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1  |  INTRODUC TION

Ischemic stroke (IS) and hemorrhagic (HS) stroke are incredibly det-
rimental and in need of novel treatment development. HS, account-
ing for 15% of strokes,1 involves blood vessel damage, such as berry 
aneurysms, and their subsequent rupture.2 50% of patients with HS 
die or suffer from compromised cognitive abilities, functionality, and 
quality of life scores.3 Unfortunately, there are no treatments for 
HS.4 Ischemic stroke (IS), caused by a lack of blood flow to the brain 
due to vascular blockage, has only slightly more promising outcomes. 
85% of strokes are caused by ischemia, and 25% of patients die from 
IS.1,5 While thrombolytic therapies, such as tissue plasminogen factor 
(tPA) and mechanical thrombectomy (MT) can be used for IS, they 
are accompanied by a high risk for hemorrhagic transformation.6 

Furthermore, these therapies must be employed in limited time win-
dows or can be more harmful than helpful.7–11 IS and HS have various 
methods of cell death, including excitotoxicity, oxidative stress, free 
radical accumulation, mitochondrial dysfunction, impaired neurogen-
esis, angiogenesis, vasculogenesis, and inflammation.12–14 Regarding 
inflammatory processes following stroke, IL-6 plays a significant role 
in IS and HS pathophysiological processes. In the early stages follow-
ing stroke, IL-6 is vital in inducing an inflammatory cascade and even-
tually inducing the activity anti-inflammatory mediators.15,16 Later, 
leukemia inhibitory factor and ciliary neurotrophic factor, members of 
the IL-6 family, are necessary to stimulate neurogenesis, cell survival, 
and stem cell proliferation.15,17 These IL-6 cytokine family members 
work via different signaling mechanisms, and maintaining a balance of 
these pathways plays a considerable role in neuroinflammation.
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Abstract
Interleukin (IL)-6 is a unique cytokine due to its dual signaling, with one pathway 
being pro-inflammatory (trans) and the other homeostatic (classical). Both of these 
pathways have been implicated in neuroinflammation following stroke, with initial in-
flammatory mechanisms being protective and later anti-inflammatory signaling pro-
moting ischemic tissue recovery. IL-6 plays a major role in stroke pathology. However, 
given these distinctive IL-6 signaling consequences, IL-6 is a difficult cytokine to tar-
get for stroke therapies. Recent research suggests that the ratio between the pro-
inflammatory binary IL6:sIL6R complex and the inactive ternary IL6:sIL6R:sgp130 
complex may be a novel way to measure IL-6 signaling at different time points fol-
lowing ischemic injury. This ratio may approximate functional consequences on indi-
vidualized stroke therapies, allowing clinicians to determine whether IL-6 agonists or 
antagonists should be used at specific time points.
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IL-6 possesses two unique signaling pathways with widely variable 
outcomes (Graphical Abstract). Classical signaling uses membrane-
bound IL-6 receptors. These IL-6 receptors are not present in neuroin-
flammatory cells; thus, classical signaling propagates a homeostatic, 
anti-inflammatory signaling pathway.18,19 Once IL-6 is bound, gp130, 
the signal-transducing protein, is dimerized and signals are sent via 
the JAK/STAT3 pathway to promote homeostasis in response to im-
mune system stimulation.20–22 Classical signaling is seen in nerve re-
generation after trauma and spinal cord injuries.23–25 Contrarily, the 
trans pathway is pro-inflammatory due to the activation of gp130 
on neuroinflammatory cells.18 Gp130 is present in neurons, neuronal 
cells, endothelial cells, and oligodendrocytes.26 Trans-signaling uses 
a soluble IL-6 receptor (sIL6R), forming the binary IL6:sIL6R complex, 
and later activating gp130.18 This binary complex is pro-inflammatory; 
however, soluble gp130 (sgp130) can block inflammation by estab-
lishing a ternary IL6:sIL6R:sgp130 complex. This ternary complex 
prohibits gp130 binding and IL-6 trans-signaling. Obtaining a greater 
understanding of each of these signaling mechanisms and their roles 
in neuronal pathologies, such as stroke, could revolutionize treatment 
options. Recently, the utility of the binary/ternary (B/T) ratio in mea-
suring IL-6 inflammatory signaling to predict ischemic stroke has been 
elucidated.27 The B/T ratio may be a novel option to optimize IL-6 
targeted therapies for stroke, and further investigation should be con-
ducted to better understand its clinical relevance in stroke.

2  |  A NOVEL BIOMARKER DISCOVERY

To examine the role of IL-6 trans-signaling in propagating IS second-
ary to atrial fibrillation (AF), the ratio between pro-inflammatory binary 
IL6:sIL6R complex to the inactive ternary IL6:sIL6R:sgp130 complex 
(B/T ratio) in 4232 60-year-old patients was examined.27 Over a 20-year 
period, 203 of these participants suffered from IS. Twenty-nine patients 
had pre-existing AF, while 279 patients were diagnosed with AF over 
the course of the study. AF was positively correlated to IS incidence, 
but B/T ratio was not different among those who had AF and IS versus 
those who had AF but no IS. B/T ratio was, however, significantly related 
to IS risk regardless of AF, as those who had a stroke during follow-up 
had higher baseline B/T ratios. Contrarily, AF was not related to higher 
B/T ratios, but generally higher IL-6 levels did correlate with greater AF 
incidence and shorter time to AF diagnoses. Ultimately, these research-
ers suggest that the B/T ratio may be a novel biomarker to determine 
patients at risk for IS secondary to vascular pathology, but not secondary 
to AF-induced emboli. Our group aims to further analyze the use of the 
B/T ratio as a biomarker, while also employing this ratio to optimize and 
personalize IL-6 trans-signaling targeted therapies for IS and HS.

3  |  A FAVOR ABLE END OF THE DOUBLE-
EDGED SWORD?

IL-6 expression levels are increased following IS and HS28,29; how-
ever, there are conflicting reports of whether blocking IL-6 signaling 

is beneficial or detrimental following stroke. Blocking IL-6 signaling 
affords beneficial effects in many stroke studies. In HS, peroxisome 
proliferator-activated receptor-γ agonists can reduce IL-6 mRNA in 
mouse models of intracranial aneurysms, ultimately reducing rupture 
occurrence.30 Inhibiting activator protein 1 (AP-1), a gene regulator 
known to increase cytokine production, with SR11302 in mice mod-
els of HS also shows reduced IL-6 levels, which may be related to 
the reduced brain injury and toxic inflammation following HS after 
treatment.31 Treatment with Tocilizumab, an IL-6 receptor antago-
nist, reduces the occurrence of vasospasm, an injurious consequence 
of HS,32 and mitigates cell death in rabbit models of HS.33 Similarly, 
Tocilizumab reduces brain atrophy, mortality, and functional deficits 
in mouse models of IS.34 Using cell-based therapies, IS rat models 
treated with Roxadustat-prepped bone marrow stromal cells have 
decreased infarct volumes and improved behavior recovery parallel-
ing reduced pro-inflammatory cytokines, including IL-6.35 Similarly, 
human embryonic stem cell-derived and umbilical cord MSCs decrease 
IL-6 mRNA in murine models of middle cerebral artery occlusion. This 
decrease in IL-6 may be relevant to the increased neurogenesis, in-
creased angiogenesis, and decreased apoptosis seen in these treated 
animals.36,37 Given the role of IL-6 in inflammation following stroke, 
it is understandable that blocking this cytokine prior to potential ex-
acerbated inflammation offers therapeutic benefit. Blocking IL-6 to 
exert therapeutic effects may be highly time-dependent (i.e., acute 
phase of stroke), complicating the treatment regimen.

Various studies have contradicted the aforementioned thera-
peutic approaches of blocking IL-6 signaling, suggesting that IL-6 
amplification is also helpful in mitigating stroke damage. In IL-6 
knockout mice models of IS, exogenous administration of IL-6 in-
duces poststroke angiogenesis. Without IL-6, angiogenic mediators 
are diminished and mice exhibit larger infarct volumes with poor 
revascularization. Treatment with IL-6, however, increases the tran-
scription of angiogenic genes.38 In rodent models, IL-6 injection after 
ischemic injury reduces cell death, learning disabilities, and infarct 
damage.39,40 Blocking IL-6 receptors with a monoclonal antibody in 
rat models of middle cerebral artery occlusion leads to high levels of 
apoptosis and large infarct volumes.41 IL-6 is also important for he-
matopoietic stem cell differentiation, and stem cells have been pro-
posed as a revolutionary treatment for stroke.12,42,43 Indeed, bone 
marrow-derived stem cells (BMSCs) amplify regulatory T-cell (Treg) 
proliferation in ischemic tissue after IS, promoting anti-inflammation 
and neuroprotection in neuronal cell cultures. The mechanism of 
action for these protective qualities of BMSCs may involve IL-6, as 
increased Treg concentration correlates with increased IL-6 secre-
tion by BMSCs.44 Preconditioning of mesenchymal stem cells with 
IL-1β and IFN-γ enhances IL-6 production, ultimately increasing anti-
inflammatory macrophage differentiation.45 The therapeutic benefits 
of elevated IL-6 after IS can also be seen using epidermal neural crest 
stem cells.46 Peripheral inflammation also contributes significantly 
to stroke pathology.47 Administration of partial MHC class II con-
struct, DRmQ, to rat models of IS, reduces splenic contributions to 
neuroinflammation, including amplifying splenic IL-6 production, and 
decreases stroke pathogenesis. Future research should also aim to 
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compare the therapeutic effectivity of direct IL-6 application versus 
BMSC-induced IL-6 production for eventual clinical translation. Other 
cytokines, such as IL-13 and IL-4, may play a vital role in IL-6 signal-
ing as well. IL-13 and IL-4 have been shown to increase IL-6 produc-
tion,48 and elevations in both IL-13 and IL-4 demonstrate reparative 
effects following stroke in mice models.49,50 There is less research 
regarding the amplification of IL-6 following HS; however, given simi-
lar inflammatory responses between HS and IS, further investigation 
is needed.51 In addition to blocking IL-6 signaling, amplification of IL-6 
may offer equally therapeutic benefits to improving stroke progno-
ses, depending on the time course and each patient's unique inflam-
matory responses. The fine balance between amplifying or inhibiting 
specific IL-6 pathways creates a complicated situation for treatment 
design. Due to IL-6's dominant role in stroke pathology, however, it is 
vital to understand and specifically target the dynamic IL-6 signaling 
pathways that may confer deleterious or beneficial stroke outcomes.

4  |  CLINIC AL MILESTONES

While the preclinical studies are numerous, clinical studies are less 
prevalent. Genetic contributions to IL-6 levels are significant in predict-
ing stroke occurrence and prognoses, with lower genetically induced 
production of IL-6 being protective against IS. Interestingly, those pre-
disposed to lower IL-6 production also showed greater sIL6R levels.52 
Some research shows higher IL-6 serum levels at study enrollment 
correlate to worse outcomes at 3 and 6  months (NCT01953549).53 
Elevations in IL-6 at least 3 weeks after initial lacunar stroke predict re-
current vascular events, such as stroke, vascular death, and myocardial 
infarction.54 Lacunar strokes are commonly due to hypertension, how-
ever, which is a major confounding factor of these secondary events. 
Regarding HS, higher IL-6 levels at admission are related to worse 
prognosis regarding function, ICH volume, and edema.55 Importantly, 
all these studies measure initial IL-6 concentrations long after stroke 
incidence; however, the pro-inflammatory or anti-inflammatory im-
pacts of IL-6 vary significantly depending on the stroke recovery time-
line.15,16 While these studies suggest IL-6 is a detrimental cytokine for 
stroke prognosis, it rather strengthens the need to better understand 
the temporality in signaling mechanisms of IL-6 following stroke.

Regarding attempts to resolve functional deficits following 
stroke, some report measures of IL-6. Statin administration, a com-
mon treatment for dyslipidemia to reduce stroke risk, is related to 
improved prognosis and lower inflammatory markers, including IL-6 
(NCT02225834).56 Another study employed an IL-1 receptor an-
tagonist in patients 5 h after IS. IL-1 induces IL-6 expression, thus, 
blocking this signaling reduces plasma IL-6 as well. This antagonism 
did not, however, show any clinical benefit (ISRCTN74236229).57 
Similarly, oleoylethanolamide shows reduced inflammation, oxida-
tive stress, and dyslipidemia after ischemic stroke, but no functional 
recovery is reported.58

Ongoing clinical trials are measuring IL-6 in relation to ischemic 
stroke prognosis (NCT05004389; NCT03297827), ischemic stroke 
treatment efficacy (NCT04705779), hemorrhagic stroke recovery 

using in-bed cycle ergometry (NCT04027049), and even IS and 
HS recovery following autologous mesenchymal stem cell therapy 
(NCT04063215).

5  |  FUTURE DIREC TIONS

Given the acute role of IL-6 in inflammation, and the delayed neuro-
trophic role of IL-6,15 we propose to probe the ideal time to enhance 
or inhibit the IL-6 trans, inflammatory signaling pathway. It is likely 
that optimal IL-6 targeted therapies modulate the trans pathway to 
induce trans-signaling early on but mitigate this pathway later to 
avoid amplified neuroinflammatory responses.59 To achieve this bal-
ance, sgp130 antibodies can be used to aid in ternary complex for-
mation, ultimately enhancing the IL6:sIL6R:sgp130 trans-signaling 
antagonism in clinical and preclinical studies of vascular disease.60 
The question of ideal timing for therapeutic effect, however, remains 
to be elucidated. Considering recent literature,27 we suggest the use 
of the B/T ratio to determine when the body is naturally amplifying 
versus lessening inflammatory IL-6 signaling. With this knowledge, 
IL-6 agonists can be used while the B/T ratio is high to support the 
body's natural mechanisms. Once the B/T ratio lowers, however, a 
switch to IL-6 trans-signaling antagonist therapies, such as sgp130, 
can be given to support the body's attempts to lessen inflammation. 
The use of each patient's B/T ratio is critical, based on the natural 
variation in people's bodily responses. By adjusting pharmaceutic 
intervention targeting IL-6 trans-signaling, clinicians may be able to 
aid in the body's natural flipping of the double-edged sword. Further 
research is needed, however, to enhance understanding of the B/T 
ratio following stroke and examine how IL-6 signaling interventions 
should be administered in relation to this ratio.

6  |  CONCLUSION

Drawing on recent findings,27 we encourage researchers to study the 
use of the B/T ratio following IS or HS to determine whether IL-6 trans-
signaling should be amplified or mitigated. This novel approach to phar-
maceutical intervention of inflammation allows for tailored treatment 
for stroke patients. Recognizing the key role of IL-6 in stroke patho-
genesis, alongside its complicated signaling mechanisms, proceeding 
with individualized analysis of time-dependent predominant signaling 
pathways in each patient prior to initiating IL-6-based treatments may 
aid to achieve the cytokine's therapeutic outcomes in stroke.
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