
Nature Medicine | Volume 29 | January 2023 | 170–179 170

nature medicine

Article https://doi.org/10.1038/s41591-022-02112-7

Pharmacotypes across the genomic 
landscape of pediatric acute lymphoblastic 
leukemia and impact on treatment response

Shawn H. R. Lee1,2,3,8, Wenjian Yang    1,8, Yoshihiro Gocho1, August John    1, 
Lauren Rowland1, Brandon Smart1, Hannah Williams    1, Dylan Maxwell1, 
Jeremy Hunt1, Wentao Yang1, Kristine R. Crews    1, Kathryn G. Roberts    4, 
Sima Jeha5, Cheng Cheng6, Seth E. Karol    5, Mary V. Relling    1, 
Gary L. Rosner    7, Hiroto Inaba    5, Charles G. Mullighan    4, Ching-Hon Pui    5, 
William E. Evans    1,9 & Jun J. Yang    1,5,9 

Contemporary chemotherapy for childhood acute lymphoblastic leukemia 
(ALL) is risk-adapted based on clinical features, leukemia genomics and 
minimal residual disease (MRD); however, the pharmacological basis 
of these prognostic variables remains unclear. Analyzing samples from 
805 children with newly diagnosed ALL from three consecutive clinical 
trials, we determined the ex vivo sensitivity of primary leukemia cells to 
18 therapeutic agents across 23 molecular subtypes defined by leukemia 
genomics. There was wide variability in drug response, with favorable 
ALL subtypes exhibiting the greatest sensitivity to L-asparaginase and 
glucocorticoids. Leukemia sensitivity to these two agents was highly 
associated with MRD although with distinct patterns and only in B cell ALL. 
We identified six patient clusters based on ALL pharmacotypes, which 
were associated with event-free survival, even after adjusting for MRD. 
Pharmacotyping identified a T cell ALL subset with a poor prognosis that was 
sensitive to targeted agents, pointing to alternative therapeutic strategies. 
Our study comprehensively described the pharmacological heterogeneity 
of ALL, highlighting opportunities for further individualizing therapy for 
this most common childhood cancer.

Acute lymphoblastic leukemia (ALL), the most common cancer in child-
hood, comprises a constellation of clinically heterogenous molecular 
subtypes1. The current paradigm of ALL risk stratification integrates 
clinical features, leukemia somatic genomic aberrations and early 

treatment response as measured by minimal residual disease (MRD)2–5. 
However, the pharmacological basis of inter-patient variability in MRD 
is poorly understood and the relationships between somatic genom-
ics and drug resistance phenotypes are unclear. Thus, ALL treatment 
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matched with a given genomic abnormality26. Although this is highly 
informative for drugs with a clear target (for example, imatinib and 
BCR-ABL1 leukemias), the mechanisms of drug response are highly 
complex for most agents. Therefore, assessment of genetic driv-
ers alone may not adequately translate into accurate prediction of 
therapy effectiveness. With few exceptions, recent trials attempting 
to select therapy based on molecular target identification have not 
consistently yielded benefit for patients27–31. For this reason, there is 
a growing interest in functional precision medicine approaches in 
cancer treatment individualization, such as augmenting genomic 
testing with direct drug sensitivity profiling using primary tumor 
specimens25,32,33. For example, the recent EXALT trial34 used drug 
profiling to match therapy in patients with aggressive hematologi-
cal cancers and has shown feasibility for clinical implementation, 
with promising improvement in patient outcome compared to 
traditional therapy.

Therefore, we sought to comprehensively characterize the rela-
tionship between ex vivo drug sensitivity profiles and in vivo early treat-
ment response across the updated taxonomy of molecular subtypes 
of ALL, to inform the design of optimal or even new combinatorial 
therapeutic strategies. To this end, we performed ex vivo pharmacotyp-
ing of 18 contemporary chemotherapeutic drugs on primary ALL cells 
from 805 patients with ALL comprising 23 molecular subtypes and 
evaluated the impact of leukemia drug sensitivity on initial treatment 
response as measured by MRD in the context of contemporary ALL 
treatment regimens.

Results
Association of clinical features with ALL drug sensitivity
The sensitivity of leukemia cells from 805 patients was measured for 18 
drugs (Fig. 1 and Table 1), with a total of 5,447 50% lethal concentration 
(LC50) measurements (Supplementary Tables 1 and 2). In parallel, we 

regimens worldwide almost uniformly use an identical repertoire of 
conventional chemotherapy drugs with little variation in timing and 
intensity, and are not influenced by the patient’s sensitivity to spe-
cific antileukemic agents. The limited exceptions include the addition 
of tyrosine kinase inhibitors for ALL with the BCR-ABL1 or ABL class 
fusions6. In the current era of personalized medicine, it is imperative to 
determine whether biologically and pharmacologically informed selec-
tion of chemotherapy can further improve ALL treatment outcomes.

MRD reflects the in vivo response to combination chemothera-
peutic agents utilized in the ‘induction’ phase in clearing disease to 
submicroscopic levels, and is widely regarded as the most powerful 
prognostic factor in ALL treatment3,7. However, MRD after combina-
tion chemotherapy does not indicate which of the multiple antileuke-
mic agents a patient is responding to, and which are producing little or 
no therapeutic benefit. De novo and acquired resistance of ALL cells 
to chemotherapy is known to be a major cause of treatment failure8. 
Directly assessing leukemia cell sensitivity to cytotoxic chemothera-
peutic agents ex vivo (prednisolone, vincristine, daunorubicin and 
L-asparaginase (PVDL)), we and others described the correlation of 
drug resistance phenotype with treatment response9–11 and associa-
tion with clinical characteristics and somatic genomic features (for 
example, BCR-ABL1, KMT2A rearrangements)12–16. In fact, prospective 
assessment of these drug sensitivity profiles was shown to have util-
ity in predicting patients at high risk of poor treatment response. 
However, these studies have several limitations in the context of 
contemporary ALL treatment because (1) only a narrow selection 
of conventional chemotherapeutic agents were screened and (2) 
molecular subtyping was restricted to 4–5 common fusions and 
aneuploidy9,17–25. Therefore, the drug response profiles of most ALL 
subtypes are unknown.

The current prevailing paradigm of precision oncology is largely 
driven by cancer genomics, that is, therapy is selected for and 
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Fig. 1 | Schematic overview of ALL pharmacotyping, molecular subtyping 
and evaluation of treatment response. To comprehensively characterize the 
relationship between drug sensitivity profiles and in vivo treatment response, 
we performed ex vivo pharmacotyping of 18 drugs on primary ALL cells from 
805 patients treated on the St. Jude Total Therapy XV, XVI and XVII trials. Drug 
profiling was performed via MTT assay or MSC co-culture with flow cytometry, 
where we evaluated the LC50 of each drug (dose required to kill 50% of leukemia 

cells). We also performed RNA-seq for each patient to determine the molecular 
subtype. Additionally, as part of each therapeutic trial, every patient had mid-
induction (day 15) or post-induction (day 42) MRD determined as a measure of 
in vivo treatment response to chemotherapy. We then performed integrated 
analyses of drug sensitivities, somatic genomics, MRD and long-term survival 
outcomes to characterize the pharmacogenomic landscape of childhood ALL. 
This figure was created using BioRender.com.
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performed RNA sequencing (RNA-seq) on diagnostic ALL cells to assign 
each patient to 1 of 23 unique subtypes. Across all drugs, we observed 
wide interindividual variability in drug sensitivity, with an average coef-
ficient of variation of 55.3% (range = 8.7–105.4%; Extended Data Fig. 1).

We first examined the LC50 distribution of each drug by patient 
characteristics (Supplementary Table 3). Because of the number of 
drugs evaluated, we also corrected for multiple testing using the Ben-
jamini–Hochberg procedure. We found that patients ≥10 years old had 
a higher median normalized LC50 than those 1 to <10 years of age for 
L-asparaginase (0.62 versus 0.40, P < 0.001) and prednisolone (0.26 
versus 0.18, P = 0.003). Patients with ≥50 × 109/L leukocyte count at 

diagnosis had a lower median LC50 than those <50 × 109/L for mer-
captopurine (0.42 versus 0.50, P = 0.004) and dasatinib (0.86 versus 
1.0, P < 0.001). Assessing by the National Cancer Institute (NCI) risk 
group for ALL, NCI high-risk patients (age ≥ 10 years or leukocyte count 
≥50 × 109/L) had a higher median LC50 than NCI standard-risk patients 
(age < 10 years and leukocyte count <50 × 109/L) for only L-asparaginase 
(0.56 versus 0.37, P < 0.001). There were no differences in drug LC50 by 
sex or ancestry (Supplementary Table 3).

Drug sensitivity differs across ALL subtypes
We next sought to characterize drug sensitivities across the somatic 
genomic landscape of ALL. Fourteen of 18 drugs exhibited nominally 
significant inter-subtype variability (P < 0.05), with the exceptions 
being panobinostat, ruxolitinib, bortezomib and daunorubicin  
(Fig. 2a, Extended Data Fig. 2 and Supplementary Table 4).

ETV6-RUNX1 and hyperdiploid ALL were highly sensitive to the four 
drugs commonly used in remission induction (PVDL), recapitulating 
the known chemotherapy-responsive nature of these subtypes9,10. 
For these two subtypes with known favorable prognosis, the median 
PVDL LC50 was 0.18 for ETV6-RUNX1 and 0.26 for hyperdiploid, both 
significantly lower than 0.41 for the remaining subtypes (P < 0.001 and 
P = 0.004, respectively). By contrast, subtypes known to have poorer 
prognosis, BCR-ABL1, BCR-ABL1-like and KMT2A, exhibited higher PVDL 
LC50 (0.46, P = 0.001, 0.66, P < 0.001 and 0.54, P < 0.001, respectively 
compared to ETV6-RUNX1). DUX4, a recently discovered subtype with 
favorable outcomes, had an intermediate PVDL LC50 of 0.33 (P < 0.001 
compared to ETV6-RUNX1), with a significantly higher L-asparaginase 
LC50 (0.73 versus 0 in ETV6-RUNX1, P < 0.001; Fig. 2b) consistent with its 
known slow MRD clearance during early remission induction featuring 
only these 4 drugs4.

We also observed highly subtype-dependent patterns of sensitivi-
ties to targeted agents. Hyperdiploidy was significantly more sensi-
tive (P < 0.001) to venetoclax than non-hyperdiploidy (Fig. 2b). High 
sensitivities to dasatinib were seen for T cell ALL (LC50 0.20, P < 0.001 
compared to non-T cell ALL), TCF3-PBX1 (LC50 0.28, P = 0.013 compared 
to non-TCF3-PBX1; Fig. 2b) and BCR-ABL1 (LC50 0, P < 0.001 compared to 
non-BCR-ABL1), consistent with previous findings by us and others35,36. 
BCR-ABL1 was also sensitive to ibrutinib (LC50 0.09, P = 0.002 compared 
to non-BCR-ABL1; Extended Data Fig. 3a). NUTM1 had low LC50 for sev-
eral antimetabolites: LC50 0.09 for cytarabine (P = 0.007 compared 
to non-NUTM1 subtypes), LC50 0.16 for mercaptopurine (P = 0.002;  
Fig. 2b) and LC50 0 for thioguanine (P = 0.0003).

Although characterized by nearly identical global gene expres-
sion profiles, ETV6-RUNX1-like and ETV6-RUNX1 ALL showed notable 
differences in drug sensitivity: ETV6-RUNX1-like ALL was more resistant 
to L-asparaginase (LC50 0.55 compared to 0 in ETV6-RUNX1, P = 0.013;  
Fig. 2b) but had increased sensitivity to trametinib (LC50 0.20 versus 1.0, 
P = 0.002; Extended Data Fig. 3b). BCR-ABL1, BCR-ABL1-like and CRLF2 
are also related to each other based on global transcriptional profile and 
somatic genomic features, yet these 3 subtypes had varying sensitivi-
ties to dasatinib (LC50 0 versus 1.0 versus 0.89, respectively, P < 0.001), 
mercaptopurine (LC50 0.54 versus 0.97 versus 0.48, P = 0.016) and 
prednisolone (LC50 0.54 versus 1.0 versus 0.27, P = 0.047) but with 
similar response to other cytotoxic and targeted drugs (Extended Data 
Fig. 4). Comparing with other T cell ALL (Extended Data Fig. 3c–h), 
early T cell precursor (ETP) ALL was more resistant to antimetabolite 
and non-antimetabolite cytotoxic drugs: vincristine (LC50 0.81 versus 
0.33, P < 0.001), prednisolone (LC50 1.0 versus 0.36, P = 0.009; Fig. 2b), 
thiopurines (mercaptopurine LC50 0.50 versus 0.29; P = 0.017 and thio-
guanine LC50 0.42 versus 0.12; P = 0.006), cytarabine (LC50 0.76 versus 
0.45, P = 0.023) and daunorubicin (LC50 0.65 versus 0.50, P = 0.001). 
ETP showed a trend for higher venetoclax sensitivity compared to 
T cell ALL, although this was not statistically significant in this relatively 
small cohort (LC50 0.46 versus 0.81). Taken together, our data point to 
new subtype-specific therapeutic opportunities in ALL. To explore the 

Table 1 | Clinical characteristics of the patient cohort

Characteristic n %

Sex Male 440 54.7

Female 365 45.3

Age group (years) <1 7 6.7

1 to <10 603 74.9

≥10 195 24.2

NCI criteria Standard risk 465 57.8

High risk 340 42.2

WBC at diagnosis 
(×109 /L)

<50 596 74.0

≥50 209 26.0

Population and 
ancestry

European 531 66.0

African 104 12.9

Admixed American 98 12.2

Other 65 8.1

Unknown 7 0.9

Subtype ETV6-RUNX1 190 23.6

Hyperdiploid 178 22.1

T cell ALL (non-ETP) 113 14.0

B Other 59 7.3

PAX5alt 36 4.5

DUX4 34 4.2

KMT2A 32 4.0

TCF3-PBX1 30 3.7

BCR-ABL1 21 2.6

CRLF2 (BCR-ABL1-like) 21 2.6

Early T cell precursor (ETP) 16 2.0

ETV6-RUNX1-like 14 1.7

BCR-ABL1-like (excluding CRLF2) 13 1.6

iAMP21 9 1.1

MEF2D 9 1.1

Near haploid 8 1.0

ZNF384 8 1.0

NUTM1 5 0.6

PAX5 P80R 3 0.4

Low hypodiploid 2 0.2

TCF3-HLF 2 0.2

BCL2/MYC 1 0.1

IKZF1 N159Y 1 0.1
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effects of multiple testing, we also performed Benjamini–Hochberg 
correction for these subtype-related comparisons (Supplementary 
Table 5) and the majority of the associations remained significant.

Association of ALL ex vivo drug sensitivity with MRD
We evaluated the association of drug LC50 with in vivo response, as 
reflected by MRD during remission induction therapy. For each 
patient, MRD was measured at day 15 and day 42. In this study, we 
evaluated the coefficients of linear regression (β) for each drug, 
where each unit change in coefficient represents a unit change of MRD 
(log10-transformed),that is, a coefficient of 0.30 (or log10(2)) indicates 
that the MRD is twice as high in resistant patients compared to sensitive 
patients; a coefficient of −0.30 (or log10(0.5)) indicates that the MRD is 
half as high. A coefficient of zero indicates that there is no difference 
in MRD between resistant and sensitive patients.

Drugs that were significantly related to MRD differed mark-
edly between B cell ALL and T cell ALL (Fig. 3a,b). In B cell ALL, drugs 
that positively correlated with both day 15 and day 42 MRD included 
L-asparaginase (β = 0.30; P < 0.001 for day 15 and β = 0.23; P < 0.001 
for day 42), prednisolone (β = 0.30; P < 0.001 for day 15 and β = 0.25; 
P < 0.001 for day 42), dexamethasone (β = 0.28; P < 0.001 for day 
15 and β = 0.17; P < 0.001 for day 42) and mercaptopurine (β = 0.17; 
P < 0.001 for day 15 and β = 0.17; P < 0.001 for day 42). Additionally, 
thioguanine (β = 0.18; P < 0.001) and cytarabine (β = 0.15; P = 0.009) 
were also associated with day 15 MRD. For T cell ALL, panobinostat 
(β = 0.56; P = 0.028) and dasatinib (β = 0.42; P = 0.034) were positively 
correlated with day 15 MRD and venetoclax negatively with day 15 MRD 
(β = −0.50; P = 0.039). Nelarabine was positively correlated with day 42 
MRD (β = 0.57; P = 0.025).

Leveraging longitudinal MRD data (days 15 and 42), we also clas-
sified patients into groups with increasing resistance to induction 
therapy, that is, those who cleared leukemia early and remained MRD 
negative were the most sensitive whereas those with high MRD at both 

time points were the most resistant. Prednisolone and L-asparaginase 
LC50 progressively increased with rising MRD category in B cell ALL 
(P < 0.001 for both; Fig. 3c) but not in T cell ALL (P = 0.136 for pred-
nisolone and P = 0.349 for L-asparaginase; Extended Data Fig. 5), 
indicating lineage-specific effects of drug resistance on MRD. More 
importantly, prednisolone resistance of leukemia cells ex vivo most 
strongly predicted MRD persistence (that is, MRD positivity at day 42). 
By contrast, leukemia cell sensitivity to L-asparaginase was most sig-
nificantly associated with early MRD clearance (that is, MRD negativity  
at day 15).

Pharmacotypes define distinct ALL subsets and prognosis
To address missingness in drug sensitivity measurement, we imputed 
LC50 values using sequential regression multiple imputation (n = 10). 
Applying unsupervised hierarchical clustering analysis to a matrix of 
8,050 × 18 data points, we observed 6 clusters of ALL cases with unique 
patterns of drug response phenotypes (Fig. 4).

Cluster I was defined by prominent sensitivities to dasatinib 
and ibrutinib, while cluster II showed sensitivity to venetoclax and 
trametinib. Cases within cluster III were universally sensitive to 
L-asparaginase and prednisolone. Cluster IV exhibited similar sensitiv-
ity to prednisolone but differed from cluster III based on L-asparaginase 
resistance. Cluster V was the most resistant group, with the highest 
LC50 across all cytotoxic drugs (steroid, L-asparaginase, vincristine, 
daunorubicin and thiopurines). However, this group also showed 
some sensitivity to targeted drugs such as trametinib, venetoclax and 
ibrutinib. Cluster VI had a more heterogeneous drug sensitivity profile, 
with consistent resistance to glucocorticoids but mixed response to 
other cytotoxic or targeted agents.

Overall, there was high heterogeneity of somatic genomics rep-
resented by each drug sensitivity-based cluster (P < 0.001). Cluster 
I was defined mostly by subtypes with known sensitivity to dasat-
inib, that is, BCR-ABL1 (27%) and T cell ALL (50%). Cluster II had a high 
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Fig. 2 | Leukemia drug sensitivities across ALL molecular subtypes. a, The 
median LC50 of 18 leukemia drugs are shown for each individual molecular 
subtype. Low LC50 values (that is, higher drug sensitivity) are shown in blue and 
high LC50 values (that is, higher drug resistance) are shown in red. Circles with a 
dashed line indicate that only a single case with that subtype was tested for that 
drug. Missing/untested drugs are indicated as empty circles. With the exception 
of panobinostat, ruxolitinib, bortezomib and daunorubicin, the remaining 14 

drugs demonstrated significant inter-subtype variability (P < 0.05 nominally and 
also after Benjamini–Hochberg correction). b, Drug LC50 distribution is shown 
in violin plots comparing between selected subtypes. The median LC50 for each 
subtype is shown as a bold black line. The number of patients in each category 
is indicated in parenthesis and represents biologically independent samples. 
Nominal P values comparing LC50 values are as shown and were determined by 
two-sided Mann–Whitney U-test.
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proportion of hyperdiploidy (41%). Cluster III had the highest propor-
tion of ETV6-RUNX1 (41%), followed by hyperdiploid ALL (23%), likely 
consisting of low-risk ALLs that are chemotherapy-sensitive. Cluster 
IV was highly heterogenous, representing 19 different subtypes. In 
this cluster, there was a preponderance of DUX4 (9%) and KMT2A (6%). 
Cluster V had a greater proportion of T cell ALL (31.6%), ETP ALL (10.5%) 
and BCR-ABL1-like (5.3%). Cluster VI also exhibited diverse subtype 
composition, with a high prevalence of KMT2A (6.5%) and BCR-ABL1-like 
(4.3%), and TCF3-HLF exclusively appeared in this cluster, all of which 
are linked to poor prognosis.

MRD response also differed significantly across drug sensitivity 
clusters (P < 0.001 for both day 15 and day 42 MRD). Clusters I, II and III 
represented patients with rapid early leukemia clearance (proportion 
of day 15 MRD negativity at 43%, 39% and 46%, respectively) compared 
to clusters IV, V and VI (28%, 21% and 22%, respectively), although cluster 
I also had a strikingly large proportion of treatment-resistant patients 
(33% with MRD day 15 ≥ 5%). At day 42, clusters I, II and III continued to 
show high MRD negativity (86%, 82% and 93%, respectively). Cluster IV 
patients had high MRD positivity at day 15 but responded to subsequent 
induction therapy with a much-improved MRD clearance at day 42 
(MRD-negative proportion = 85%), a characteristic response we have 
previously reported for the DUX4 subtype4. By contrast, clusters V and 
VI exhibited persistent poor response with a higher proportion of cases 
showing day 42 MRD positivity.

Finally, we evaluated the association of drug sensitivity clustering 
pattern with ALL treatment outcomes, focusing on the Total Therapy 
XV and XVI trials for whom long-term survival data are mature37,38. Other 
than a higher proportion of patients with presenting white blood cell 
(WBC) count <50 × 109/L, there were no differences in clinical charac-
teristics between patients included and excluded in this analysis (Sup-
plementary Table 6). Event-free survival (EFS) differed significantly 
across the 6 drug sensitivity clusters (P = 0.037; Fig. 5a) and the drug 
sensitivity cluster remained prognostic even after adjusting for day 
42 MRD (Supplementary Table 7). Clusters III and IV, which were char-
acterized by steroid and thiopurine sensitivities, had the best survival 
outcomes in keeping with rapid MRD clearance. By contrast, cluster I 
(defined mainly by dasatinib sensitivity) had the poorest outcomes 
in this cohort. In fact, three of three events in this group occurred 
in T cell ALL cases with dasatinib sensitivity, with none in BCR-ABL1 
ALL. We therefore evaluated the prognostic significance of dasatinib 
sensitivity in the entire cohort of 97 patients with T cell ALL, none of 
whom received treatment with dasatinib, where we found that higher 
dasatinib sensitivity (LC50 < 0.25) was associated with an inferior EFS 
(hazard ratio = 3.3, 95% confidence interval (CI) = 1.3–10.8, P = 0.026; 
Fig. 5b). The prognostic impact of dasatinib sensitivity in T cell ALL was 
greater than that of MRD and remained significant after adjusting for 
MRD (Supplementary Table 8).

Taken together, these data revealed intrinsic relationships in ALL 
sensitivity to different therapeutic agents and pointed to the pharma-
cological basis of inter-subtype variability in patients with ALL response 
to induction therapy and long-term survival outcomes.

Discussion
Although the overall cure rate of childhood ALL has surpassed 90%, 
more children die of ALL than most solid tumors. Therefore, further 
improvements in treatment are needed. Given the marked heteroge-
neity of somatic genomic profiles of childhood ALL and the incom-
plete knowledge of their relationships with leukemia drug sensitivity, 
genomics-centric approaches may have limited utility for precision 
medicine of ALL. Therefore, defining a patient’s drug sensitivity 
phenotype, that is, pharmacotyping, may be an additional useful 
strategy for treatment individualization39. In this study, we present an 
integrated analysis of patient primary ALL drug sensitivity profiles, 
leukemia genomic features and in vivo treatment response, revealing 
relationships between ALL genomics and leukemia drug response 
in vitro and in vivo, thereby providing new insights into the pharma-
cological basis of inter-patient variability in ALL treatment outcomes.

Our pharmacotyping results may enable more precise refine-
ment of ALL treatment. For example, patients with high MRD during 
induction are often given extra L-asparaginase without consideration 
of their leukemia drug sensitivity pattern40. While this approach has 
been shown to reduce end-of-induction MRD levels in most leukemia 
subtypes38, adding more L-asparaginase for all patients may not be 
optimal, given that the KMT2A subtype is generally resistant, in which 
case adding L-asparaginase may increase toxicity without providing 
therapeutic benefit. Similarly, DUX4 ALL is resistant to L-asparaginase 
and associated with poor day 15 MRD, yet demonstrates excellent MRD 
clearance at day 42. This is plausibly attributable to its sensitivity to 
antimetabolites and cyclophosphamide used in the second half of 
St. Jude’s induction therapy, although this requires experimental 
validation. Other possible factors contributing to long-term remis-
sion beyond drug sensitivity include host immunity against residual 
leukemia41, which may be more activated in certain subtypes like 
DUX4 because of greater immunogenicity of the neoantigens in these 
leukemia cells. Notably, ZNF384, a recently discovered intermediate 
risk subtype, displays resistance to glucocorticoids but sensitivity to 
venetoclax and bortezomib. Similarly, TCF3-HLF and PAX5 P80R ALLs 
were generally drug-resistant (LC50 > 0.70 for most agents; Extended 
Data Fig. 6), consistent with their poor prognosis6. However, TCF3-HLF 
ALL showed sensitivity to venetoclax as described previously42. These 
individual subtype drug sensitivity profiles, along with the distinct 
functional drug clustering patterns, may prove useful in designing 
new subtype-specific treatment protocols. Although the efficacy 
of venetoclax in T cell ALL has already been explored (especially in 
ETP43), our results show that venetoclax LC50 was negatively correlated 
with day 15 MRD in T cell ALL, further supporting the possibility of 
using this targeted drug to augment treatment for those with poor 
initial response to conventional induction chemotherapy44. Because 
of potential efficacy along with reduced toxicity profiles compared 
to conventional cytotoxics, targeted drugs are increasingly being 
investigated in both frontline and relapsed trials45–47, some with early 
promising results. However, for most patients it is unclear who will 
benefit from these therapies. Pharmacotyping studies like ours may 

Fig. 3 | Correlation of ALL drug sensitivities with MRD during induction 
therapy. a,b, Forest plots depict drug LC50 correlation with day 15 MRD (B cell 
ALL, n = 671 patients; T cell ALL, n = 105 patients, representing biologically 
independent samples) (a) and day 42 MRD (B cell ALL, n = 669; T cell ALL, n = 105, 
representing biologically independent samples) (b). Left, Correlations with B 
cell ALL. Right, Correlations with T cell ALL. The coefficient of linear regression 
between each drug and MRD at each time point is shown as solid dots, with 
the 95% CIs indicated by the horizontal bars. Each unit change in coefficient 
represents a unit change of MRD (log10-transformed), that is, a coefficient of 1.0 
represents a tenfold increase in MRD. Significant positive correlations are shown 
in red, negative correlations are shown in blue and those not reaching statistical 
significance are shown in black. c, Association of longitudinal MRD with B cell 
ALL sensitivity to prednisolone and L-asparaginase. LC50 of prednisolone  

(left, shades of pink/red) and L-asparaginase (right, shades of blue/teal) are 
plotted for 8 groups with different combinations of day 15 and day 42 MRD. The 
median LC50 of each group is shown as a bold horizontal black line for each violin 
plot, with the number of patients (biologically independent samples) in each 
category shown in parenthesis. In this study, the LC50 of both drugs increase 
progressively across MRD groups with rising MRD levels (P = 5.8 × 10−10 for 
prednisolone and P = 9.2 × 10−13 for L-asparaginase, determined by two-sided 
Kruskal–Wallis test). Additionally, the pattern of influence appears to differ 
between both drugs. Prednisolone LC50 was strikingly higher in MRD groups 
comprising high levels of MRD positivity but was relatively equal for MRD groups 
with low or no MRD. By contrast, L-asparaginase LC50 was strikingly lower only 
at complete day 15 and day 42 MRD negativity but was relatively equal for MRD 
groups with any degree of MRD positivity.
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provide a blueprint for individualizing therapy by informing the 
selection of patients who are anticipated to respond to these drugs. 
Even though our study revealed remarkable heterogeneity in ALL drug 
response (particularly across molecular subtypes), the exact algo-
rithm for using pharmacotyping results to direct leukemia therapy 
for individual patients is yet to be developed. Early data from the 

EXALT trial34 pointed to the feasibility of this approach and similar 
studies are much needed for ALL. Another caveat to note is that a 
higher LC50 of a particular drug does not necessarily mean it is less 
active than a different drug with a lower LC50 because LC50 is normal-
ized within each drug and direct LC50 comparison across drugs is not  
meaningful.
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Fig. 4 | Drug sensitivity profile defines distinct ALL patient clusters. 
Hierarchical clustering revealed six taxonomic groups with distinct patterns of 
drug sensitivity, as shown on the heatmap. Hierarchical clustering of patients was 
performed based on all imputed LC50 values using Manhattan distance measure. 
Each patient received a cluster assignment for each round of imputation. Patients 
were assigned to a final cluster if that cluster assignment appeared in the same 

cluster for at least five of ten rounds of imputation. Each vertical block of the 
heatmap corresponds to a cluster, numbered I to VI. The heatmap depicts higher 
drug sensitivity in blue and higher drug resistance in red. The distribution of 
subtypes within each cluster is shown as bar graphs. MRD at days 15 and 42 of 
each cluster are indicated by the pie charts below the heatmap.
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Of all the drugs used in ALL therapy, L-asparaginase and predni-
solone had the strongest impact on MRD, but with differential influ-
ence. For prednisolone, patients with high sensitivity ex vivo (Fig. 3c, 
left, first four columns) exhibited a range of day 15 MRD but almost 
always cleared leukemia by day 42, suggesting that (1) glucocorti-
coids may be slow acting in some cases and (2) continuing exposure 
may be needed for most patients to eventually achieve MRD-negative 
remission. For L-asparaginase, patients with the greatest sensitiv-
ity (Fig. 3c, right, left-most column) cleared leukemia rapidly with 
negative day 15 MRD, suggesting that the initial doses of L-asparaginase 
(given at the beginning of induction therapy) were highly effective in 

reducing leukemia burden in this group. Also, we found that drugs 
such as thiopurines predicted response to early induction therapy at 
day 15 even though they have not yet been administered at that time 
point. This likely reflects inherent features of leukemia cells that drive 
response to other antileukemic agents used in induction therapy. 
For example, thiopurine LC50 was significantly correlated with that 
of L-asparaginase (used in the first week), pointing to overlap in the 
biological mechanism of their cytotoxic effects. Additionally, it should 
be noted that Total Therapy trials have a longer duration of induction 
therapy compared to many non-St. Jude ALL protocols; therefore, 
end-of-induction MRD in our dataset would reflect response to more 
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Fig. 5 | Association of drug sensitivity profiles with EFS. a, EFS across 6 drug 
sensitivity clusters in the entire cohort (n = 549) (a) and EFS across 2 dasatinib 
sensitivity groups in T cell ALL (n = 97) (b). Kaplan–Meier curves were plotted for 
each drug sensitivity group and the 5-year EFS with s.e. are shown in the figure. 
The numbers of patients at risk are shown beneath each graph. Each cluster is 
represented by a different color. b, The dasatinib-resistant group (LC50 ≥ 0.25) 

is indicated in red and the dasatinib-sensitive group (LC50 < 0.25) is indicated in 
blue. The dot plot in b demonstrates the distribution of dasatinib LC50 in patients 
with T cell ALL, with the horizontal dotted line shown at 0.25. P values were 
determined by two-sided Cox proportional-hazards regression test and adjusted 
for treatment arm.
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intense chemotherapy. That said, the prognostic impact of MRD is 
universal across a variety of ALL treatment regimens, regardless of 
the precise time point it is measured3,6. Also, therapy in the first two 
weeks of the induction phase is highly consistent across frontline ALL 
protocols from different cooperative trial groups. Therefore, we reason 
that our observed associations of drug sensitivity with MRD are broadly 
relevant and especially so with day 15 MRD. One limitation to note, 
however, is the single-agent nature of our drug sensitivity profiling, 
which may not reflect the impact of synergistic effects of some drug 
combinations. Second, some important drugs, such as methotrex-
ate, were not studied due to their unreliable cytotoxicity in ex vivo 
drug assays. Therefore, for such drugs, alternative in vivo studies may 
represent the only suitable approach for comparing resistance across  
patient cohorts48.

In our cohort, drug sensitivity clusters were strongly associated 
with survival outcomes, even after accounting for MRD, highlighting 
their potential prognostic utility in ALL risk stratification. Of particular 
interest is the association of dasatinib sensitivity with poorer survival 
in T cell ALL for a number of reasons: (1) ALL pharmacotypes identified 
a group of patients at higher risk of relapse, whose poor prognosis was 
not predicted by usual markers such as MRD; (2) leukemia sensitivity to 
dasatinib in this T cell ALL subset revealed a therapeutic vulnerability 
that could be leveraged to improve survival given their inferior treat-
ment response to conventional cytotoxic chemotherapy that did not 
include dasatinib. These findings should be explored prospectively on 
a large scale in clinical trials.

In summary, we comprehensively characterized drug response 
profiles across molecular subtypes in childhood ALL, evaluated the 
association of drug sensitivities with early treatment response in 
patients, and explored pharmacotyping-based subgrouping of ALL 
and its impact on survival outcomes. Our results have potential clinical 
relevance because they provide new insights for the design of novel 
combination therapy, particularly in conjunction with ALL molecular 
subtyping. With these approaches, future therapy can be individualized 
to further improve outcome for every child with ALL.
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Methods
Patient and clinical treatment protocols
The ALL cases included for pharmacotyping consisted of 805 children 
and adolescents from St. Jude Children’s Research Hospital, treated on 
3 consecutive ALL Total Therapy protocols: Total XV37 (ClinicalTrials.
gov NCT00137111), XVI38 (NCT00549848) and XVII (NCT03117751). 
This study was approved by the institutional review board at St. Jude 
Children’s Research Hospital. Written informed consent was obtained 
from parents, guardians and/or patients, as appropriate.

Genomic profiling, MRD and determination of genetic 
ancestry
Leukemia blasts were obtained from either bone marrow or peripheral 
blood after Ficoll gradient centrifugation. Samples were subjected to 
further enrichment by magnetic-activated cell sorting if blast percent-
age was <85% (CD19 for B cell ALL and CD7 for T cell ALL, respectively). 
Leukemia cells were subjected to drug sensitivity profiling ex vivo for 
a panel of up to 18 antileukemic agents (see the Pharmacotyping sec-
tion). MRD levels were determined by flow cytometry in bone marrow 
samples in the middle of induction (day 15 MRD) on days 15 (Total XVI 
and XVII) or 19 (Total XV), and end of remission induction (day 42 MRD) 
on days 42–46 (ref. 4). A negative MRD was defined as a level of less than 
1 leukemia cell among 10,000 mononuclear cells (<0.01%). MRD was 
not a prespecified endpoint of the Total Therapy XVII trial.

For genomic profiling, nucleic acid was extracted from bone mar-
row or peripheral blood ALL cells at diagnosis (as the leukemia sample) 
or normal leukocytes during clinical remission (as the germline sam-
ple). Genetic ancestry (European, African, Native American, Asian) 
was estimated with iAdmix49 by comparing allele frequencies of ger-
mline single-nucleotide polymorphisms with reference populations 
from the 1000 Genomes Project50. Patients were then classified into 
mutually exclusive populations based on genetic ancestry compo-
sition and defined as: European (European >90%); African (African 
>70%); Admixed American (Native American >10% and Native American 
greater than African). The rest were defined as ‘Other’51,52.

Pharmacotyping of primary ALL cells
In total, drug response of primary patient ALL cells were evaluated 
for 18 drugs representing 5 classes: (1) antimetabolites (cytarabine, 
mercaptopurine, nelarabine and thioguanine); (2) non-antimetabolite 
cytotoxics (daunorubicin, dexamethasone, prednisolone, vincris-
tine, L-asparaginase and bortezomib); (3) tyrosine kinase inhibitors 
(CHZ868, dasatinib, ibrutinib, ruxolitinib and trametinib); (4) his-
tone deacetylase inhibitors (panobinostat and vorinostat); and (5) 
BH3-mimetics (venetoclax).

For all drugs, 6 drug concentrations were tested (Supplemen-
tary Table 9): L-asparaginase (0.032–10 IU ml−1); bortezomib (0.98–
1,000 nM); CHZ868 (0.1–10,000 nM); cytarabine (0.04–41.1 µM); 
dasatinib (0.1–10,000 nM); daunorubicin (0.004–3.55 µM); dexameth-
asone (0.00035–11.6 µM); ibrutinib (1.5625–50 µM); mercaptopurine 
(91.8–2938 µM); nelarabine (1.03–250 µM); panobinostat (0.98–
1,000 nM); prednisone (91.8–2938 µM); ruxolitinib (0.1–10,000 nM); 
thioguanine (9.35–299 µM); trametinib (0.01–1,000 nM); venetoclax 
(0.001–100 nM); vincristine (0.0017–54.169 µM); and vorinostat 
(102.88–25,000 nM).

For L-asparaginase, bortezomib, cytarabine, daunorubicin, dexa-
methasone, mercaptopurine, nelarabine, panobinostat, predniso-
lone, thioguanine, vincristine and vorinostat, sensitivities of primary 
ALL cells to these drugs were determined with the use of the 4-day 
in vitro 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide 
(MTT) drug resistance assay9,11. Briefly, after 4 d of culture at 37 °C in 
humidified air containing 5% CO2, 0.45 mg ml−1 MTT was added. After 
an additional 6 h, formazan crystals (produced by viable cells only) 
were dissolved in acidified isopropanol and quantified by spectro-
photometry. Samples with more than 70% leukemic cells in the control 

wells and an optical density >0.050 absorbance units (adjusted for 
blank values) were used to calculate the LC50 of cells by a 4-parameter 
dose–response model.

The remainder of drugs were profiled using a mesenchymal stem 
cell (MSC) co-culture system assay with flow cytometry, as described 
previously35. Briefly, hTERT-immortalized MSCs were first seeded in 
a 96-well plate at a density of 10,000 cells per well in 100 μl complete 
medium (RPMI-1640, L-glutamine, 10% FCS and 1 μM hydrocortisone). 
After 24 h, leukemia cells were added at 160,000 cells per well to the 
stromal cell layer in 80 μl AIM V medium along with 20 μl of drug solu-
tion prepared in the same medium. After 96 h of incubation at 37 °C with 
5% CO2, cells were collected and stained with CD19 or CD7 to identify 
leukemia blasts (for B cell and T cell ALL, respectively). The total num-
ber of live leukemia cells were evaluated using flow cytometry after 
annexin V and DAPI staining (antibodies used: human CD7-PE (clone 
4H9, catalog no. 395604; BioLegend), human CD19-PE (clone SJ25C1, 
catalog no. 363004; BioLegend) and annexin V APC (research resource 
identifier AB_2868885, catalog no. 550475; BD Biosciences). FlowJo 
was used for analysis. Drug-induced death was estimated by compar-
ing leukemia cells treated with vehicle alone. LC50 was determined the 
same as in the MTT assays. Quality control was performed to remove 
cases with low viability (<1,000 viable blast cells in each well in the 
absence of drugs on day 4).

LC50 values were used to compare the sensitivity of ALL cells across 
the entire population, within specific ALL subtypes and with early treat-
ment response (as assessed by MRD). For cases where even the lowest 
drug concentration killed >50% of leukemia cells, LC50 was assigned 
as half of the minimum tested concentration. Conversely, for cases 
with >50% viability even at the highest drug concentration, LC50 was 
assigned as twice of the highest tested concentration. These raw LC50 
values were then log-transformed and normalized into a range between 
0 and 1.0 for statistical analyses (see the Statistical analyses section).

RNA-seq and ALL subtype analysis
The TruSeq stranded mRNA or total RNA library prep kit (Illumina) was 
used for whole-transcriptome library preparation of RNA extracted 
from diagnostic blasts. Paired-end sequencing was performed using 
the Illumina HiSeq 2000/2500 platform with a 2 × 101 base pair (bp) 
read length or NextSeq 500 with a 2 × 151 bp read length. Sequenc-
ing reads were mapped to the GRCh37 human genome reference by 
STAR (v.2.4.2a), through the suggested two-pass mapping pipeline. 
Samples were excluded if the percentage of exonic regions with 10× 
or more coverage was <30%, read duplication rate >55% or a strong 
3′-bias of transcript coverage. Gene annotation downloaded from the 
Ensembl website was used for STAR mapping and the following read 
count evaluation. CICERO53 and FusionCatcher were used to detect 
fusions and all the reported rearrangements were manually curated 
using BLAT and the Integrative Genomics Viewer. Gene expression was 
quantified as fragments per kilobase of transcript per million mapped 
reads (FPKM) using RSEM (v.1.2.2887). Gene level FPKM values were 
used for downstream analyses, after removing lowly expressed genes 
and genes with invariable expression.

We determined 23 ALL subtypes using RNA-seq data for n = 741 
patients, as described previously1,52. B cell ALL cases were divided into 
distinct subtypes by rearrangements (BCR-ABL1, ETV6-RUNX1, KMT2A, 
TCF3-PBX1, DUX4, ZNF384, MEF2D, intrachromosomal amplification of 
chromosome 21 (iAMP21), BCL2/MYC, NUTM1, CRLF2, HLF), aneuploidy 
(hyperdiploid (chromosome number ≥51), low hypodiploid (chromo-
some number 31–39) and near haploid (chromosome number 24–30)), 
gene expression profiles (ETV6-RUNX1-like, PAX5alt and BCR-ABL1-like) 
and sequence mutations (PAX5 P80R and IKZF1 N159Y). Cases with the 
BCR-ABL-like gene expression signature and also a CRLF2 rearrange-
ment were classified as CRLF2. The remainder of unassigned B cell 
ALL subtypes were labeled as B Other. ETP ALL was determined by 
RNA-seq and immunophenotyping as described previously54. For the 
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64 patients without RNA-seq available, we assigned subtypes by fluo-
rescence in-situ hybridization and karyotyping for traditional fusions 
(ETV6-RUNX1, KMT2A, TCF3-PBX1, BCR-ABL1) and/or gene expression 
profile from an Affymetrix HG-U133A array52.

Statistical analyses
MRD levels were log-transformed and those with less than the detection 
limit (that is, <0.01%) were assigned as half of the detection limit before 
log-transformation. For assessment of MRD in discrete categories as in 
clinical practice, day 15 MRD was categorized into 4 discrete groups: 
<0.01%; ≥0.01 to <1%; ≥1 to <5%; and ≥5%. Day 42 MRD was categorized 
into 3 discrete groups: <0.01%; ≥0.01 to <1%; and ≥1%4,37,38.

Raw drug LC50 values were log-transformed and then normal-
ized into comparable ranges based on the minimum and maximum 
concentrations tested for each drug, where normalized LC50 values 
fell into a range between 0 (most sensitive) and 1 (most resistant), that 
is, LC50 normalized = (LC50 measured − LC50 min)/(LC50 max − LC50 min). To take into 
account the different concentration ranges tested for each drug, an 
alternative normalization method was also performed where the fold 
change from the median LC50 was calculated and then log-transformed, 
that is, log2(LC50 measured/LC50 median).

The association between drug LC50 and clinical presenting fea-
tures were assessed using Mann–Whitney U-test or Kruskal–Wallis 
test. Correlations of single-drug LC50 with day 15 or day 42 MRD were 
assessed using multiple linear regression adjusting for protocol, age 
and WBC at diagnosis. For each patient, MRD was measured during 
induction therapy at day 15 and day 42 from diagnosis (day 15 and day 
42 MRD). In this study, we evaluated the coefficient of linear regression 
(β), where each unit change in coefficient represents a unit change 
of MRD (log10-transformed) where a coefficient of 1.0 represents a 
tenfold increase of MRD, that is, a coefficient of 0.30 (or log10(2)) indi-
cates that the MRD is twice as high in resistant patients compared to 
sensitive patients and a coefficient of −0.30 (or log10(0.5)) indicates 
that the MRD is half as high. A coefficient of zero indicates that there 
is no difference in MRD between resistant and sensitive patients. The 
Kruskal–Wallis test was used to compare the distribution of LC50 values 
between subtypes.

Because not all patients were tested for all drugs, we also imple-
mented LC50 imputation to evaluate the LC50 correlation across drugs. 
We imputed missing LC50 values via multivariate imputation by chained 
equations55. Overall, we constructed a total of ten imputation datasets. 
We recognize the limitations of multiple imputation as a statistical tool 
and hence also performed several analyses to confirm the validity of 
our imputation. First, comparing the LC50 distribution of measured 
versus imputed values, we found no statistically significant difference 
between the two datasets for all 18 drugs tested (chi-squared test with 
Benjamini–Hochberg correction) (Extended Data Fig. 7). Second, we 
performed leave-one-out analysis to assess imputation validity. For 
each measured LC50, we masked the value as ‘NA’ and performed the 
same multiple imputation procedure for 10 rounds. From these 10 
datasets, we recorded the average imputed LC50 and the s.d. across all 
10 imputations. In this analysis, 94% of observed/measured LC50 values 
fell within the 95% CI of imputed values (10 estimates), suggesting that 
the imputation was reasonable relative to the actual measured values 
and accurately reflected the variability of LC50. Third, we compared the 
linear regression coefficients of the association between day 15 MRD 
and measured versus imputed LC50 values for all 18 drugs, where the 
regression coefficients derived from imputed versus measured values 
are highly similar (Pearson’s r = 0.9, P < 0.0001).

We generated hierarchical clustering of patients based on stacking 
all imputed LC50 values across the ten imputed datasets using Man-
hattan distance measure. Thus, each patient had ten corresponding 
imputed data points, each from an imputed dataset, and received a clus-
ter assignment for each round of imputation. A patient was assigned 
to a final cluster if the patient’s imputed data points were assigned to 

the same cluster at least five times. Hierarchical clustering of drugs 
was based on a correlation distance measure.

Survival outcomes were examined as EFS. EFS was calculated 
as the interval of time from the date of diagnosis until the date of 
first treatment failure (including induction failure, relapse, second 
malignancy and death resulting from any cause). For those who did 
not experience events, EFS was the time to last contact. Five-year 
survival probabilities and corresponding s.e. were calculated sepa-
rately for each of the six drug sensitivity clusters or two dasatinib 
LC50 groups using Kaplan–Meier curves. We evaluated associations 
between drug sensitivity clusters/groups and EFS using the Mantel’s 
log-rank test56. Multivariable analysis of EFS was performed with the 
Cox proportional-hazards regression model57. MRD positivity (that is, 
≥0.01%) was included in the multivariable analysis together with age at 
diagnosis, WBC count at diagnosis, leukemia subtype (B cell ALL versus 
T cell ALL), drug sensitivity cluster and/or dasatinib sensitivity, as rel-
evant. All P values in the outcome analyses were adjusted by treatment 
arm (that is, TXV low risk, TXV standard/high risk, TXVI low risk, TXVI  
standard/high risk).

All analyses were performed with R v.3.6.3 or Prism 9 (GraphPad 
Software). All statistical tests were two-sided and P values were consid-
ered nominally significant if <0.05. Nominal P values are reported along 
with P values after Benjamini–Hochberg correction as appropriate.

Role of the funding source
The funding agencies were not directly involved in the design of the 
study, gathering, analysis and interpretation of the data, writing of 
the manuscript or decision to submit the manuscript for publication.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Supplementary Table 1 includes all measured drug sensitivity val-
ues (LC50) and corresponding clinical data. RNA-seq data have been 
deposited in the European Genome-phenome Archive under accession 
nos. EGAS00001001952, EGAS00001001923, EGAS00001000447, 
EGAS00001000654, EGAS00001003266, EGAS00001004739, 
EGAS00001005084 and EGAS00001006336. Data are also avail-
able at St. Jude Cloud Genomics Platform for the Pan-Acute 
Lymphoblastic Leukemia dataset (https://platform.stjude.cloud/
data/cohorts?dataset_accession=SJC-DS-1009), for the Real-time 
Clinical Genomics dataset (https://platform.stjude.cloud/data/
cohorts?dataset_accession=SJC-DS-1007) and for the FPKM matrix at 
https://permalinks.stjude.cloud/permalinks/all-pharmacotype. Raw 
sequencing data are available under controlled access to ensure appro-
priate data usage; approval can be obtained by contacting the PCGP 
Steering Committee (PCGP_data_request@stjude.org). Corresponding 
data accessions and locations for each case are listed in Supplementary 
Table 2. The 1000 Genomes reference population dataset is available 
at https://www.internationalgenome.org/data-portal/. Source data 
are provided with this paper.

Code availability
This study did not involve the development of custom code. The codes 
used to run specific analysis are available on GitHub at https://github.
com/jjyanglab/pharmacotyping_2022.
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Extended Data Fig. 1 | Overall patterns of drug LC50s. Drug sensitivities for each drug were normalized into a range from 0.0 to 1.0 as described in Methods. For each 
drug, the distribution of frequencies for each interval of 0.1 is plotted in a histogram. Overall, there is a wide range of distribution patterns in this patient cohort.
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Extended Data Fig. 2 | Leukemia drug sensitivities across ALL molecular 
subtypes by alternative normalization method. To take into account the 
different concentration ranges measured for different drugs and the difference 
in their dose-dependent cytotoxicity, an alternative normalization method 

calculated by log2(fold-change from the median) is plotted as shown in the 
heatmap on the right. The dot plot on the left shows the corresponding median 
LC50s for each drug as calculated by the original method of normalization (as 
shown in main Fig. 2a).
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Extended Data Fig. 3 | Drug LC50s comparing between ALL subtypes.  
(a) Ibrutinib in BCR-ABL1 vs non-BCR-ABL1 (b) Trametinib in ETV6-RUNX1 vs 
ETV6-RUNX1-like (c) Mercaptopurine in T-ALL vs ETP-ALL (d) Vincristine in T-ALL 
vs ETP-ALL (e) Thioguanine in T-ALL vs ETP-ALL (f) Cytarabine in T-ALL vs ETP-ALL 
(g) Daunorubicin in T-ALL vs ETP-ALL (h) Venetoclax in T-ALL vs ETP-ALL Drug 

LC50s are plotted in a violin plot for selected subtypes. The median LC50 for each 
subtype is shown as a bold black line. The number of patients in each category 
is indicated in parenthesis and represents biologically independent samples. 
Nominal P values comparing LC50s are as shown and determined by the 2-sided 
Mann-Whitney test.
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Extended Data Fig. 4 | Drug LC50s comparing BCR-ABL1, BCR-ABL1-like, and 
CRLF2-r ALL. Drug LC50s are plotted in violin plots for these three subtypes. 
The median LC50 for each subtype is shown as a bold black line. The number of 
patients in each category is indicated in parenthesis and represents biologically 

independent samples. Amongst the 3 BCR-ABL1-like cases tested for dasatinib, 
2 harbored ABL class fusions (one with PDGFRB, and one with CSFR1). Nominal 
P-values are as shown and determined by 2-sided Kruskal-Wallis test.
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Extended Data Fig. 5 | Association of longitudinal minimal residual disease 
with T-ALL sensitivity to prednisolone and asparaginase. LC50s of each 
drug are plotted in the violin plots for each combination of D15 and D42 MRD 
categories. Median LC50s of each group is shown as a bold horizontal black 
line for each violin plot, with the number of patients (biologically independent 

samples) in each category indicated. Prednisolone is shown in panel A in shades 
of pink/red, while asparaginase is shown in panel B in shades of blue. Unlike 
B-ALL, prednisolone and asparaginase are not correlated with MRD. P-values are 
nominal and determined by the 2-sided Kruskal-Wallis test.
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Extended Data Fig. 6 | Drug LC50s of rare subtypes. (a) Low hypodiploid (b) NUTM1 (c) PAX5 P80R (d) TCF3-HLF LC50 of these four subtypes are plotted for drugs 
tested. Higher sensitivity is indicated in blue and higher resistance is indicated in red.
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Extended Data Fig. 7 | Distribution of measured vs. imputed drug LC50s. Histogram plots of LC50 distributions of measured (blue) vs imputed (red) values are 
shown for each drug. There are no statistically significant differences between distribution of both datasets (2-sided Chi-square test with Benjamini-Hochberg 
correction).
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