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Large-scale single-cell ‘omics profiling is being used to define a complete catalogue of brain cell types, 
something that traditional methods struggle with due to the diversity and complexity of the brain. 
But this poses a problem: How do we organise such a catalogue - providing a standard way to refer to 
the cell types discovered, linking their classification and properties to supporting data? Cell ontologies 
provide a partial solution to these problems, but no existing ontology schemas support the definition of 
cell types by direct reference to supporting data, classification of cell types using classifications derived 
directly from data, or links from cell types to marker sets along with confidence scores. Here we describe 
a generally applicable schema that solves these problems and its application in a semi-automated 
pipeline to build a data-linked extension to the Cell Ontology representing cell types in the Primary 
Motor Cortex of humans, mice and marmosets. the methods and resulting ontology are designed to be 
scalable and applicable to similar whole-brain atlases currently in preparation.

Introduction
The large-scale application of omics profiling techniques at the single-cell level is producing enormous volumes 
of data. Cell ontologies are poised to play a critical role in making these data searchable and integratable1. At the 
same time, the application of these profiling techniques is revolutionising our understanding of cell types and 
cellular heterogeneity2,3. The impact of this revolution is especially dramatic for the brain. Due to the complex 
cellular architecture of the brain, traditional qualitative, categorical methods of classifying neurons based on 
location, morphology, marker expression and function have not achieved a coherent, unified view of granu-
lar brain cell types and their classifications. This has begun to change with the application of massively paral-
lel single-cell or nucleus RNA sequencing (sc/snRNAseq) methods to the brain, combined with multimodal 
transcriptomic techniques such as Patch-seq.4. The BRAIN Initiative Cell Census Network (BICCN) recently 
completed a comprehensive, multimodal cell census and atlas of the primary motor cortex across multiple spe-
cies5–7. This takes the approach of treating consensus clustering of similar cells from single nucleus RNA-seq 
data from multiple experiments as a ground truth for defining cell types and their classification. The resulting 
cell type hierarchies serve as anchors for alignment of data from other modalities, allowing spatial localization, 
morphology, electrical properties, chromatin accessibility, and other features of cell types to be recorded and 
compared across species. Evidence from systems in which a more comprehensive classification of cell types has 
been achieved by classical methods than has been possible in the brain suggests that the classifications resulting 
from sc/snRNAseq analysis align closely with classically defined types8.

This poses challenges for standard approaches to ontology development. How are we to integrate cell types 
defined with reference to clusters of transcriptomically similar cells into cell ontologies in which cell type/classes 
are defined using simple, categorical assertions about their morphological and functional properties, location 

1European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United 
Kingdom. 2J. Craig Venter Institute (JCVI), La Jolla, CA, USA. 3University of California San Diego, La Jolla, CA, USA. 
4Lawrence Berkeley National Laboratory, Berkeley, CA, USA. 5Allen Institute for Brain Science, Seattle, WA, USA. 
6Semanticly Ltd, Athens, United Kingdom. ✉e-mail: davidos@ebi.ac.uk

aRtICLE

OPEN

https://doi.org/10.1038/s41597-022-01886-2
http://orcid.org/0000-0001-7258-9596
http://orcid.org/0000-0001-6315-3707
http://orcid.org/0000-0001-9012-6552
http://orcid.org/0000-0002-3818-3792
http://orcid.org/0000-0003-1355-892X
mailto:davidos@ebi.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1038/s41597-022-01886-2&domain=pdf


2Scientific Data | (2023) 10:50 | https://doi.org/10.1038/s41597-022-01886-2

www.nature.com/scientificdatawww.nature.com/scientificdata/

and marker expression? How can we do this in a way that is transparent about the origins and evidence for these 
classifications? How can we enable ontology users to leverage the data used to define and classify reference cell 
types in the ontology to classify cell types represented in their own data?

Here we describe a solution to these challenges in the form of a template-driven ontology generation pipeline 
and an ontology of cell types defined in the BICCN mini-atlas, Brain Data Standards Ontology (BDSO), that 
forms part of the Provisional Cell Ontology3, which extends the Cell Ontology9 with potential new cell types 
from single cell analysis. Ontologies should serve as both an easily searchable source of terms for annotation and 
a data structure supporting organisation, search and navigation of annotated data. We demonstrate the utility 
of our ontology for this via its application to the organisation, search and navigation of data about cells in the 
mini-atlas on the Allen Cell Type Knowledge Explorer web app.

Results
Brain data standards ontology design. One of the outputs of the BICCN mini-atlas10 is a standardized 
representation of cell clusters (CCN) and the hierarchical relationships between them that constitute the ground-
truth for cell-types defined in the atlas. The clusters and their hierarchical arrangement derive from unsuper-
vised, hierarchical clusterings of single-cell transcriptomic and epigenetic profiles of the primary motor cortex 
in mouse, human, and marmoset10,11. Each individual hierarchical clustering (referred to here as a taxonomy) is 
either created from a single data set (e.g., in marmoset) or through a consensus of two (human) or many (mouse) 
data sets. Using mouse transcriptomics clusterings as an anchor, morphological and electrophysiological profiles 
of single-cells are mapped to omics-based types using Patch-seq data7. Finally, comparison of clusters across 
species is used to generate cross-species mappings and groupings of clusters which represent putative homology 
groupings10,11. All of this information is available in a standard format (common cell type nomenclature taxon-
omy files, here referred to as CCN taxonomy files) developed by the BICCN to represent mammalian brain cell 
type taxonomies and the relationships between them12.

To produce a set of definitional characteristics of the cell types identified in these taxonomies, a minimum set 
of markers that can be used to distinguish cells in that cluster from those in other clusters in the same taxonomy 
was produced using the NS-Forest algorithm13. Taking the clusters as ground truth for all cell types present in 
the primary motor cortex, the combined expression of each marker set should be necessary and sufficient to 
identify the corresponding cell type in the context of the primary motor cortex.

The BDSO is built as a faithful representation of the BICCN mini-atlas cell type taxonomies (Fig. 1). In order 
to achieve this, we first devised a schema to represent taxonomies in Web Ontology Language, OWL214, the 
formal language we use for constructing ontologies. OWL2 makes a distinction between individuals, e.g., an 
individual neuron depicted in a micrograph, and classes, e.g., the class of all Chandelier neurons. Each taxon-
omy is represented in BDSO as a collection of OWL Individuals, with each Individual representing a cluster of 
single-cell transcriptomes and retaining all original metadata in the CCN taxonomy file from which it is derived. 
Hierarchical clustering is represented by relating these individuals to each other via a transitive subcluster_of 
relation.

Each taxonomy has many more nodes than it would be reasonable to create classes for. In order to select 
useful intermediate nodes for representation, taxonomy authors of the BICCN mini-atlas flagged nodes to gen-
erate a 3-level hierarchy with the most granular level consisting of all leaf nodes10. We generated cell classes for 
all tagged clusters, apart from some high-level groupings (e.g. all cells, non-neuronal, etc.) that would not make 
sense as a cell type term as they are overly generalised. Each of these classes is linked formally to a cluster indi-
vidual using a standard pattern in OWL that can be used by standard OWL reasoning software to automatically 
build a classification hierarchy for the BDSO classes (see Fig. 2 and the next section for more details). Lastly, 
we treated cross-species mappings between cell types as putative homology mappings, by using the relation 
in_historical_homology_relationship_with15 (imported from the OBO relations ontology) in a pairwise manner.

To integrate the BDSO with existing ontologies, classes defined for intermediate nodes in the hierarchy are 
further classified using classes in CL, which we have extended as required (e.g., see ‘L5 extratelencephalic’ class 
in Fig. 2). These include classes that are defined by expression of classical marker genes (e.g., VIP-expressing 
GABAergic neurons), morphology (pyramidal) or projection pattern (extratelencephalic projecting), mapped 
based on co-collected transcriptomic profiles10. The BDSO also reuses existing ontologies to represent species 
(NCBITaxon16), brain region (UBERON17), morphology (PATO), and marker genes (Ensembl/PRO18,19). All 
relationships added use OBO standard relations from the OBO relations ontology and follow or extend standard 
schemas used by CL (Fig. 2). In addition to tightly integrating these terms with CL, this approach maximises 
the potential for making data annotated with BDSO interoperable with the many other datasets annotated with 
these ontologies.

Designing an automated pipeline. Manually building an ontology to represent the huge amount of data 
from the BICCN mini-atlas is impractical, error-prone, and unscalable. It was therefore imperative to harness 
automated tools to build the BDSO. To build the BDSO, we use CCN taxonomy files, NS-Forest marker gene map-
pings and reference gene lists as input to a semi-automated pipeline. The pipeline takes advantage of the schema 
described in Fig. 3 to build a hierarchy that mirrors the cluster hierarchy (see L5 ET in Figs. 1 & 3 for example 
implementation). The BDSO is built using the Ontology Development Kit20 and uses standard ontology term 
templating systems21,22 to generate labels, definitions and synonyms for BDSO terms and to add CL classifications 
and relationships (more strictly, existential restrictions in Web Ontology Language (OWL)) recording location 
(using Uberon terms17), species (using NCBI taxonomy terms16), markers, projection patterns and morphologies 
(see Fig. 4 for examples). The results of NS-Forest analysis, ingested via standardised TSV files, are automatically 
consumed by the pipeline and integrated into the ontology (see section below). Manual curation such as mapping 
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to CL terms, adding cell properties (morphology, projections, etc.) were kept to a minimum and done via tem-
plates to ensure consistency and scalability.

Representing data and analysis results. The BDSO uses the direct results of data analyses as evidence 
for the existence of cell type classes. To reflect this, and to allow users direct access to the data that justifies the 
categorical assertions that we make, we link the ontology clusters to datasets (expression matrices) available on 
Nemo (https://assets.nemoarchive.org/dat-ch1nqb7), and we include the quantitative data that support categor-
ical assertions made in the ontology, where this data is available. Currently, we include a measure of the accuracy 

Fig. 1 Example of representing the BICCN mini-atlas cell type taxonomy in an ontology. Red boxes/lines show 
how terms in the taxonomy are mapped into an ontology format (visualised by the Ontology Access Kit).
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of classification using NS-Forest marker F-Beta scores and we plan to incorporate measures of transcriptomic 
similarity to support homology assertions. CCN taxonomy files include a measure of confidence in the division 
into (sibling) subclusters, plotted as height in dendrogram views. We retain this measure, along with all other 
metadata, attached to individual clusters.

Each set of NS-Forest markers should theoretically be necessary and sufficient for identifying a cell type with 
high precision within the dataset used to define them. In the case of the mini-atlas, the datasets correspond to 
all cells with a soma located in the primary motor cortex of some specified species and so should be necessary 
and sufficient for identifying the cell type within that anatomical context more generally. We also have evidence 
that they are useful for detecting the same cell type in other brain regions: In many cases, the markers identified 
by NS-Forest in the primary motor cortex, are expressed in equivalent cell types found in another cortical brain 
region (middle temporal gyrus)23 however the NS-Forest algorithm typically finds other sets of makers in these 
cases.

We record this context as a restriction on the class using a has_soma_location to the brain region and rep-
resent NS-Forest markers through an NS-Forest set class, ‘S’ in the example below, with marker genes as parts 
(See Figs. 1 and 3):

{C} has_characterizing_marker_set some {S};{S} has_part some gene 1;{S} 
has_part some gene 2

This approach allows us to record multiple marker sets for each cell type, which may be essential in future, 
given the many competing methods available for defining cell type markers. The intermediate node allows for 
clear grouping of marker sets in knowledge graphs (see Fig. 2). We also use the node to record Fβ scores for each 
set - recording the accuracy of classification using the markers on the reference transcriptomic datasets. We do 
this through a custom annotation property ‘fbeta_confidence_score’ that is annotated on the marker set class.

We rejected an alternative approach of using an EquivalentClass axiom with clauses to restrict for location 
and NS-Forest markers to formally specify necessary and sufficient conditions. Equivalent class axioms are used 

Fig. 2 Graph illustrating the BDSO schema. This graph shows the relationship of the BDSO classes (Brain 
Data Standards Ontology nodes, light blue circles) to OWL Individuals (Taxonomy nodes, brown circles) 
representing clusters in the data-driven taxonomy used as input and to the build process, to classes in the Cell 
Ontology (green circles) and from external ontologies (imported terms box) representing species (NCBITaxon), 
brain region (UBERON), morphology (PATO), and markers (Ensembl/PRO). NS-Forest marker combinations 
are represented through sets, with individual markers being part_of them. The right side of the figure shows 
links to potentially homologous cell type classes (Cross-species box) using the relation (OWL objectProperty) 
‘in historical homology relationship with’ and cross-region terms (Cross-region box).
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to drive automated classification of subclasses and individuals using reasoning. BDSO terms already have one 
EquivalentClass axiom, defining classes with reference to data and used to convert data driven classification in 
the taxonomy into OWL classification. The addition of equivalentClass axioms defining cell types by NS forest 
markers + classifications could potentially cause additional unwanted classifications. Even with precision of clas-
sification of individual cells with these markers at 98%, a rare cell type, comprising less than 2% of cells, might be 
misclassified. This solution would also not be compatible with adding additional, alternative marker sets based 
on other algorithms.

Ontology content summary. The latest release (2022-04-27 Release) of the BDSO component (which PCL 
imports) contains 913 individuals, out of which 890 are taxonomy nodes (individuals also include datasets), and 
112447 classes (including genes and NS-Forest sets), out of which 1384 have the PCL namespace and 555 are cell 
types. The remaining terms are imported from OBO ontologies into PCL. All object properties used are imported 
from RO as per OBO foundry guidelines.

application. A key function of the BDSO is to support organisation, navigation and searching of data in a 
community-accessible view of the cell types defined in the BICCN mini-atlas of the mammalian primary motor 
cortex10 through a web-based application (web-app) that integrates cell type descriptions and related data, known 
as the “Cell Type Knowledge Explorer” (Fig. 5). Each page in this web-app corresponds to a cell type defined with 
reference to a cluster in one of the BICCN taxonomies represented in the BDSO, and features a wide range of data 
and analysis from multiple cross integrated datasets. The aim of the ontology-driven search and navigation tools 
is to support access to these pages in the web-app.

While expressiveness of ontology formats such as OWL is an advantage for semantic data processing, OWL 
is complicated to develop applications with and has limited tooling. Graph databases like neo4j, and indexed 
document stores such as SOLR and ElasticSearch, provide a more tractable, fast way to drive web applications. 
For this purpose, we extended a library, neo4j2owl24, developed for the Virtual Fly Brain project25,26, that ensures 
logical projection of OWL ontologies into labelled property graphs. Neo4j2owl imports OWL ontologies into 
Neo4j in a way that preserves entailments and annotations, but not the syntactic complexities of OWL. It also 
supports the addition of semantic tags, in the form of simple strings attached to classes and individuals, driven 
by OWL DL or SPARQL queries. We use this semantic tag system to provide an application-specific, gross 
classification that provides additional information about classes in a useful form to users and can be used to 

Fig. 3 Representative schema for data-driven classification. Blue nodes (i1–3) are OWL individuals 
representing clusters of single-cell transcriptomes, while tan nodes (c1, c2) are OWL classes representing cell 
types. Hierarchical clustering is represented using the transitive subcluster_of relation (objectProperty) to link 
individuals. Each class is defined by reference to a cluster individual (i), via the relation (objectProperty) as 
equivalent to (any) cell that has_examplar (value) i. Reasoning via a chain of these two properties (bottom and 
right sides of the diagram above) is sufficient to infer that c3 has_examplar value i1 and so, combined with the 
assertion that it is a (type of) cell, fulfils the conditions required to be a subclass of i1.
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drive faceted search. For example, we can tag all classes corresponding to subclasses of GABAergic neuron, or 
all classes fulfilling an OWL DL query for classes of neuron with pyramidal morphology (see Fig. 5f). The full 
Knowledge Graph can be accessed at http://purl.obolibrary.org/obo/pcl/bds/kg/, and can be accessed without a 
username or password (leaving the fields blank and clicking connect).

An illustration of the resulting property graph is shown in Fig. 2. These property graphs allow applications 
such as the Cell Type Knowledge Explorer to use the ontology data to populate parts of the application and ena-
ble full-text and faceted search functions.

Ontology-based navigation and search functions are provided through two mechanisms - autocomplete 
(which takes advantage of curation of synonyms in the ontology) and faceted search (Fig. 5). Autocomplete 
allows users to search for cell-type ontology terms, displaying a list of lexical matches for users to choose from 
(Fig. 5b). Faceted search of Cell Type Knowledge Explorer works via a set of tags corresponding to gross clas-
sifications (e.g. GABAergic), intrinsic properties (e.g. pyramidal morphology) and extrinsic properties (brain 
region location, species) of cell types, added to cell type neo4j nodes via OWL DL queries of the underlying 

Fig. 4 Example of an automatically generated class displayed in the Protege ontology browser. In this example, 
we show L5 Extratelencephalic (ET), which is a grouping class. The label, definition, and set of synonyms are 
auto-generated from OWL templates using a Dead Simple OWL Design Patterns (DOSDP) system. Automatic 
axiomatisation includes brain region, species, NS-Forest markers, projection pattern, morphology, named 
markers, and has_exemplar_data link to taxonomy node (cluster), using a reification pattern. This results in 
the reasoner classifying this class under L5 extratelencephalic projecting glutamatergic cortical neuron (based 
on automated axiomatisation of brain region and projection pattern), and primary motor cortex pyramidal cell 
(based on automated axiomatisation of morphology and brain region). has_characterzing_marker_set schema 
for NS-Forest is also shown.

https://doi.org/10.1038/s41597-022-01886-2
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Fig. 5 Screenshots of the alpha version of the Cell Type Knowledge Explorer web app, incorporating search and 
navigation functionality driven by the BDSO. (a) An overview of the web app with the ontology incorporated 
into it. Red arrows show zoomed in version and directional links. (b) An example of autocomplete search, 
which also allows search by synonyms. (c) Information about the cell type incorporates ontology identifiers, 
ontology symbols, and ontology names. (d) A list of synonyms generated by ontology annotations and extra 
curated synonyms. (e) A list of NS-Forest markers with links out to their identifiers.org pages. (f) Semantic tags 
of the cell type corresponding to species, brain region, and cell properties such as morphology (pyramidal) and 
projection pattern (extratelencephalic). Clicking on one of these panels drives faceted search through the search 
bar seen in (g).

https://doi.org/10.1038/s41597-022-01886-2
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ontologies. Currently, implementation of this works through automatically adding the term to the search bar 
and allowing the free-text search to complete the search (Fig. 5f,g). However, this approach is unlikely to scale 
as the content of Cell Type Knowledge Explorer grows. There are plans to allow users to take better advantage 
of faceted browsing using semantic tags via a results page that can be refined via combinations of semantic 
tags combined with lexical search, allowing users to find neurons by any combination of location, morphology,  
species, neurotransmitter and name/synonym substring.

Discussion
The BDSO is a faithful representation of the data-driven, consensus cell type classification that includes the 
BICCN mini-atlas of the mammalian motor cortex10. By using a schema that defines classes logically via links 
to an OWL representation of data and analyses, we can use OWL to directly leverage the data-driven taxonomy 
of the miniatlas to classify cell types in BDSO using OWL reasoning. As a result, classes retain direct links to the 
data and analyses that define them and the origins of this classification are transparent and insulated from the 
manual editing process that might alter or obfuscate them. Using templated specification of ontology classes, 
the BDSO build process is scalable and extensible and allows a flexible mix of automation and manual curation.  
It also makes it possible to update as new, improved versions of data-driven classifications of the same cell 
types are released. The linked data can potentially be used to replicate analyses and to map cell types defined in 
BDSO to other datasets (e.g., using Azimuth27, FR-match23). The addition of NS-Forest markers13, representing  
minimal markers for distinguishing, with high confidence, cell types from other cell types defined in the  
analysis, provides a simple mechanism for mapping cell types from third-party transcriptomics data to the 
BDSO.

In future, we plan to incorporate measures of transcriptomic similarity in support of homology assertions 
and a measure of confidence for data-driven taxonomy nodes. We will also incorporate contextual information 
about the nature of these measures. While the absolute values of these measures are inevitably specific to the 
datasets/analysis they come from, they are at least usable for intra-dataset comparisons. As a broader consensus 
and whole-brain datasets emerge, we expect NS-Forest F-Beta scores and taxonomy node confidence measures 
to be informative of which cell types we consider stable and replicable.

While the approach described meets many of the requirements for a scalable approach to cell type representa-
tion, some challenges remain. The current representation lacks links to transcriptomic data from Patch-seq data 
used to map morphologically defined types. Using transcriptomic clustering as ground truth for an ontology 
also comes with its inherent challenges. Penetrance of marker expression and location to a specific cortical layer 
varies across clusters, so all/some quantified assertions of marker expression in OWL will always be an approx-
imation and will always require either automated or qualitative assessment of thresholds. Finally, nomenclature 
issues frequently arise when data-driven classifications are mapped onto classically-defined classes. For example, 
the literature is full of references to VIP-expressing GABAergic neurons, identified using VIP as a marker, but 
clustering defines a broader group of related GABAergic neurons including some subtypes that do not express 
VIP, at least not at levels detectable by snRNAseq in the adult mouse.

The transcriptomic approach potentially allows the definition of transcriptomically defined, species-neutral 
grouping classes. We decided against adding these because the resulting classifications are not likely to remain 
stable as more species are added to the analysis, although this may change in future with large-scale analyses 
using many species. It is also likely to be challenging to map these classes to the more traditionally defined 
species-neutral cell type ontology classes.

Another challenge comes from working with nomenclature defined by researchers. Terminology that makes 
sense in the limited local context of a dataset can be confusing to users viewing it in the broader, integrated con-
text of an ontology. In the primary motor cortex mini-atlas datasets used for this work, names given to cell types 
in human and marmoset were derived from the names of the mouse cell types, even where that name implies 
properties (e.g., marker expressions) that do not apply. For example, the Sncg cluster in marmoset is aligned to 
that of mouse Scng cluster but contains many cell types that do not necessarily express Sncg (Fig. 6). To make 
this clear we rename these terms following the pattern mouse {x} like, e.g., (Mouse Sncg)-like (Marmoset).

Lastly, as efforts to expand scRNAseq cell typing to the entire brain, there is a crucial need for upstream 
standardisation and validation in order to efficiently scale up what we have presented in this paper. Tooling that 

Fig. 6 Example of a cell type name that is derived from the names of the mouse cell types. The Marmoset 
(Callithrix jacchus) cell type taxonomy is aligned to the mouse cell type taxonomy, resulting in a “sncg 
grouping” that contains cell types that do not necessarily express Sncg. To make this clear, the class was renamed 
(Mouse Sncg)-like.

https://doi.org/10.1038/s41597-022-01886-2
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allows biologists to annotate cell types with existing terms created through the BDSO, automated checks for 
quality control, and consensus on data formats, nomenclatures, and version control are all required if we are to 
effectively manage the huge input of data that is inevitable from such work.

The general schema/approach that we describe for defining and classifying cell types with reference to exem-
plar data is both scalable and broadly applicable across data sources and types. It could, for example, be applied 
to the definition and classification of Drosophila neuron types by morphology and location which has become 
standard in Drosophila neurobiology28,29. The ontology build pipeline described here has so far been applied to 
one additional dataset (snRNAseq of the medial temporal gyrus30) and will soon be applied to a taxonomy for 
the whole mouse brain. While the pipeline is tailored to using taxonomies that follow the CCN standard12 as 
input, the modular nature of its design means it could easily be adapted to any other hierarchical representation 
of cell type/classification linked to data.

Ultimately, our proposal should be evaluated on the basis of its usefulness of ontology product outputs in 
cell type annotation and projection, and in driving atlasing products such as the Allen Cell Type Knowledge 
Explorer. By this criteria, it has already succeeded. However, wider reach will require time and outreach to the 
community.

Conclusion
We have defined a generally applicable schema for defining and classifying cell types using reference data and 
linking to markers and confidence scores derived from that data. The BDSO acts as a functional tool for manag-
ing data from the BICCN mini atlas project, underlying the search and navigation of the Cell Type Knowledge 
Explorer web application, and provides a controlled vocabulary for future annotations. Beyond its practical 
function, it is also an example of how ontologies can harness automation to process the large volumes of analyses 
that are inevitable with the rise of sc/snRNAseq methods. Crucially, the work on the BDSO has highlighted the 
need for good tooling and integration into the early steps of the processes of sc/snRNAseq experiments.

The BDSO is a practical first step to generating ontologies from taxonomies representing sc/snRNAseq-based 
cell typing in the brain, one that is not only important for the tools it underlies (e.g. Cell Type Knowledge 
Explorer), but crucially needed for annotation of the increasing amount of sc/snRNAseq datasets coming from 
the brain. As we head towards full brain coverage of cell typing by sc/scRNAseq, BDSO presents a good template 
that can be further extended with clearer provenance, more direct links to data, and better representation of 
confidence; extensions that will require close collaborations with data producers.

Methods
Data source. Input to the ontology was derived from data from the BICCN mini-atlas10 and scRNAseq of the 
human middle temporal gyrus30. NS-Forest analysis was done as previously described13 using gene lists available 
from either NCBI gene16 or Ensembl18.

Development strategy. BDSO is developed based on the OBO Foundry31,32 and FAIR33 principles. 
Ontology terms were reused as much as possible (see results section) with all relationships used coming from the 
relations ontology and design patterns following or extending those used in the Cell Ontology. The BDSO is fully 
compliant with OBO Foundry standards and has been included as an ontology in the OBO Foundry.

templating systems. The templating systems used in the automated pipeline are ROBOT21 (used to generate  
individuals) and DOSDP22. Briefly, information is extracted from the CCN taxonomy files and translated into 
template files that are processed either through ROBOT templates to generate individuals, or template files for 
classes where a curator manually curates additional information (e.g. mappings to CL cell types, morphology, etc.)  
which is then processed, together with NS-Forest markers, using DOSDP. These files are then merged as part of 
the pipeline for the final product.

Provisional cell ontology. We updated the Provisional Cell Ontology to follow OBO Foundry standards 
by using a pipeline based on the ontology development kit20. Earlier, manually generated releases of PCL shared 
terms with the version described here, but used non-standard IDs and schema. In order to support mapping of 
data previously annotated with PCL and references to PCL terms in previous publications3,11,30, we mapped all 
original IDs to current OBO standard persistent URLs, using OBO standard mappings for obsoleted terms.

Endpoints. As well as being available for downloading from a persistent URL (http://purl.obolibrary.org/obo/
pcl.owl) and available for browsing on widely used ontology platforms including the Ontology Lookup service and 
Ontobee, the BDSO can be searched and queried via a REST API (http://purl.obolibrary.org/obo/pcl/bds/api/).  
These endpoints encapsulate the representational complexities of the underlying knowledge and property graphs 
and serve the ontology in web-friendly formats such as JSON. Using these endpoints, users can search for ontol-
ogy terms, access their details and navigate through the ontology using relationships between concepts. Solr is 
used at the backend to provide enhanced full-text search and reduced service response times. The created Solr 
indexes are published publicly (https://github.com/obophenotype/brain_data_standards_queries).

BDSO analysis. Statistics of metadata of BDSO were done using SPARQL queries with ROBOT21 on the 
BDSO component. SPARQL queries used can be found in the repository (https://github.com/obophenotype/
brain_data_standards_ontologies/tree/master/src/sparql).
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Figures generation. Figure 1 ontology visualisation was generated by using the Ontology Access Kit34 and 
dendrogram section was provided by the BICCN10. Figures 4 & 6 uses screenshots from Protege35. Figure 5 uses 
screenshots from the Cell Type Knowledge Explorer web app (https://knowledge.brain-map.org/celltypes/).

Data availability
All data used in the BDSO is publicly available and can be found in the original papers as well as NeMO archive 
links available in the ontology. Code and source data used to generate the ontology is publicly available at GitHub 
(https://github.com/obophenotype/brain_data_standards_ontologies and https://github.com/JCVenterInstitute/
NSForest). Primary motor cortex taxonomies are also publicly available (https://github.com/AllenInstitute/
MOp_taxonomies_ontology).

Code availability
The BDSO is generated using a dedicated ontology build pipeline, built as an extension to the Ontology 
Development Kit20, but released as a component of the PCL, with all terms having PCL IDs. Previous releases 
of PCL3,11,30 represented some of the same cell types as the current release but used a different, less formal 
schema and a different ID system3,11,30. We have obsoleted these terms and provided a mapping, within PCL, to 
replacement terms allowing continued support for previous work annotated using PCL terms.

The BDSO’s code base is available at GitHub (https://github.com/obophenotype/brain_data_standards_ontol-
ogies) including documentation of the full technology stack and details of the approach. The latest release of 
the ontology is available for download from http://purl.obolibrary.org/obo/pcl/bds/bds.owl and is hosted on the 
EMBL-EBI ontology lookup service (OLS)36 at https://www.ebi.ac.uk/ols/ontologies/pcl. OLS provides ontology 
search, browsing, visualisation capabilities and enables web services driven programmatic access to the BDSO.
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