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Background. Lipid metabolism reprogramming played an important role in cancer occurrence, development, and immune
regulation. The aim of this study was to identify and validate lipid metabolism-related genes (LMRGs) associated with the
phenotype, prognosis, and immunological characteristics of lung squamous cell carcinoma (LUSC). Methods. In the TCGA
cohort, bioinformatics and survival analysis were used to identify lipid metabolism-related differentially expressed genes
(DEGs) associated with the prognosis of LUSC. PTGIS/HRASLS knockdown and overexpression effects on the LUSC
phenotype were analyzed in vitro experiments. Based on the expression distribution of PTGIS/HRASLS, LUSC patients were
divided into two clusters by consensus clustering. Clinical information, prognosis, immune infiltration, expression of immune
checkpoints, and tumor mutation burden (TMB) level were compared between the TCGA and GSE4573 cohorts. The genes
related to clustering and tumor immunity were screened by weighted gene coexpression network analysis (WGCNA), and the
target module genes were analyzed by functional enrichment analysis, protein-protein interaction (PPI) analysis, and immune
correlation analysis. Results. 191 lipid metabolism-related DEGs were identified, of which 5 genes were independent prognostic
genes of LUSC. PTGIS/HRASLS were most closely related to LUSC prognosis and immunity. RT-qPCR, western blot (WB)
analysis, and immunohistochemistry (IHC) showed that the expression of PTGIS was low in LUSC, while HRASLS was high.
Functionally, PTGIS promoted LUSC proliferation, migration, and invasion, while HRASLS inhibited LUSC proliferation,
migration, and invasion. The two clusters’ expression and distribution of PTGIS/HRASLS had the opposite trend. Cluster 1
was associated with lower pathological staging (pT, pN, and pTNM stages), better prognosis, stronger immune infiltration,
higher expression of immune checkpoints, and higher TMB level than cluster 2. WGCNA found that 28 genes including CD4
and IL10RA were related to the expression of PTGIS/HRASLS and tumor immune infiltration. PTGIS/HRASLS in the
GSE4573 cohort had the same effect on LUSC prognosis and tumor immunity as the TCGA cohort. Conclusions. PTGIS and
HRASLS can be used as new therapeutic targets for LUSC as well as biomarkers for prognosis and tumor immunity, which has
positive significance for guiding the immunotherapy of LUSC.
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1. Introduction

According to the global cancer statistics in 2020, lung cancer
ranked second in incidence and first in mortality [1]. Lung
cancer was divided into small-cell lung cancer (SCLC) and
non-small-cell lung cancer (NSCLC). NSCLC accounted
for about 80-85% of lung cancer, and lung squamous cell
carcinoma (LUSC) accounted for about 20-30% of NSCLC
[2]. The 5-year survival rate for LUSC was only about 10%
due to the lack of specific clinical manifestations in the early
stage [3, 4]. LUSC was characterized by a low fusion rate of
the anaplastic lymphoma kinase (ALK) gene and a low gene
mutation rate of epidermal growth factor receptor (EGFR),
which were about 1.5%-2.5% and 2.7%, respectively [5, 6].
Therefore, only a few LUSC patients with genetic mutations
were suitable for targeted therapy. Currently, the treatment
of advanced lung cancer has entered the era of immunother-
apy represented by immune checkpoint inhibitors (ICIs).
The immune contexture of cancer was closely related to
the prognosis [7] and the efficacy of tumor immunotherapy
[8, 9]. Tian et al. [10] suggested that LUSC was superior to
lung adenocarcinoma (LUAD) in immunotherapy, which
may be related to the mutation rate of the carcinogenic driv-
ing gene, TMB level, PD-L1 expression, and tumor-
infiltrating lymphocytes in LUSC. Patients who respond to
immunotherapy were most likely to achieve high-quality
long-term survival [11], but inefficiency remains a thorny
issue [12]. Therefore, the discovery of novel biomarkers that
predict tumor prognosis and immunotherapy efficacy to
select potential immunotherapy beneficiaries is a key issue
in the LUSC immunotherapy field.

Abnormal lipid metabolism was an important feature of
tumor metabolic reprogramming. The tumor microenviron-
ment (TME) was hypoxic, acidic, and nutrient-deficient,
which led to the metabolic reconstitution of tumor cells and
adjacent stromal cells and promoted tumor cell survival, pro-
liferation, and metastasis. Tumor cells were characterized by
excessive intake of fat and cholesterol [13] while increasing
new fat production [14], which was essential for membrane
biosynthesis and signaling molecules. Lipid metabolism
reprogramming existed in colon cancer, breast cancer, lung
cancer, and prostate cancer, and the abnormal regulation of
lipid metabolism in cancer cells was closely related to the
occurrence and development of tumors [15, 16]. FASN (fatty
acid synthase) was highly expressed in colon cancer [17],
breast cancer [18], and renal cell carcinoma [19] and was
associated with poor prognosis, tumor recurrence, and drug
resistance. Some studies [20, 21] showed that FASN was
highly expressed in NSCLC cells and promoted metastasis
and cisplatin resistance of NSCLC cells. Lv et al. [22] exam-
ined plasma lipid profiles of healthy individuals and patients
with different subtypes of lung cancer and found significant
changes in a large number of lipoprotein-related genes in
combination with data from large-scale genomic screening.
Therefore, the role of LMRGs in LUSC is still worthy of fur-
ther study.

Lipid metabolism reprogramming was a hallmark of
malignancy and occurs in tumor cells and TME [23]. A
common metabolic change in the TME was lipid accumula-

tion associated with immune dysfunction. Xu et al. [24] have
shown that the TME contained a large number of oxidized
fat molecules, which could inhibit the ability of killer T cells
(CD8 T cells) to kill cancer cells. Lim et al. [25] found that
when SREBPs (sterol-regulator-element-binding proteins)
were lost in regulatory T cells, the proportion of CD4 and
CD8 T cells in TME increased, tumor growth was inhibited,
and the efficacy of anti-PD1 therapy was enhanced. LMRG
signature has been reported to predict the prognosis and
immune characteristics of colorectal adenocarcinoma [26],
osteosarcoma [27], and LUAD [28]. However, whether
LMRGs can be used as biomarkers of LUSC prognosis and
tumor immunity has not been reported.

To more fully understand the role of LMRG in LUSC
phenotype, prognosis, and tumor immunity, we identified
and validated LMRGs associated with LUSC prognosis and
immunity in TCGA and GSE4573 cohorts. Furthermore,
we verified the expression levels of PTGIS/HRASLS in LUSC
cell lines and tissues and evaluated the role of PTGIS/
HRASLS in LUSC by vitro experiments. Our work provided
clues for finding novel biomarkers related to lipid metabo-
lism in LUSC phenotype, prognosis, tumor immune infiltra-
tion, and the efficacy of tumor immunotherapy, which will
be beneficial to the clinical decision-making of individual-
ized immunotherapy in LUSC.

2. Materials and Methods

2.1. Data Acquisition. The gene set containing 742 LMRGs
was obtained from the “metabolism of lipids” pathway of
the Reactome pathway database (https://reactome.org/)
(Supplementary Table 1). The transcriptome data (FPKM)
and clinicopathological data of 498 LUSC samples and 288
normal lung tissue samples for difference analysis were
derived from the TCGA TARGET GTEx dataset in the
University of California Santa Cruz Xena platform (UCSC
Xena; https://xena.ucsc.edu/) (Supplementary Table 2). The
FPKM of all transcriptome data was transformed by
log2(FPKM+1) for further analysis. 394 LUSC samples
with complete clinical information were included in the
follow-up study (Supplementary Table 3). GSE4573 cohort
containing 130 LUSC samples was downloaded from the
Gene Expression Omnibus database (GEO; https://www
.ncbi.nlm.nih.gov/gds/) (Supplementary Table 4). Simple
nucleotide variation (SNV) data of 409 LUSC cases was
downloaded from The Cancer Genome Atlas database
(TCGA; https://cancergenome.nih.gov/). TCGA cohort
(n = 394) was used as the training set and GSE4573 (n = 130)
as the validation set, and the clinical characteristics of the
two cohorts were compared (Table 1).

2.2. Identification and Functional Enrichment Analysis of
DEGs. The principal component analysis (PCA) was used
to detect the clustering effect of LUSC samples from the
TCGA dataset and normal lung tissue samples from the
GTEx dataset. The expression matrix (FPKM) containing
498 LUSC samples and 288 normal lung tissue samples
was compared with R package “limma” to obtain DEGs.
The filtering criteria were p value < 0.05 and jlog 2FCj > 1.
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Table 1: Characteristics of LUSC patients in the training set and validation set.

TCGA-LUSC cohort (n = 394) GSE4573 cohort (n = 130) Statistical value p value

Age (median [IQR]) 68 ([62, 73]) 68 ([60, 75]) -0.35a 0.726

Gender (%) 6.426 0.011∗

Female 100 (25.4) 48 (36.9)

Male 294 (74.6) 82 (63.1)

pT stage (%) 0.301 0.583

1-2 322 (81.7) 109 (83.8)

3-4 72 (18.3) 21 (16.2)

pN stage (%) 0.007 0.935

N0 250 (63.5) 83 (63.8)

N1-N3 144 (36.5) 191 (36.2)

pTNM stage (%) 0.163 0.687

I-II 318 (80.7) 107 (82.3)

III-IV 76 (19.3) 23 (17.7)
aMann–Whitney U test. ∗p < 0:05.

Table 2: The siRNA sequences used in RNA interference analysis.

Gene Sense (5′⟶3′) Antisense (5′⟶3′)
PTGIS-siRNA1 CGGUGACAUCUUUACUAUACU UAUAGUAAAGAUGUCACCGUG

PTGIS-siRNA2 CACAAAUGCUAUUCAGAUAAG UAUCUGAAUAGCAUUUGUGGA

PTGIS-siNC UUCUCCGAACGUGUCACGUTT ACGUGACACGUUCGGAGAATT

HRASLS-siRNA1 GGUGUAUUACAGACCAGAACC UUCUGGUCUGUAAUACACCGG

HRASLS-siRNA2 CAUACAGAAUAAACAAUAAAU UUAUUGUUUAUUCUGUAUGUG

HRASLS-siNC UUCUCCGAACGUGUCACGUTT ACGUGACACGUUCGGAGAATT

TCGA TARGET GTEx cohort

288 normal cases 498 LUSC cases

191 DEGs742 LMGs
Univariate Cox regression analysis
LASSO regression analysis
Multivariate Cox regression analysis

394 LUSC cases
(Training set)

Consensus clustering
(PTGIS and HRASLS)

Survival analysis

Immune infiltrating
analysis

WGCNA analysis

Validation

GSE4573 cohort (n = 130)
(Validation set)

GO analysis KEGG analysis

Clinical LUSC samples
(Verification of gene expression) LUSC cell function experiment

Figure 1: The workflow chart for this study.
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Figure 2: Continued.
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The somatic mutation landscape of DEGs in 409 LUSC sam-
ples was obtained by using the R package “maftools.” Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses were performed on
DEGs using the R package “clusterProfiler.”

2.3. Determination of Independent Prognostic Genes.We first
used the univariate Cox regression analysis to screen
DEGs associated with LUSC prognosis. LASSO regression
analysis was then performed using the R package “glmnet”
to eliminate genes with similar prognostic values. Finally,
the multivariate Cox regression analysis was used to deter-
mine independent prognostic genes in LUSC. The Kaplan-
Meier survival analysis was performed with the R package
“survival” to study the effect of independent prognostic
genes on the overall survival (OS) of LUSC.

2.4. Consensus Clustering of TCGA Cohort. ESTIMATE
analysis (ESTIMATEScore, ImmuneScore, StromalScore,
and TumorPurity) was performed for each sample using
the R package “ESTIMATE” to assess the ratio of immune
cells to stromal cells [29]. The correlations between 5
independent prognostic genes and 4 ESTIMATE indexes
were calculated, and the genes associated with prognosis
and tumor immunity were selected for follow-up analysis.
The expression levels of PTGIS and HRASLS in LUSC and
normal lung tissues were compared, and the correlation
between them was calculated. The expression data of inde-
pendent prognostic genes PTGIS and HRASLS was
extracted, and consensus clustering was performed using
the R software package “ConsensusClusterPlus” [30]. All

samples were divided into two clusters, and the survival
of the two clusters was analyzed.

2.5. Comparison of Immune Infiltration between Two
Clusters. To better understand the functional enrichment
differences between two clusters, gene set enrichment analy-
sis (GSEA) was performed for all DEGs using the R package
“clusterProfiler” [31]. We used ESTIMATE to evaluate the
overall strength of tumor immunity, CIBERSORT to evalu-
ate the infiltration ratio of 22 kinds of immune cells [32],
and R package “GSVA” for the single-sample gene set
enrichment analysis (ssGSEA) to evaluate the expression of
28 kinds of immune cells [33, 34].

2.6. Weighted Gene Coexpression Network Analysis
(WGCNA). To better characterize the DEGs of two clusters,
we used the R package “WGCNA” to perform a WGCNA of
the DEGs that met the requirements (p value < 0.05 and j
log 2FCj > 0:8) and to identify the coexpressed genes and
modules [35]. Firstly, the samples were clustered and the
abnormal samples were eliminated. Then, the optimal soft
threshold was calculated as 9, the minimum number of
module genes was set as 30, and 7 modules were obtained.
To pick out modules related to both lipid metabolism and
immunity, we calculated the correlation between each mod-
ule and traits (Clustering, ESTIMATEScore, ImmuneScore,
StromalScore, and TumorPurity). The genes in the module
that met the criteria (jMMj ðmodulemembershipÞ > 0:9
and jGSj ðgene significanceÞ > 0:7) were selected for subse-
quent analysis.
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Figure 2: Identification and mutation landscapes of lipid metabolism-related DEGs. (a) The 3D plot of principal component analysis (PCA)
between the TCGA dataset (tumor = 498) and the GTEx dataset (normal = 288). (b, c) The heatmap and volcano plot of 191 lipid
metabolism-related DEGs (the filtering criteria were adjusted p value < 0.05 and jlog 2FCj > 1). (d, e) The mutation frequency and
classification of 191 lipid metabolism-related DEGs in LUSC.
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Figure 3: Continued.
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2.7. Collection of LUSC Samples. We collected 30 pairs of
LUSC and paired tumor-adjacent normal lung tissues that
underwent surgery at Sun Yat-sen Memorial Hospital of
Sun Yat-sen University from 2015 to 2018. All the above
have been informed consent and approved by the Medical
Ethics Committee of Sun Yat-sen Memorial Hospital
(SYSKY-2022-050-01).

2.8. Cell Culture. Two human LUSC cell lines (NCI-H226
and SK-MES-1) and one human normal lung epithelial cell
line (BEAS-2B) were from the Shanghai Institutes for Bio-
logical Science, China. All cells were cultured in the 1640
(Gibco, Carlsbad, CA, USA) medium with 10% fetal bovine
plasma (Gibco) and 100U/ml streptomycins and penicillin
(HyClone, Logan, UT, USA) at 37°C in a humidified atmo-
sphere with 5% CO2. The cell culture medium was changed
every 2 days. When nearly 80% fused, the cells were digested
and passed by 0.25% trypsin. The analysis was carried out
after 3-5 generations.

2.9. Real-Time Quantitative PCR. Total RNA was extracted
using TRIzol reagent (Invitrogen, Carlsbad, CA, USA). Sim-
ply, 1ml TRIzol reagent was used to lysis 50-100mg tissue or
5 − 10 × 106 cells. RNA was extracted, precipitated, and
washed with chloroform, isopropanol, and 75% ethanol.
RNA precipitation was dissolved in 30μl deionized water,
and the RNA concentration was determined for subsequent
analysis. cDNA was synthesized using the HiScript II Q RT
SuperMix for qPCR (Vazyme, Nanjing, China). The cDNA
was then analyzed by RT-qPCR using AceQ qPCR SYBR
Green Master Mix (without ROX) (Vazyme) according to
the manufacturer’s protocol. Briefly, the RT-qPCR reaction
process was divided into predenaturation (95°C for 30 s;
one cycle), amplification (95°C for 10 s and 60°C for 30 s;
forty cycles), and melting (95°C for 15 s, 60°C for 60 s, and
95°C for 15 s; one cycle). The expression of target transcripts
was normalized to the GAPDH internal control, and relative

changes in gene expression were determined using the
2−ΔΔCT method.

The primers for PTGIS are 5′-CTGTTGGGCGATGC
TACAGAA-3′ (forward) and 5′-GCCTCAATTCCGTAAA
GAGTCA-3′ (reverse), HRASLS are 5′-TGCTTCAGTTT
GAACTACCCTG-3′ (forward) and 5′-GCCCAGTGCTG
ATAGCCAG-3′ (reverse), and GAPDH are 5′-GGAGCG
AGATCCCTCCAAAAT-3′ (forward) and 5′-GGCTGT
TGTCATACTTCTCATGG-3′ (reverse).

2.10. Western Blot (WB) Analysis. Human normal lung epi-
thelial cells (BEAS-2B) and human LUSC cells (NCI-H226
and SK-MES-1) were lysed with RIPA buffer (CWBIO,
Beijing, China) containing 1% phosphatase and protease
inhibitor. The protein concentration of the sample was
determined by the BCA protein quantity kit (Beyotime,
Shanghai, China). 20μg of protein lysates was separated by
sodium dodecyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE) and transferred to the PVDF membrane. The
membrane was sealed with 5% bovine serum albumin
solution at room temperature for 1 h, and the closed mem-
brane was incubated with primary antibodies specific for
PTGIS (diluted 1 : 1000, Immunoway, Newark, Delaware,
USA), HRASLS (diluted 1 : 1000, Immunoway), and β-actin
(diluted 1 : 10000, Immunoway) at 4°C overnight and then
incubated with goat anti-rabbit secondary antibody for 1 h.
Signals were detected with image acquisition using the
enhanced chemiluminescence (ECL) reagent (Vazyme) and
Optimax X-ray Film Processor (Protec, Germany).

2.11. Immunohistochemistry. The procedure of the immuno-
histochemical experiment and the scoring method of staining
were mentioned earlier [36]. Two independent observers
evaluated the immunostaining degree of the target protein.
The scores of staining intensity and range were high positive
(3+), positive (2+), low positive (1+), and negative (0). We
used ImageJ software to calculate the target protein’s integral
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optical density (IOD). Primary antibodies against PTGIS
(Immunoway) and HRASLS (ImmunoWay) were used.

2.12. RNA Interference Analysis and Plasmid Construction.
Control short interfering RNAs (siRNAs) and siRNAs tar-
geting PTGIS/HRASLS were purchased from GenePharma
(Shanghai, China). The siRNA sequences used in RNA
interference analysis are listed in Table 2. Empty plasmids
and overexpression plasmids of PTGIS/HRASLS were pur-
chased from GenePharma (Shanghai, China). Transfec-
tions of siRNA and plasmid were performed using the
Lipofectamine 3000 Transfection Reagent (Thermo Fisher,
Scientific, Waltham, MA, USA) according to the manufac-
turer’s protocol.

2.13. 5-Ethynyl-2′-deoxyuridine (EdU) Staining. An EdU kit
(BeyoClick™ EdU Cell Proliferation Kit with Alexa Fluor
555, Beyotime) was adopted to inquire about the cell prolif-
eration ability. Cells were seeded in 24-well plates with a
density of 5 × 104 cells per well. Subsequently, cells were incu-
bated with EdU for 2 h, fixed with 4% paraformaldehyde for
15min, and permeated with 0.3% Triton X-100 for another
10min. The cells were incubated with the Click Reaction
Mixture for 30min at room temperature in a dark place and
then incubated with Hoechst 33342 for 10min. Then, the
results were visualized by a fluorescence microscope.

2.14. Cell Migration and Invasion Assays. The cell migration
or invasion assays were performed using 24-well plates
inserted by an 8μm pore size transwell filter insert (Corning,
New York, USA) with or without precoated diluted Matrigel
(Becton Dickinson, Franklin Lakes, NJ, USA). 6 × 104 LUSC
cells with the serum-free medium were placed into the upper
chamber, and medium containing 10% FBS was added into
the bottom chamber subsequently. After incubation at
37°C for 24 h (migration) or 48 h (invasion), cells on the
underside of the membrane were immobilized and stained
with crystal violet (Beyotime). Then, penetrated cells were
counted under a microscope and photographed.

2.15. Statistical Analysis. Statistical analysis was based on R
software version 4.1.1 (R Foundation for Statistical Comput-
ing, Vienna, Austria), Statistical Product Service Solutions
software version 26.0 (IBM Corporation, Armonk, NY,
USA), and GraphPad Prism software version 7.0 (GraphPad
Software, La Jolla, CA, USA). All classification variables were
described by quantity (percentage), and the chi-square test
was used to compare the two sets of data (use Fisher’s exact
test if necessary). All measurement data were described in
the median (quartile), and the two sets of data were com-
pared by t-test (Mann–Whitney U test if necessary). The
Kaplan-Meier method was used for survival analysis and
the log-rank test was used for analysis.
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Figure 4: Identification of independent prognostic genes for LUSC. (a) Forest map of differentially expressed LMRGs related to LUSC
survival, analyzed by the univariate Cox regression. (b) LASSO coefficient spectrum of 25 genes in LUSC. Generate a coefficient
distribution map for a logarithmic (λ) sequence. (c) Selecting the best parameters for LUSC in the LASSO model (λ). (d) Forest map of
independent prognostic genes in LUSC, analyzed by the multivariate Cox regression. (e) The Kaplan-Meier survival curve of PTGIS. (f)
The Kaplan-Meier survival curve of HRASLS.
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3. Results

3.1. Identification and Mutation Landscapes of Lipid
Metabolism-Related DEGs. The workflow chart of this
study is shown in Figure 1. 3D PCA plot showed that
498 LUSC samples from the TCGA dataset and 288 nor-
mal lung tissue samples from the GTEx dataset were sig-
nificantly independent (Figure 2(a)). 191 lipid
metabolism-related DEGs were identified by using a
screening threshold of jlog 2FCj > 1 and p value < 0.05,
including 116 downregulated and 75 upregulated genes
(Figures 2(b) and 2(c)). We then summarized the inci-
dence of somatic mutations in 191 DEGs in LUSC.
Genetic mutations were found in 228 (55.75%) of 409
LUSC patients (Figures 2(d) and 2(e)). Figure 2(d) shows
the mutation landscape of DEGs with the top 20 mutation
rates in LUSC. The missense mutation was the highest
classification of variation. Single nucleotide polymorphism
(SNP) was the most common type of mutation, and C>T

was the single nucleotide variation (SNV) type with the
highest incidence (Figure 2(e)).

3.2. Enrichment Analysis of DEGs. GO analysis showed that
these 191 DEGs were mainly involved in the fatty acid
metabolic process, glycerolipid metabolic process, and phos-
pholipid metabolic process (Figures 3(a) and 3(b)). The
pathways enriched by KEGG analysis included glycerophos-
pholipid metabolism, arachidonic acid metabolism, and
ether lipid metabolism (Figures 3(c) and 3(d)). Moreover,
there were significant differences in the expression of repre-
sentative genes in lipid synthesis (Figure 3(e)), lipid catabolic
(Figure 3(f)), and lipid uptake (Supplementary Figure 1) in
LUSC compared with normal lung tissues. These results
indicated the importance of lipid metabolism in LUSC.

3.3. Identification of Prognostic Genes Related to Lipid
Metabolism in the TCGA Cohort. We used the univariate
Cox regression, LASSO regression, and multivariate Cox
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Figure 5: Verification of the expression of PTGIS and HRASLS in LUSC cells and tissues. (a) Detection of mRNA relative expression of
PTGIS and HRASLS in LUSC cell lines by RT-qPCR. (b) Detection of protein expression of PTGIS and HRASLS in LUSC cell lines by
WB analysis. (c) Detection of mRNA relative expression of PTGIS and HRASLS in LUSC and paired tumor-adjacent normal tissues by
RT-qPCR. (d) Detection of protein expression of PTGIS and HRASLS in LUSC tissues and tumor-adjacent normal tissues by IHC.
∗∗∗p < 0:001.
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Figure 6: Continued.
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regression analysis to screen DEGs associated with the prog-
nosis of LUSC. 24 LMRGs related to the prognosis of LUSC
were screened by the univariate Cox regression analysis
(p value< 0.05) (Figure 4(a)). Then, these genes were involved
in LASSO regression analysis, and 10 genes with the best λ
value were identified (Figures 4(b) and 4(c)). Based on the
genes produced by LASSO regression analysis, 5 independent
prognostic genes of LUSC were identified by the multivariate
Cox regression analysis (Figure 4(d)). The Kaplan-Meier sur-
vival analysis examined the relationship between the expres-
sion of 5 independent prognostic genes and OS in LUSC
(Figures 4(e) and 4(f) and Supplementary Figure 2), in
which the high expression of PTGIS (Figure 4(e)) and the
low expression of HRASLS (Figure 4(f)) were associated
with poor prognosis in LUSC.

3.4. Verification of the Expression of PTGIS and HRASLS in
Cell Lines and Tissues. RT-qPCR showed that the expression
of PTGIS was low in LUSC cell lines and tissues, while
HRASLS was high (Figures 5(a) and 5(c)). WB analysis
showed that the protein level of PTGIS in LUSC cell lines
(NCI-H226 and SK-MES-1) was significantly lower than
that in lung epithelial cell line (BEAS-2B), and HRASLS
was significantly higher (Figure 5(b)). Next, we used IHC
to detect the protein expression of PTGIS and HRASLS in
LUSC and paired tumor-adjacent normal lung tissues and
found that the protein level of PTGIS was low in LUSC
and HRASLS was high (Figure 5(d)).

3.5. PTGIS and HRASLS Affect LUSC Proliferation,
Migration, and Invasion In Vitro. To clarify the role of
PTGIS and HRASLS in LUSC, we performed cell experi-
ments in the LUSC cell line (SK-MES-1). Depletion of PTGIS
and HRASLS with siRNA resulted in a significant knock-
down in PTGIS (Figure 6(a)) and HRASLS (Figure 7(a))

levels. PTGIS knockout significantly inhibited LUSC cell
proliferation, migration, and invasion (Figures 6(b) and
6(c)), while HRASLS knockout significantly promoted LUSC
cell proliferation, migration, and invasion (Figures 7(b) and
7(c)). PTGIS and HRASLS expression plasmids resulted in
significant overexpression of PTGIS (Figure 6(d)) and
HRASLS (Figure 7(d)) levels. PTGIS overexpression pro-
moted LUSC cell proliferation, migration, and invasion
(Figures 6(e) and 6(f)), while HRASLS overexpression inhib-
ited LUSC cell proliferation, migration, and invasion
(Figures 7(e) and 7(f)). Taken together, these results sug-
gested that PTGIS and HRASLS played an important role
in LUSC phenotype.

3.6. Consensus Clustering of LUSC Based on PTGIS and
HRASLS. To explore the role of lipid metabolism in LUSC
tumor immunity, we evaluated the correlation between the
expression of independent prognostic genes and ESTIMATE
indices in LUSC (Figure 8(a)). Considering the correlation
with both OS and ESTIMATE indices, PTGIS and HRASLS
were included in the follow-up analysis. We compared the
expression of the two genes in the TCGA cohort and found
that the expression of PTGIS in tumor tissue was lower than
that in normal tissue (Figure 8(b)), while HRASLS was
higher (Figure 8(c)). Next, we performed consensus cluster-
ing of 394 LUSC patients according to the expression distri-
bution of PTGIS and HRASLS and divided the samples into
two clusters (Figure 8(d) and Supplementary Figure 3). The
consensus clustering heatmap showed that the expression of
PTGIS was high and HRASLS was low in cluster 1 (n = 199),
while the expression of PTGIS was low and HRASLS was
high in cluster 2 (n = 195). Because the two genes showed
opposite trends in the two clusters, the Spearman
correlation between PTGIS and HRASLS was studied, and
it was found that there was a weak negative correlation
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Figure 6: PTGIS promotes LUSC proliferation, migration, and invasion. (a) The mRNA expression of PTGIS in the SK-MES-1 cell line
transfected with siRNAs or si-NC was measured by qRT-PCR. (d) The overexpression plasmid of PTGIS or the control vector was
transfected into the SK-MES-1 cell line, and the mRNA expression of PTGIS was measured by qRT-PCR. (b, e) Representative images of
EdU assay after PTGIS knockdown (b) and PTGIS overexpression (e) in SK-MES-1 cells. (c, f) Representative images of transwell assay
after PTGIS knockdown (c) and PTGIS overexpression (f) in SK-MES-1 cells. ∗∗∗p < 0:001.
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Figure 7: Continued.
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between them (R = −0:14, p = 0:0048) (Figure 8(e)). We
compared the differences in clinical features between the
two clusters and found that cluster 1 had higher pT, pN,
and pTNM stages than cluster 2 (Table 3). In addition, the
prognosis of cluster 2 was significantly better than that of
cluster 1 (Figure 8(f)). These results suggested that PTGIS
and HRASLS divided the TCGA cohort into two molecular
subtypes with different characteristics.

3.7. Comparison of Immune Characteristics between Two
Clusters. To understand the functional enrichment differ-
ences between the two clusters, we included all the DEGs
of the two clusters in the GSEA analysis. We have found
many important pathways related to immunity in the
enrichment analysis of the MSigDB Collection (c5.all.v7.4.-
symbols.gmt), including activation of the immune response,
acute inflammation response, and adaptive immune
response, and these pathways were enhanced in cluster 2
(Figure 9(a)). Then, we compared the immune infiltration
of the two clusters using ESTIMATE, CIBERSORT, and
ssGSEA. ESTIMATE showed that the ESTIMATEScore,
ImmuneScore, and StromalScore of cluster 2 were higher
(Figures 9(b)–9(d)), but TumorPurity was lower
(Figure 9(e)). The infiltration heatmap of 22 immune cells
showed that the proportion of M2 macrophages in LUSC
was significantly higher than that of other types of immune
cells (Supplementary Figure 4). CIBERSORT showed a
higher proportion of CD8 T cells and M1 macrophages in
cluster 2 (Figure 9(f)). ssGSEA showed that the expression
of 27 immune cells of cluster 2 was higher (such as
activated B cells, activated CD4 T cells, activated CD8 T
cells, and natural killer cells) (Figure 9(g)). These results
showed that the immune cell infiltration of cluster 2 was
stronger than that of cluster 1.

3.8. Comparison of Gene Mutation and Evaluation of
Immunotherapy Sensitivity between Two Clusters. The TMB
level affected tumor immune infiltration and the efficacy of
immunotherapy [10]. Therefore, we evaluated the somatic
mutations of the two clusters. Figures 10(a) and 10(b) show
the mutation landscapes of the two clusters, and the TMB level
of cluster 2 was higher than that of cluster 1 (Figure 10(c)).
This indicated that cluster 2 may be more abundant in tumor
immune infiltration and more sensitive to tumor immuno-
therapy. Therefore, we first compared the expression of com-
mon immunoregulatory markers in the two clusters and
found that the expression levels of immune activation and
INF γ signaling pathway markers in cluster 2 were signifi-
cantly higher than those in cluster 1 (Figures 10(d) and
10(e)). Then, we compared the expression of immune check-
points between the two clusters to evaluate the sensitivity of
LUSC to immunotherapy and found that the expression of
PD1-related immune checkpoints (PD1, PDL1, and PDL2)
(Figure 10(f)), CTLA4-related immune checkpoints (CTLA4,
CD80, and CD86) (Figure 10(g)), and other reported immune
checkpoints (LAG3, TIM3, and TIGIT) (Figure 10(h)) in clus-
ter 2 were significantly higher than those in cluster 1.

3.9. Identification of Module Genes Related to Clustering and
Immunity in Weighted Gene Coexpression Network Analysis
(WGCNA). Through the screening thresholds of jlog 2FCj
> 0:8 and p value < 0.05, we identified 763 DEGs (including
697 upregulated genes and 66 downregulated genes)
(Figure 11(a)). The expression matrix containing 394 LUSC
samples and 763 DEGs was included in WGCNA. The sam-
ple cluster analysis eliminated 8 abnormal samples and
retained 386 samples (Supplementary Figure 5). The
heatmap of clustering and immune infiltration score is
shown in Figure 11(b). We chose 9 as the best soft
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Figure 7: HRASLS inhibits LUSC proliferation, migration, and invasion. (a) The mRNA expression of HRASLS in the SK-MES-1 cell line
transfected with siRNAs or si-NC was measured by qRT-PCR. (d) The overexpression plasmid of HRASLS or the control vector was
transfected in the SK-MES-1 cell line, and the mRNA expression of HRASLS was measured by qRT-PCR. (b, e) Representative images of
EdU assay after HRASLS knockout (b) and HRASLS overexpression (e) in SK-MES-1 cells. (c, f) Representative images of transwell
assay after HRASLS knockout (c) and HRASLS overexpression (f) in SK-MES-1 cells. ∗∗∗p < 0:001.
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Figure 8: PTGIS and HRASLS were associated with the prognosis and immune score in the TCGA-LUSC cohort. (a) Association between
LUSC independent prognostic genes and results of ESTIMATE. (b) The mRNA expression of PTGIS in LUSC and normal lung tissues. (c)
The mRNA expression of HRASLS in LUSC and normal lung tissues. (d) Consensus clustering based on the expression distribution of
PTGIS and HRASLS divided the TCGA cohort into two clusters. (e) Association between PTGIS and HRASLS expression. (f) The
Kaplan-Meier survival curve of two clusters.

Table 3: Clinical characteristics of two clusters in the TCGA-LUSC cohort.

Cluster 1 (n = 199) Cluster 2 (n = 195) Statistical value p value

Age (median [IQR]) 68 ([60, 73]) 69 ([62, 74]) -1.720 0.086

Gender (%) 1.089 0.297

Female 46 (23.1) 54 (27.7)

Male 153 (76.9) 141 (72.3)

pT stage (%) 3.963 0.047∗

T1-2 155 (77.9) 167 (85.6)

T3-4 44 (22.1) 28 (14.4)

pN stage (%) 25.787 0∗∗∗

N0 102 (51.3) 148 (75.9)

N1-N3 97 (48.7) 47 (24.1)

pM stage 2.626a 0.215

M0 194 (97.5) 194 (99.5)

M1 5 (2.5) 1 (0.5)

pTNM stage (%) 15.9 0∗∗∗

I-II 145 (72.9) 173 (88.7)

III-IV 54 (27.1) 22 (11.3)
aFisher exact probability test. ∗p < 0:05 and ∗∗∗p < 0:001.
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threshold (Figure 11(c)) and 30 as the minimum number of
genes for each coexpression network module and obtained
7 network expression modules (Figure 11(d)). To identify
modules related to clustering and immunity, we analyzed
the correlation between modules and traits (Figure 11(e)).
The turquoise module has a strong correlation with
clustering (r = −0:77, p = 4 × 10−78) and immunity (r = 0:94,
p = 8 × 10−181), so it will be used as the object of follow-up
research. Finally, based on jMMj > 0:9 and jGSj > 0:7, we
obtained 28 hub genes (CD53, SLA, ARHGAP15, SASH3,

EVI2B, GIMAP4, SELPLG, CYTH4, PTPRC, NCKAP1L,
WAS, RCSD1, IL10RA, CD74, IRF8, TNFRSF1B, BTK,
SNX20, APBB1IP, CD37, DOCK2, CD4, GIMAP7, LILRB1,
IL16, DOCK8, CORO1A, and BIN2) from the turquoise
coexpression network module (Figure 11(f)).

3.10. Enrichment Analysis of Hub Genes and Their Relationship
with Tumor Immune Infiltration. We conducted GO enrich-
ment analysis of 28 hub genes obtained byWGCNA and found
that the most important GO project was the activation and
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Figure 9: Comparison of immune characteristics between two clusters. (a) Gene set enrichment analysis (GSEA) between two clusters.
Comparison of ESTIMATEScore (b), ImmuneScore (c), StromalScore (d), TumorPurity (e), the proportion of 22 immune cells (f), and
expression of 28 immune cells (g) between two clusters. ns: no significance. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001.
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proliferation of immune cells (Figure 12(a)), and these pro-
cesses were enhanced (Figure 12(b)). PPI analysis showed
that IL10RA was in the center of the hub gene interaction
network (Figure 12(c)), and there was a strong positive corre-
lation between these genes (Figure 12(d)). The Spearman
correlation analysis of the hub genes and tumor immune
infiltration analysis (ESTIMATE and ssGSEA) showed that
all hub genes were significantly associated with tumor immu-
nity (Figures 12(e) and 12(f)).

3.11. GEO Validation of PTGIS and HRASLS in Evaluating
Prognosis and Tumor Immunity of LUSC. We divided the
GSE4573 cohort into two clusters using the same consen-
sus clustering method as the TCGA cohort and found that
the expression distribution of PTGIS and HRASLS in the
two clusters was similar to that in the TCGA cohort
(Figure 13(a)). The comparison of clinicopathological data
showed that the pN and pTNM stages of cluster 1 were
higher than that of cluster 2 (Table 4). The Spearman cor-
relation analysis showed that the expression levels of
PTGIS and HRASLS were negatively correlated, which
was similar to the TCGA cohort (r = −0:21, p = 0:018)
(Figure 13(b)). Survival analysis showed that high expres-
sion of PTGIS and low expression of HRASLS were asso-
ciated with poor prognosis in LUSC (Supplementary
Figure 6), and the OS rate of cluster 2 was significantly
higher than that of cluster 1 (Figure 13(c)). We used the
same analysis method as the TCGA cohort to compare
the degree of tumor immune infiltration including
ESTIMATE (Figures 13(d)–13(g)), the expression of
immunomodulatory markers (Figures 13(h)–13(j)),
CIBERSORT (Figure 13(k)), and ssGSEA (Figure 13(l))
between the two clusters. Unsurprisingly, the immune
system of cluster 2 was more active.

4. Discussion

Due to the lack of specific clinical manifestations and diag-
nostic biomarkers in the early stage of LUSC, most of the
patients were diagnosed with advanced tumors with distant
metastasis, resulting in high morbidity and mortality of
LUSC [1, 37]. The use of immunotherapy has revolutionized
the treatment of patients with advanced LUSC, but deter-
mining accurate individualized treatment is a difficult prob-
lem [12]. Therefore, it is of great clinical significance to
determine reliable biomarkers for the efficacy and prognosis
of immunotherapy in LUSC, contributing to the designation
of accurate clinical decision-making of individual patients’
immunotherapy.

Metabolic reprogramming, including changes in lipid
metabolism, was considered to be a characteristic manifes-
tation of tumors. Lipid metabolism reprogramming of the
TME affected tumor cell growth, proliferation, invasion,
metastasis, and immune escape [38, 39]. Multigene models
of tumor physiological and pathological pathways played
an important role in predicting tumor clinical prognosis
and outcome [40]. Gene signatures of glucose metabolism
[41], lipid metabolism [28], and amino acid metabolism
[42] pathways have been reported to play an important
role in predicting tumor prognosis and immune character-
istics. However, the role of LMRGs in LUSC has not been
reported.

In our study, we determined that PTGIS and HRASLS
were associated with LUSC prognosis and immunity and
divided the TCGA cohort into two clusters based on their
consensus clustering. Prostaglandin I2 synthase (PTGIS)
was a member of the cytochrome P450 superfamily and
encoded a monooxygenase involved in lipid syntheses such
as cholesterol and steroids. PTGIS was a key gene that
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Figure 10: Comparison of the gene mutation landscape and the expression of immunomodulatory targets between two clusters. Mutational
landscapes of cluster 1 (a) and cluster 2 (b). (c) Comparison of the tumor mutation burden (TMB) level between the two clusters. The
expression levels of key genes in activating immune (d) and IFN γ signature (e) pathways were compared between the two clusters. The
expression levels of PD1-related (PD1, PDL1, and PDL2) (f) and CTLA4-related (CTLA4, CD80, and CD86) (g) and other (LAG3,
TIM3, and TIGIT) (h) immune checkpoints were compared between the two clusters. ns: no significance. ∗p < 0:05 and ∗∗∗p < 0:001.
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catalyzed the transformation of prostaglandin H2 to prosta-
glandin I2 (PGI2) [43]. PGI2 was an important product of
the arachidonic acid (AA) metabolic pathway and an impor-
tant immunomodulatory lipid mediator, which affected the
normal inflammatory response and the activation and differ-
entiation of immune cells [44, 45]. PTGIS was highly
expressed in colon cancer tissues and liver metastases and
was associated with liver metastasis and poor prognosis of
colon cancer [46]. Dai et al. [47] have shown that PTGIS
could be used as a potential biomarker for prognosis and
tumor immune infiltration of lung, ovarian, and gastric can-
cers. The sequence of the H-RAS-like suppressor (HRASLS)
was homologous to lecithin: retinol acyltransferase (LRAT)
[48]. All members of the HRASLS family could metabolize
phospholipids in vitro and participate in a wide range of bio-
logical processes [49, 50], but the biological activity in vivo
has not been fully studied.

The important role of PTGIS and HRASLS in LUSC was
further clarified. In vitro, we found that PTGIS was a tumor-
promoting gene of LUSC and HRASLS was a tumor-
suppressor gene. The results of consensus clustering showed
that the expression of PTGIS and HRASLS had the opposite
trend in the two clusters. Then, we performed GSEA on both
clusters and found that all DEGs were enriched in immune
activation regulatory pathways, such as activation of the

immune response, acute inflammatory response, and adap-
tive immune response. Therefore, we speculated that cluster
2 may have stronger immune infiltration than cluster 1.

The immune infiltration in the TME was related to the
clinical features and prognosis of NSCLC [51, 52]. For exam-
ple, M1 macrophages [53], CD4 cells, CD8 cells [54, 55], NK
cells [56], and dendritic cells [57] in NSCLC promoted anti-
tumor immune responses and improved prognosis; M2
macrophages [58], regulatory T cells [59, 60], and Th17 cells
[61] were associated with immunosuppression and poor
prognosis in NSCLC. ICI treatment works by enhancing
the body’s natural antitumor response, and a stronger anti-
tumor immune response in individuals may make it easier
for patients to benefit clinically from ICI treatment [62].
Our study showed that the infiltrating proportion of
immune-activated cells, expression of immune checkpoints,
and TMB level in cluster 2 were significantly higher than
those in cluster 1, and cluster 2 had a better prognosis.
Therefore, LUSC patients in cluster 2 were more likely to
benefit from immunotherapy.

The changes in tumor lipid metabolism provided a
new therapeutic target for tumor therapy. At present, pre-
clinical and clinical studies have shown that multiple tar-
geted lipid metabolism schemes showed good antitumor
effects [13]. Our study suggested that PTGIS and HRASLS
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Figure 11: Identification of module genes related to clustering and immunity in weighted gene coexpression network analysis (WGCNA).
(a) The volcano plot of DEGs (the filtering criteria were adjusted p value < 0.05 and jlog 2FCj > 0:8). (b) Sample dendrogram and trait
heatmap based on two clusters of DEGs and immune characteristics in the TCGA cohort. (c) The scale-free fitting index of soft
threshold power (β), and 9 was the most suitable power value. (d) Gene dendrogram and module colors. (e) The correlation heatmap of
module eigengenes, clustering, and ESTIMATE results. (f) Scatter plot of module eigengenes in the turquoise module (the filtering
criteria were jMMj > 0:9 and jGSj > 0:7).
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Figure 12: Analysis of 28 hub genes. (a, b) GO enrichment analysis of 28 hub genes. (c) The protein-protein interaction (PPI) network of 28
hub genes. (d) The correlation heatmap of 28 hub genes. (e) The correlation heatmap between hub genes and results of ESTIMATE. (f) The
correlation heatmap between hub genes and expression of immune cells (ssGSEA).
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Figure 13: Continued.
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played an important role in LUSC phenotype, prognosis,
and tumor immunity. In conclusion, PTGIS and HRASLS
can be used as new biomarkers and therapeutic targets for
LUSC and have positive significance in guiding the immu-
notherapy of LUSC.

There were still some limitations in this study. Firstly,
this study was a retrospective study based on public data-
bases (TCGA and GEO databases). Therefore, prospective
studies based on the real world should be carried out in
the future to increase the clinical value of the research. In

addition, the potential value of PTGIS/HRASLS response
to LUSC immunotherapy has not been verified in clinical
samples. This study was based on transcriptome data and
did not prove the direct mechanism of PTGIS/HRASLS in
LUSC immune infiltration and antitumor immunity.

5. Conclusion

We identified LMRGs PTGIS and HRASLS that were related
to the prognosis and tumor immunity of LUSC. In vitro,
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Figure 13: GEO validation of PTGIS and HRASLS in evaluating prognosis and tumor immunity of LUSC. (a) Based on the expression of
PTGIS and HRASLS, the GSE4753 cohort was divided into two clusters. (b) Association between PTGIS and HRASLS expression in the
GSE4753 cohort. (c) The Kaplan-Meier survival curve of two clusters. Comparison of ESTIMATEScore (d), ImmuneScore (e),
StromalScore (f), TumorPurity (g), the expression of immunomodulatory markers (h–j), proportion of 22 immune cells (k), and
expression of 28 immune cells (l) between two clusters. ns: no significance. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:00.

Table 4: Clinical characteristics of two clusters in the GSE4573 cohort.

Cluster 1 (n = 79) Cluster 2 (n = 51) Statistical value p value

Age (median [IQR]) 68 ([59, 75]) 66 ([61, 75]) -0.634 0.528

Gender (%) 0.625 0.419

Female 27 (34.2) 21 (41.2)

Male 52 (65.8) 30 (58.8)

pT stage (%) 2.498 0.114

T1-2 63 (79.7) 46 (90.2)

T3-4 16 (20.3) 5 (9.8)

pN stage (%) 4.134 0.042∗

N0 45 (57) 38 (74.5)

N1-N3 34 (43) 13 (25.5)

pTNM stage (%) 5.591 0.018∗

I-II 60 (75.9) 47 (92.2)

III-IV 19 (24.1) 4 (7.8)
∗p < 0:05.
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PTGIS and HRASLS affected LUSC proliferation, migration,
and invasion. Based on consensus clustering of PTGIS and
HRASLS expression distribution, LUSC patients in TCGA
and GSE4573 cohorts were divided into two clusters. Cluster
2 had a better prognosis, stronger immune infiltration,
higher expression of immune checkpoints, and higher
TMB levels than cluster 1. Therefore, our study suggests that
PTGIS and HRASLS have potential clinical value in guiding
immunotherapy as novel therapeutic targets for LUSC as
well as biomarkers for prognosis and tumor immunity.
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