74 ± 0.34 0.9 ± 0.04 0.9 ± 0.04
Validation 90.33 ± 4.23 91.44 ± 5.84 89.41 ± 6.15 89.47 ± 5.40 91.07 ± 6.05 0.90 ± 0.04 0.90 ± 0.40
Test 66.83 ± 1.03 37.57 ± 1.47 96.09 ± 2.05 90.82 ± 4.41 60.61 ± 0.61 0.67 ± 0.01 0.53 ± 0.01
S2F3 Weighted Kernel Nearest Neighbors (KNN) Train 74.31 ± 0.44 70.34 ± 4.88 78.12 ± 4.62 75.82 ± 2.99 73.44 ± 1.97 0.68 ± 0.07 0.66 ± 0.08
Validation 68.32 ± 3.490 64.16 ± 10.13 72.80 ± 9.32 69.28 ± 9.52 68.00 ± 9.51 0.68 ± 0.07 0.66 ± 0.08
Test 51.04 ± 2.98 40.26 ± 5.16 61.83 ± 9.91 52.07 ± 4.65 50.65 ± 2.32 0.51 ± 0.01 0.45 ± 0.03
S3F1 Bagged Tree Train 99.89 ± 0.09 99.93 ± 0.12 99.85 ± 0.16 99.84 ± 0.17 99.93 ± 0.12 0.71 ± 0.06 0.7 ± 0.09
Validation 71.52 ± 6.2 68.9 ± 11.69 73.53 ± 9.78 71.35 ± 9.62 72.08 ± 5.98 0.71 ± 0.03 0.70 ± 0.09
Test 47.91 ± 3.360 32.70 ± 3.60 63.13 ± 50 47.1 ± 4.61 48.36 ± 2.65 0.48 ± 0.03 0.39 ± 0.04
S3F2 Cubic SVM Train 99.10 ± 0.22 99.3 ± 0.27 98.9 ± 0.29 98.86 ± 0.30 99.33 ± 0.12 0.93 ± 0.03 0.92 ± 0.04
Validation 92.64 ± 3.18 93.16 ± 5.26 92.26 ± 4.56 91.73 ± 5.92 93.28 ± 5.02 0.93 ± 0.03 0.92 ± 0.04
Test 72.17 ± 2.25 84.43 ± 1.59 59.91 ± 4.11 67.87 ± 2.30 79.35 ± 2.09 0.72 ± 0.02 0.75 ± 0.02
S3F3 Quadratic SVM Train 93.46 ± 0.31 93.57 ± 0.53 93.35 ± 0.44 93.11 ± 0.41 93.8 ± 0.48 0.91 ± 0.04 0.91 ± 0.04
Validation 91.30 ± 3.65 92.10 ± 5.86 90.33 ± 5.14 90.37 ± 4.55 92.52 ± 5.31 0.91 ± 0.04 0.91 ± 0.04
Test 88.52 ± 1.47 83.83 ± 3.07 93.22 ± 1.31 92.51 ± 1.46 85.27 ± 2.49 0.89 ± 0.02 0.88 ± 0.02

The dataset employed for each classifier is denoted as S (1,2,3) for the signal channel and the frequency subband with F (1,2,3; 0.3 – 1 Hz, 1 – 2 Hz, 2 – 3 Hz, respectively). The highest classification accuracy is shown in bold.