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Abstract

Introduction: Pretreatment positron emission tomography (PET) with 2-deoxy-2-[18F]fluoro-

D-glucose (FDG) and magnetic resonance spectroscopy (MRS) may identify biomarkers for 

predicting remission (absence of depression). Yet, no such image-based biomarkers have achieved 
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clinical validity. The purpose of this study was to identify biomarkers of remission using machine 

learning (ML) with pretreatment FDG-PET/MRS neuroimaging, to reduce patient suffering and 

economic burden from ineffective trials.

Methods: This study used simultaneous PET/MRS neuroimaging from a double-blind, placebo-

controlled, randomized antidepressant trial on 60 participants with major depressive disorder 

(MDD) before initiating treatment. After eight weeks of treatment, those with ≤ 7 on 17-item 

Hamilton Depression Rating Scale were designated a priori as remitters (free of depression, 

37%). Metabolic rate of glucose uptake (metabolism) from 22 brain regions were acquired from 

PET. Concentrations (mM) of glutamine and glutamate and gamma-aminobutyric acid (GABA) 

in anterior cingulate cortex were quantified from MRS. The data were randomly split into 67% 

train and cross-validation (n = 40), and 33% test (n = 20) sets. The imaging features, along with 

age, sex, handedness, and treatment assignment (selective serotonin reuptake inhibitor or SSRI vs. 

placebo) were entered into the eXtreme Gradient Boosting (XGBoost) classifier for training.

Results: In test data, the model showed 62% sensitivity, 92% specificity, and 77% weighted 

accuracy. Pretreatment metabolism of left hippocampus from PET was the most predictive of 

remission.

Conclusions: The pretreatment neuroimaging takes around 60 minutes but has potential to 

prevent weeks of failed treatment trials. This study effectively addresses common issues for 

neuroimaging analysis, such as small sample size, high dimensionality, and class imbalance.
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1. Introduction

There is an urgent need for reliable prediction of potential antidepressant failure in 

treatment of major depressive disorder (MDD). Pretreatment electroencephalogram (EEG) 

has predicted antidepressant efficacy with performance considerable for clinical utility [1]. 
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EEG electrodes are placed on the surface of the brain to obtain functional measures, leading 

to lower spatial resolution compared to molecular neuroimaging, where the source of 

signal may not be apparent [2]. Molecular imaging modalities, such as positron emission 

tomography (PET) with 2-deoxy-2-[18F]fluoro-D-glucose (FDG) and proton magnetic 

resonance spectroscopy (1H-MRS or MRS) have been useful for early assessment and risk 

stratification in patients with neurological, oncological and cardiovascular disorders [3]. Yet, 

they have not been proved clinically useful due to lack of accuracy [4].

FDG-PET is a sensitive indicator of cerebral function, leading to its extensive use for 

assessing response to the most widely used first-line MDD treatment, selective serotonin 

reuptake inhibitor (SSRI) [5]. However, these prior studies do not agree on the predictive 

region/measure and their prediction could not be replicated using conventional statistics [6].

Glutamine (Gln) is the precursor to the excitatory neurotransmitter, glutamate (Glu) and 

inhibitory neurotransmitter, γ-aminobutyric acid (GABA), and all three are essential amino 

acids for brain metabolism [7]. Prior magnetic resonance spectroscopy (MRS) studies 

showed that higher pretreatment Glu in the anterior cingulate cortex (ACC) [8] can predict 

better response, but other MRS studies showed no predictive potential for antidepressant 

response using Glu [9,10], GABA [9–11], or Glx (Gln/Glu) [12], adding to the lack of 

consensus on biomarkers of MDD treatment. These prior inconsistent findings using single 

imaging modalities with fewer functional features and conventional statistical models have 

motivated the use of machine learning (ML) with multimodal neuroimaging (both PET and 

MRS measures) for better prediction accuracy [13].

The purpose of this study was to identify biomarkers to predict remission (absence of 

depression) after eight weeks of treatment using pretreatment neuroimaging measures from 

i) PET and ii) MRS with a widely popular (due to superior performance) supervised, 

gradient tree boosting ensemble algorithm, eXtreme Gradient Boosting (XGBoost), which 

is a fast, scalable, and explainable artificial intelligence (AI) classifier with strong 

regularization [14]. XGBoost allows the adjustment of multiple hyperparameters to avoid 

overfitting and automatically ranks the most predictive features that can be used as 

biomarkers for remission. This article will have the following contribution regarding 

predictive biomarkers for antidepressant treatment.

• This study provides a novel instance of the development of a comprehensive 

machine learning model by integrating pretreatment brain functional measures 

from simultaneous PET/MRS in one framework.

• The pretreatment simultaneous PET/MRS used in the study takes around 60 

minutes and has the potential to prevent weeks of failed treatment trials.

• Applying predictive measures from neuroimaging can reduce delay to effective 

treatment, patient suffering and economic burden, and enhance long-term 

functional outcomes.

• The findings may assist clinicians with treatment selection and shed light on the 

neurobiology of remission.
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2. Material and methods

2.1. Study cohort

This study involved the analysis of simultaneously acquired PET/MRS neuroimaging data 

from a randomized, placebo-controlled, double-blind, single-site SSRI (Escitalopram) trial 

on 60 participants with MDD before initiating treatment. The study design and rationale for 

the data set have been previously described [6,10]. 43 regional measures of metabolic rate of 

glucose (MRGlu, mg/(min*100 mL)) from FDG-PET across multiple brain regions [6], and 

concentrations (mM) of Glx (Glu+Gln, a composite peak formed by Glu and Gln), GABA 

and the ratio of Glx to GABA (Glx/GABA)) in the ACC from MRS [10] were quantified as 

described in prior publications. After eight weeks of treatment, those with ≤ 7 on the 17-item 

Hamilton Depression Rating Scale were designated a priori as remitters (free of depression).

2.2. Machine learning analysis

The ML model development with hyperparameters is illustrated in Fig. 1. The data 

partition was performed by random splitting into 67% train and cross-validation (n = 

40), and 33% test (n = 20) sets, stratified by outcome (remitters vs. non-remitters) 

and treatment assignment (SSRI vs. placebo), to ensure comparable distribution in 

each data set. There is no established power calculation for XGBoost, so the 

conventional ML practice of evaluating the fitted model on validation set was used. 

The hyperparameter, scale_pos_weight [sum(negative instances)/sum(positive instances)] = 

(non-remitters/remitters) from the train set assigned greater weight to prediction of remitters. 

OneClassSVM identified and removed outliers from the train set. Synthetic Minority 
Oversampling Technique (SMOTE) oversampled the remitters class [15].

The hyperparameters for subsampling, number of trees, and depth of tree were optimized 

using GridSearchCV with 3 repetitions of stratified 10-fold cross-validation (preferred for 

depression research [16,17]). The 50 input features including the 46 imaging (43 PET and 

3 MRS) measures, and information on age, sex, handedness, and treatment assignment 

were entered into XGBoost for training with optimized hyperparameters to predict remitters 

vs. non-remitters. The model performance was evaluated on the test data using confusion 

matrix (Fig. 2). Statistical and machine learning analyses were performed using STATA/SE 

13.0 (StataCorp LLC, College Station, TX) and Python 3.9.0 (Python Software Foundation, 

Beaverton, OR).

3. Results

3.1. Study cohort

The study consisted of 60 participants with an age range of 18 to 64 years (mean ± 

standard deviation: 30 ± 14 years). 37 (62%) were females, 30 (50%) were placed on SSRI 

and 51 (85%) were right-handed. After eight weeks of treatment, 22 participants remitted 

(37% remitters) and 38 participants did not (63% non-remitters). There was no significant 

difference between the non-remitters and remitters groups in the study sample in terms of 

age, sex, handedness, or treatment assignment.
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3.2. Machine learning analysis

In the training set (n = 40), there were 14 remitters (35%) with 5 on SSRI and 9 on placebo, 

and 26 (65%) non-remitters with 15 on SSRI and 11 on placebo (scale_pos_weight = 1.86). 

The most predictive neuroimaging features based on “gain” (according to their contribution 

to the fitted model) are shown in Fig. 2. The cross-validated training and testing Receiver 

Operating Characteristic (ROC) Area under the Curves are shown in Fig. 3.

Supplemental Table 1 and Table 1 below show the performance of the fitted model on the 

unseen test data (n = 20) consisting of 8 remitters (40%) with 3 on SSRI and 5 on placebo, 

and 12 (60%) non-remitters with 7 on SSRI and 5 on placebo.

4. Discussion

4.1. Novelty

This study was the first effort to build a comprehensive predictive model using simultaneous 

PET/MRS data from randomized clinical trial for prediction of remission. This was also the 

first time a gradient boosting decision-tree-based algorithm was used for this purpose. In this 

novel architecture, the XGBoost hyperparameters were utilized following oversampling and 

outlier removal, which resulted in the current model’s weighted accuracy (77%) comparable 

to previous studies on the prediction of antidepressant treatment outcome with much larger 

sample size [17–20].

4.2. Generalizability

The splitting in the current study ensured an adequate test set (as opposed to the alternative 

practice of 80/20 or 90/10 train/test split) to protect against performance misestimation in 

MDD research [21]. This model’s generalizability is further strengthened through Stratified 
Cross Validation which is particularly useful for analyzing small data sets with unbalanced 

classes, as seen in our data set with the remitters and non-remitters class. This technique 

allows similar proportion of different classes in each fold to ensure all strata of the data is 

well represented.

4.3. Regularization

Instead of feature reduction, the current model optimized regularization hyperparameters 

that ensures higher accuracy and better uncertainty assessment [22]. These XGBoost 

regularization hyperparameters, a.k.a. penalty terms alpha (L1, LASSO Regression) and 

lambda (L2, Ridge Regression), shrink the coefficients of less relevant features toward 0 

[23]. Using this technique, this model achieved accuracy higher than a previous model with 

59% accuracy that used feature reduction to select 25 most predictive variables for remission 

after 12 weeks of SSRI treatment from 164 patient-reportable variables [18]. Including more 

features also protects the predictive model performance from being affected by influential 

data points [19].

4.4. Performance

The true positive rate and true negative rate for classification in the held-out test data are 

reasonably high compared to the negligible values of false positive rate and false negative 
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rate, attesting the acceptable performance of the model. At least 100 number of trees were 

used following convention when searching for the optimal number of trees, however the 

Receiver Operating Characteristic Area Under the Curve indicates that having a lower 

number of trees (~ 70) might have given slightly better performance.

4.5. Limitations

To address limitations related to small sample size in neuroimaging research, two 

most common data augmentation techniques for image classification including generative 

adversarial networks and unity game engine can be explored in future. However, this will 

require finding the optimal data augmentation strategy and developing evaluation systems 

to ensure quality of augmented data sets, while accounting for the computational cost for 

slower convergence.

4.6. Potential biomarkers

Even though there is a scarcity of predictive analytics using biomarkers with machine 

learning in neuropsychiatry, the insights from successful machine learning applications in 

neurological disorders such as stroke may be useful, considering the bidirectionality of 

stroke and depression [24]. The current model has been compared to predictive analytics 

using biomarkers from other modalities in Table 2. One such potential biomarker could be 

electromyography (EMG), since motor activity can be lower in depression [25–29], and 

increase with depression improvement [25,30,31]. The tree-based algorithm, random forest 

with real-time signals from thighs and calves of 287 participants has shown predictive 

accuracy > 90% for stroke [32]. Furthermore, electroencephalography (EEG) has been used 

for predicting stroke with Classification and Regression Trees (C&RT) algorithms with 89% 

accuracy [33]. With tree-based models such as C5.0 and random forest, EEG data has shown 

only around 70% accuracy for predicting stroke [34]. Pretreatment EEG measures have been 

useful for predicting antidepressant efficacy with > 87% accuracy using a mixture of factor 

analysis (MFA) classifier [1]. However, the biosignals received from EEG electrodes placed 

on the surface of the brain are less precise for locating the source of the signal as compared 

to PET/MRS used in the study [2]. Nonetheless, adding these cost-effective modalities to 

molecular neuroimaging may help develop a more comprehensive predictive model with 

improved sensitivity for predicting antidepressant response.

5. Conclusions

To our knowledge, this was the first effort to develop a gradient tree boosting classifier by 

integrating pretreatment multimodal molecular neuroimaging with easily interpretable brain 

functional measures in one framework, with accuracy comparable to previous predictive 

models. This study provides information on effectively addressing common issues related to 

neuroimaging analysis, such as small sample size, high dimensionality, and class imbalance. 

More importantly, the pretreatment neuroimaging takes around 60 minutes and has the 

potential to prevent weeks of failed treatment trials.
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Fig. 1. 
XGBoost model development and evaluation.

Ali et al. Page 10

Neurosci Inform. Author manuscript; available in PMC 2023 January 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
The most predictive imaging features from the XGBoost model. The features are as follows: 

metabolism estimated by the metabolic rate of glucose (MRGlu, mg/(min*100 mL)) of left 

hippocampus, left entorhinal cortex, left insula, left thalamus and GABA (γ-aminobutyric 

acid) concentration of anterior cingulate cortex. F score: relative contribution of the feature 

to the prediction model.
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Fig. 3. 
XGBoost receiver operating characteristic area under the curve.
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