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Three-dimensional chromatin 
architecture datasets for aging and 
Alzheimer’s disease
Guofeng Meng1,3 ✉, Hong Xu1,3, Dong Lu1, Shensuo Li1, Zhenzhen Zhao1, Haohao Li2 & 
Weidong Zhang1 ✉

Recently, increasing studies are indicating a close association between dysregulated enhancers and 
neurodegenerative diseases, such as Alzheimer’s disease (AD). However, their contributions were 
poorly defined for lacking direct links to disease genes. To bridge this gap, we presented the Hi-C 
datasets of 4 AD patients, 4 dementia-free aged and 3 young subjects, including 30 billion reads. As 
applications, we utilized them to link the AD risk SNPs and dysregulated epigenetic marks to the target 
genes. Combining with epigenetic data, we observed more detailed interactions among regulatory 
regions and found that many known AD risk genes were under long-distance promoter-enhancer 
interactions. For future AD and aging studies, our datasets provide a reference landscape to better 
interpret findings of association and epigenetic studies for AD and aging process.

Background & Summary
Alzheimer’s disease (AD) is a prevalent neurodegenerative disorder among the aged population. The main clin-
ical features include memory and learning deficits, disorientation, mood swings, and behavioral issues1. Studies 
of patients with familial (early-onset) AD identified autosomal dominant mutation of the amyloid precursor 
protein (APP), presenilin 1, and presenilin 22. However, these mutations account for only 1%–5% of the total 
disease burden3. Most cases of AD are late-onset (>65 years), which are caused by complex crosstalk of genetic 
and environmental factors4,5. Genome-wide association studies have identified many risk genes6–9. These genes 
function in diverse biological processes, such as immune system process (TNF, IL8, CR1, CLU, CCR2, PICALM, 
and CHRNB2), cellular membrane organization (SORL1, APOE, PICALM, BIN1, and LDLR), and endocytosis 
(PICALM, BIN1, and CD2AP)10. However, the identified AD risk-associated genes only contribute to a small 
portion of AD pathogenesis11, thus limiting their application in causal mechanism studies and new drug dis-
covery12. For sporadic AD, age is the biggest risk factor for AD genesis13. Studies suggest that AD and aging are 
intrinsically interwoven with each other14,15. For example, brains of elder individuals contain abnormal deposits 
of aggregated proteins such as hyperphosphorylated tau (p-tau), amyloid-β (A β), and α-synuclein16; however, 
it remains unclear whether they are linked to AD genesis. For AD studies, an open question is if there is any 
molecular mechanism, especially aging-related mechanism, mediating these diverse biological processes.

Recently, an increasing number of studies have revealed the importance of the dysregulation occurring in 
cis- or trans-regulatory regions. Expression quantitative trait loci (eQTL) analysis supports the proposition that 
AD risk-associated single nucleotide polymorphisms (SNPs) take regulatory roles by affecting the expression of 
nearby AD genes in the form of looped interactions6,17–19. Large-scale DNA methylation studies have identified 
hypo- and hyper-methylated enhancers in postmortem AD brain samples, which alter the regulation of AD risk 
genes20–22. H3K27ac, a marker for active enhancers and promoters, is differentially distributed at the regulatory 
regions involved in the progression of amyloid-β and tau pathology23. Epigenetic studies on other histone marks, 
for example, H3K9me324, H3K9ac25, and H4K16ac26, have also revealed critical links from epigenomic dysreg-
ulation to AD genesis. Meanwhile, studies of epigenetic drugs have suggested the benefits of epigenetic modifi-
cation. For example, inhibition of the HDAC3 protein by RGFP966 can reverse AD-related pathologies in vitro 
and in vivo mouse models27. In our previous study using large-scale AD patients, we predicted that AD patients 
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suffer from transcription regulation degeneration, which disrupts many AD-related pathways28. However, it is 
still not clear how the changes in the non-coding regulatory regions, especially epigenetic changes, contribute to 
AD genesis. It requires a detailed map of long-distance interaction to link regulatory regions to disease genes29.

In this dataset, we generated high-resolution maps of three-dimensional (3D) chromatin architecture 
of aging and AD using Hi-C technology. The prefrontal cortex region of post-mortem brain tissue from 
dementia-free elderly females (hereafter called “aged”, n = 4, mean age = 90, Chinese), female patients with AD 
(n = 4, mean age = 91.5, Chinese), and cognitively normal young females (hereafter called “young”,n = 3, mean 
age = 29, Chinese) were used for Hi-C sequencing (see Fig. 1a and Table 1). All the selected AD samples were 
carefully evaluated so that AD patients all had similar and severe disease conditions; aged and young samples 
were free of dementia. During the sequencing step, two samples were randomly selected from the aged and AD 
groups to generate 800 million paired-end reads with an estimated resolution of 9000 bp. The other samples were 
sequenced for 3 billion reads with an estimated resolution of 3000 bp. After merging Hi-C data from the same 
group, the HiCCUPS tool identified 11906, 13816, and 10023 loops at a cutoff of FDR <0.1 for AD, aged, and 
young groups, respectively (see Fig. 1b). To perform integrative analysis, other data were also generated or col-
lected to facilitate the understanding of Hi-C results, e.g., ATAC-seq, H3K27ac ChIP-seq, and GWAS SNPs. As 
an example, Fig. 1c,d shows the integrated results for BIN1 gene and the surrounding regions. Compared with 
nearby genes, more Hi-C loops, H3K27ac marks, ATAC-seq signals, and AD GWAS SNPs are observed from 
upstream to gene body of BIN1, indicating that BIN1 is under intensive regulation. The Hi-C analysis results are 
also presented, including interactions of active regulatory regions and SNP-promoter interactions. This result 
indicates that long-distance interactions are closely related to BIN1 activities. The analysis results for more genes 
and genomic regions are available in http://menglab.pub/hic.
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Fig. 1  Three-dimensional chromatin architecture datasets for aging and Alzheimer’s disease. (a) Post-mortem 
brain tissue from female AD patients and cognitively normal elderly and females were studied using Hi-C; other 
data were also generated or collected to facilitate the understanding of Hi-C results, e.g., ATAC-seq, H3K27ac 
ChIP-seq, and GWAS SNPs. (b) The loops identified by HiCCUPS for three groups of samples. (c) Chromosome 
interactions heatmap for an exemplary region around BIN1 at chr2 of AD sample. (d) Integrative analysis 
results, including an interaction histogram, compartment score, loops predicted by HiCCUPS, H3K27ac peaks, 
open chromatin regions by ATAC-seq, contacts of active regions, AD risk SNPs, SNP-promoter interactions, 
eQTLs, and protein-coding genes. The height of loops indicated the log2 transformed contact frequency. Note 
that eQTLs of non-coding genes were also displayed in the eQTL track and no eQTL was identified for the BIN1 
gene at p < 1e-5. Note that the used data are from different sources. Track 1 from entorhinal cortex samples of 
AD cases and matched controls [23]; Track 2 from prefrontal cortex region of Chinese AD samples; Track 3 
is inferred regions by integrative analysis of Track 1 and Track 2; Track 4 is collected from a published meta-
analysis on PGC-ALZ, IGAP, ADSP, and UKB8,9; Track 5 are downloaded from the GTEx database (https://
gtexportal.org/).
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Methods
Sample collection for Hi-C study.  Postmortem brain samples (prefrontal cortex regions) of 11 female 
individuals, including 4 subjects diagnosed with AD (Braak NFT stage >4, mean age = 91.5), 4 age-matched nor-
mal subjects (mean age = 90), and 3 young subjects (mean age = 29), were collected from the Chinese Brain Bank 
Center in Wuhan (CBBC, http://cbbc.scuec.edu.cn) and China Brain Bank, Zhejiang University (http://www.
neuroscience.zju.edu.cn). Informed consent for autopsy had been provided by all subjects during life. This study 
was reviewed and approved by the Ethics Committee of both brain banks and Shanghai University of Chinese 
Medicine. The clinical information of each subject was reviewed by independent neurologists with expertise in 
dementia, and the neuropathological diagnosis was given regarding the most likely clinical diagnosis at the time 
of death. AD samples were carefully evaluated so that all included AD subjects with homogeneous disease status. 
The following criteria are more considered: (1) Braak NFT stage of ≥5 and severe disease stages; (2) within an age 
range of 85 to 95; (3) no or weak neuronal loss; and (4) not affected by other neurological diseases.

Hi-C.  The AD, aged, and young samples were randomly labeled, and the sample information was blind to 
experimental staff. The Hi-C experiment was performed following the protocol introduced in30. Brain cells were 
suspended in lysis buffer (10 mMTris, pH 8.0, 10 mM NaCl, 0.2% Igepal CA-630 and 1 × cOmpleteTM protease 
inhibitors (Sigma-Aldrich, 11697498001) and incubated on ice for 10 mins. Centrifugation at 2500 g for 5 mins 
at 4 °C, followed by removal of supernatant. Resuspended in 342 μL 1 × NEBuffer 3.1, and incubated with 38 μL 
10% SDS at 65 °C for 10 mins. Added 43 μL of 10% Triton X-100 to the Hi-C-tube to quench the SDS at 37 pellet 
for 15 min. Added 12 μL 10 × NEBuffer 3.1 and 400U DpnII (NEB, R0543), and mixed to digest the chromatin 
overnight at 37pellet on a rocking platform. Inactivated DpnII restriction enzyme at 65 °C for 25 mins. Then, 
biotin-14-dATP (Life Technologies, 19524-016), dCTP, dGTP, dTTP and DNA polymerase I Kenow were added 
(NEB, M0210), and incubated at 23 °C for 4 h. The digested chromatin was diluted and re-ligated by T4 DNA 
ligase (NEB, M0202), incubated at 16 °C for 4 h, and shaken for three times. De-cross-linked by adding 30 μL 
proteinase K, and incubated at 65 °C overnight. The DNAs were extracted and dissolved in 50 μl 10 mMTris, pH 
8.0. Then T4 DNA polymerase (NEB, M0203) was added and removed biotin for 4 hr at 20 °C, and the enzymes 
were inactivated for 20 mins at 75 °C. The DNAs were sheared to a size of 300 bp using Covaris M220. Pulldown 
with Streptavidin T1 beads (Life Technologies, 65602). Then, performed end repair, A adding, adaptor adding 
reaction, PCR amplification and DNA products size selection. The libraries were sequenced by the Illumina 
NovaSeq. 6000 sequencing platform.

Hi-C data analysis.  The raw sequencing data were cleaned with the trimmomatic tool under the default 
setting31. The cleaned fastq data were input to HiC-Pro pipeline32 to generate non-duplicated valid pairs, and we 
recorded the genomic interactions reported by ligated reads. The UCSC hg38 genome was used for alignments. 
The quality of analysis results in each step was evaluated following the protocol introduced in https://www.enco-
deproject.org/pipelines/, including inter-/intra-chromosomal pairs, chimeric pairs, duplicates, intra-fragment, 
intra-long distance ranges, and ligations. The sparse interaction matrices were generated at different bin sizes, 
ranging from 2000 to 200,000 bp. The compartment discovery and differential compartment activity analysis 
were performed using HOMER33 with a bin size of 25,000 bp under the default parameter setting. The first prin-
cipal component (PC1) of principal component analysis (PCA) was used to indicate compartment A/B along the 
genome. During this step, the samples from paired groups were input for differential compartment activity anal-
ysis. To avoid the flipped signs of PC1 values, we applied two steps: (1) we compared the signs of each bin across 
the samples of the same groups; (2) we used H3K27ac signals to decide PC1 signs of bins. The PC1 value along the 
hg38 genome was recorded in bedGraph format for visualization.

Loops discovery analysis.  The resolution of Hi-C data of each sample was estimated by applying juicer 
tool. We found that the resolution of 9 samples with higher sequencing depth was about 3200 bp and two samples 
had a resolution of 8500 bp. The loops were predicted using HiCCUPS34 at a cutoff of FDR <0.1 at two bin sizes 
of 5000 and 10000 bp, respectively. To further improve the resolution, the valid pairs generated by HiC-Pro tool 

No. ID
Random 
Label Status

Est. 
Resolution gender age

Braak NFT 
stage PMI(Min)

CSF 
PH

No.reads/
billion

No.nodup.Validated 
Pairs/billion

1 sample1 smp1 aged 8700 female 90 0 300 7.0 0.71 0.26

2 sample2 smp2 AD 8250 female 86 6 120 7.0 0.72 0.25

3 sample3 smp3 young 3200 female 28 0 300 7.2 3.15 1.07

4 sample4 smp4 AD 3200 female 91 6 210 7.0 2.98 1.07

5 sample5 smp5 young 3100 female 30 0 260 7.3 2.80 1.07

6 sample6 smp6 young 2650 female 29 0 310 7.0 3.03 1.31

7 sample7 smp7 AD 3750 female 94 5 240 7.0 2.94 0.99

8 sample8 smp8 aged 3800 female 91 1 241 - 3.30 0.98

9 sample9 smp9 aged 3200 female 94 0 240 8.3 3.00 1.16

10 sample10 smp10 AD 3200 female 95 5 180 7.0 2.59 1.05

11 sample11 smp11 aged 3200 female 85 0 200 7.0 2.10 1.04

Table 1.  Sample information for 11 samples.
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from the same sample group were merged together and then transformed into *.hic files. The loops were pre-
dicted using HiCCUPS under default parameter settings. By analyzing the HiCCUPS output, many loops were 
reported in only one or two groups. We checked the contacting frequency for these group-specific loops in other 
groups and did not find any loop with completely loop loss or gain in all three groups. Therefore, the loops identi-
fied in AD, aged, and young samples were merged into non-overlapped ones. In this process, bedtools35 was used 
by setting the minimum overlap as 5000 bp or the max length of loop anchors, and ensuring that there was zero 
gap. The self-contacted loops were filtered so that the anchoring regions of the same loops were not overlapped36.

TADs discovery analysis.  Topologically associating domains (TAD) were discovered with HOMER using 
the script of findTADsAndLoops.pl33. This tool works by generating relative contact matrices for each chromo-
some and scanning them for locally dense regions of triangle domains that have a high degree of inter-domain 
interactions relative to their surrounding region. In this step, we set the resolution to 3000 bp and an overlapping 
window size of 15000 to find the TADs.

Normalized contact matrices.  The raw contact matrices were generated by Hic-Pro at an arbitrary bin size 
of 5000 bp or 10000 bp. To generate comparable contact matrices, the raw interaction matrices of 11 samples were 
normalized using the R tool multiHiCcompare37. We firstly filtered the interactions with a total frequency of 
less than 20. In this step, only the intra-chromosomal interaction was considered. Under the default parameter 
setting, a normalized contact matrix for each chromosome was generated under default parameter setting. To 
evaluate the quality of Hi-C data, we performed clustering analysis, including principal component analysis and 
hierarchical clustering, using all whole interaction profiles. Our analysis found that sequencing depth or ratio of 
uniquely mapped reads had a significant impact on the output matrices. Similar results were also observed with 
the reproducibility analysis using the raw matrix data38. Therefore, the normalized interaction matrices were 
adjusted to remove their effects using the ComBat tool in R package sva39. In this process, 11 samples were clas-
sified and labelled as high-resolution and medium-resolution samples; the ratios of uniquely mapped reads were 
treated as a continuous covariate.

Mapping regions to the gene body.  The anchor regions of loops or differential interactions were mapped 
to the gene bodies by R package ChIPseeker40. The gene body annotation was based on known genes from 
UCSC build hg38, including promoter, 5′UTR, 3′UTR, exon, intron, downstream, and intergenic regions. The 
promoter regions were defined as regions from −2000 bp to 2000 bp around TSS. Most human genes have multi-
ple promoters, and these promoters were all considered.

Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq).  ATAC-seq was per-
formed in GENEWIZ company following the protocol introduced in41,42. Postmortem brain samples in the pre-
frontal cortex regions of 26 individuals, including 13 diagnosed with AD and 13 normal subjects were collected 
from the Chinese Brain Bank Center in Wuhan (CBBC, http://cbbc.scuec.edu.cn) and China Brain Bank, Zhejiang 
University (http://www.neuroscience.zju.edu.cn). Then, place frozen tissue into a pre-chilled 2 ml Dounce with 
2 ml cold nuclei lysis buffer. Allow frozen tissue to thaw for 5 minutes. Dounce with A pestle until resistance 
goes away (10 strokes). Dounce with B pestle for 20 strokes. Pre-clear larger chunks by pelleting at 100 RCF for 
1 min in a pre-chilled centrifuge.Count nuclei using Trypan blue staining and aliquot nuclei for ATAC reaction. 
Harvest and count cells. Cells should be intact and in a homogenous, single-cell suspension; Centrifuge 50,000 
cells 5 min at 500 × g, 4 °C. The number of cells at this step is crucial, as the transposase-to-cell ratio determines 
the distribution of DNA fragments generated. Remove and discard supernatant. Wash cells once with 50 μl of cold 
PBS buffer. Centrifuge 5 min at 500x g, 4 °C. Remove and discard supernatant. Gently pipet up and down to resus-
pend the cell pellet in 50 μl of cold lysis buffer. Centrifuge immediately for 10 min at 500 × g, 44 °C. Discard the 
supernatant, and immediately continue to transposition reaction. Make sure the cell pellet is set on ice. To make 
the transposition reaction mix, combine the following: TD (2x reaction buffer from Nextera kit) 25 μl; TDE1 
(Nextera Tn5 Transposase from Nextera kit) 2.5 μl; Nuclease-free H2O 22.5 μl. Resuspend nuclei pellet in the 
transposition reaction mix. Incubate the transposition reaction at 37 °C for 30 min. Gentle mixing may increase 
fragment yield. Immediately following transposition, purify using a Qiagen MinElute PCR Purification Kit. Elute 
transposed DNA in 10 μl Elution Buffer (Buffer EB from the MinElute kit consisting of 10 mM Tris·Cl, pH 8). To 
amplify transposed DNA fragments, combine the transposed DNA (10 μl), nuclease-free H2O (10 μl),25 μM PCR 
Primer 1 (2.5 μl), 25 μM Barcoded PCR Primer 2 (2.5 μl), NEBNext High-Fidelity 2x PCR Master Mix (2 5 μl). 
Thermal cycle as follows 72 °C,5 min, 1 cycle; 98 °C,30 sec; 98 °C, 10 sec 5 cycles; 63 °C, 30 sec; 2 °C, 2 min; 4 °C.

Cis-regulatory regions.  In this work, we used H3K27ac and ATAC-seq signals to define cis-regulatory 
regions (CREs). Raw data of H3K27ac ChIP-seq were collected from the GEO database with ID of GSE10253823, 
where 47 post-mortem entorhinal cortex tissue samples were used to identify widespread AD-associated acetylo-
mic variations. Cleaned fastq files were aligned to the human genome hg38 following the instructions of the orig-
inal paper. In this step, duplicated reads were removed. The sorted and indexed bam files were merged together 
by samtools43 into a single bam file, and then we performed peak calling using macs2 under a parameter set-
ting of “–keep-dup all–broad–broad-cutoff 0.1”. ATAC-seq data were generated and analyzed as described in 
our previous work28, including the prefrontal cortex regions of 13 Chinese people with diagnosed with AD and 
13 Chinese normal subjects. Like ChIP-seq data, AD and normal samples were merged for peak calling with a 
parameter setting of “–keep-dup all–nomodel–shift −100–extsize 200”. We applied bedtools to check the peak 
overlaps of H3K27ac ChIP-seq and ATAC-seq. The peaks for H3K27ac marks and ATAC-seq were merged into 
non-overlapped regions, which were treated as active regions of the brain. We mapped these regions to gene bod-
ies and classified them as promoters, enhancers, and other regions. The active regions that locate in the regulatory 
region, are treated as CREs.
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AD risk SNPs.  The AD GWAS analysis results were collected from a recently published meta-analysis on 
PGC-ALZ, IGAP, ADSP, and UKB6–9. The SNPs and their significance were downloaded from https://ctg.cncr.
nl/software/summary_statistics. The AD risk SNPs were selected with a cutoff of p < 1e-5, and their genomic 
locations were transformed into the corresponding locations on hg38 genome. In total, 6468 SNPs were selected 
to check their overlap with Hi-C interactions and active regions or enhancers.

Hi-C loops of SNP-promoter interactions.  The genomic locations of AD risk SNPs were mapped to the 
human genome based on the annotation of dbSNP database. We filtered the SNPs located in the promoter regions 
(±2000 bp around TSS). The TSS information was collected from the ENSEMBL database and the promoter 
regions were defined as from −2000bp to 2000 bp around TSS. Most human genes have multiple promoters, and 
these promoters were all considered. Next, we identified the loops linking SNPs to promoters. It is known that 
the functional SNPs in the noncoding regions usually take roles by affecting the transcription factor binding. 
However, there is no golden standard to define the ranges of cis-regulatory regions. Here, we arbitrarily set a 
region of 1000 bp around SNPs as the SNP-affected cis-regulatory regions. The contacting frequency between pro-
moter and SNP regions was calculated by bedtools findoverlaps, which counted the number of reads that anchored 
at both SNP and promoter regions. To find a proper cutoff of contacting frequency, we calculated the frequencies 
of all possible SNP-promoter pairs on the same chromosome and we found that most of the pairs have a contact 
frequency of 0. Among the pairs linked by at least one Hi-C read, there are less than 1% of SNP-promoter pairs 
with frequency >20 (p < 0.01). If the contacting frequency was great than 20, the corresponding SNP-promoter 
regions were supposed to be linked by loops. Additionally, we also performed loop discovery using bin-free tool 
Binless44 under the suggested parameter setting.

For interaction profiles of active regions, we applied R package InteractionSet to calculate the interac-
tion frequency between active regulatory regions. The pairs with less than 20 interactions or spanning different 
chromosomes were filtered.

eQTL for human brain regions.  The significant eQTLs were downloaded from the GTEx database (https://
gtexportal.org/), where eQTLs had been filtered at a cutoff of FDR <0.05. Based on text mining, we selected 
eQTLs of six brain regions: the amygdala, anterior cingulate cortex, cortex, frontal cortex, hippocampus, and 
hypothalamus. As an independent validation, we also included the eQTLs stored in BRAINEAC database (http://
www.braineac.org/)45 to evaluate the interactions reported by GTEx or Hi-C datasets.

MSBB data analysis.  The RNA-seq and clinical data of AD patients were downloaded from the AMP-AD 
project https://www.synapse.org/#!Synapse:syn2580853. To simplify the analysis, only MSBB data were selected. 
After filtering the sample with incomplete information, MSBB data included 223 AD patients and four brain 
regions: the frontal pole (BA10), superior temporal gyrus (BA22), parahippocampal gyrus (BA36), and frontal 
cortex (BA44). These subjects had diverse clinical manifestations, for example, cognitive score and Braak stages. 
Approximately 61% were diagnosed as having pathological AD or probable AD. The clinical dementia rating scale 
(CDR) and mini–mental state examination (MMSE) severity tests were used to assess cognitive status. Based on 
CDR classification, subjects were grouped as no cognitive deficits (CDR = 0), questionable dementia (CDR = 0.5), 
mild dementia (CDR = 1.0), moderate dementia (CDR = 2.0), and severe to terminal dementia (CDR = 3.0–5.0). 
The differential expressed genes were identified by the R limma package, where two conditions were compared 
for all the expressed genes.

Visualization of long-distance interaction.  The interaction matrices for AD, aged, and young groups 
were generated by merging the matrices from different samples. Then the interaction matrices were normalized 
by the Knight-Ruiz (KR) method37. An interaction heatmap was generated by HiCPlotter46. R package Gviz was 
used to visualize the binned triangle interaction heatmap, compartment A/B, H3K27ac ChIP-seq, ATAC-seq, 
GWAS SNP significance signal, and mapped genes along the human genome. The contacting loops were mapped 
by R package GenomicInteractions47.

Data Records
The Hi-C raw fastq files were deposited at NCBI under accession number of SRP28018348. The raw ATAC-seq 
data were publicly available in the Gene Expression Omnibus (GEO) database with the ID of GSE12904149. To 
facilitate the usage of Hi-C datasets, we build a shiny-based tool at http://menglab.pub/hic/. It can perform inte-
grative analysis for genes or user-defined genomic regions, including an interaction histogram, compartment 
score, loops predicted by HiCCUPS, H3K27ac peaks, open chromatin regions by ATAC-seq, contacts of active 
regions, AD risk SNPs, SNP-promoter interactions, eQTLs, and protein-coding genes. The processed Hi-C data 
are also available for public download in the same web tool.

Technical Validation
Quality assessment of Hi-C data.  Quality assessment of each Hi-C dataset was performed following the 
protocol introduced in https://www.encodeproject.org/pipelines/, including inter-/intra-chromosomal pairs, chi-
meric pairs, duplicates, intra-fragment, intra long distance ranges, and ligations (see here50,51). Figure 2a shows 
the results of reads mapping step using one example of AD samples. >90% of reads were aligned on the genome 
of hg38 by bowtie252. Figure 2b shows the pairing statistics by HiC-Pro, in which more than 60% reads were 
paired. Among the pairs, more than 70% are validated pairs (see Fig. 2c). Among the validated pairs, there are 
about 30% of duplicates, which is mainly due to the high sequencing depth (see Fig. 2d). Fragment size distri-
bution was extracted from the valid interaction and we observed a distribution centered around 300 bp, which 
corresponds to the paired-end insert size commonly used (see Fig. 2e). For the other samples, we also perform the 
same quality assessment and observed similar results50. We also performed reproducibility analysis by HICRep 
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tool38 among samples. We found that the samples had overall good similarity (>0.85) in interaction profiles  
(see Fig. 2f). Overall, all the evaluation results suggested a good quality of the Hi-C data.

Hi-C interaction sites overlap with promoters and enhancers.  For the Hi-C loops, we found that 
60% of them were overlapped by both H3k27ac and ATAC-seq peaks (see Fig. 3a). We also checked the genomic 
distribution of anchor sites of Hi-C loops and found that more than 40% of the loops overlapped with gene pro-
moter regions within 1000 bp around transcription start sites (TSS). Moreover, 18% of the loops were mapped 
to the distal intergenic region50. Compartment A/B analysis indicated that the TSS regions were more active in 
compartment activity (see Fig. 3b). All of these results suggested that Hi-C loops were more related to active 
regulatory regions on the chromatins.
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We investigated the relationship among long-distance interaction, chromatin status, and gene expression. 
Hence, we checked whether long-distance interactions contributed to gene expression regulation using a 
method introduced in53. We identified 2704 differentially expressed genes (DEGs) in AD patients using the 
MSBB dataset from AMP-AD projects. We found that fold changes of DEGs had a good correlation with the 
changes in long-distance interactions, and the Spearman’s correlation was 0.3 (p = 2.36e-57, see Fig. 3c), which 
is comparable to findings in neuron cells53,54.

Link AD risk SNPs to risk genes.  To build the links from AD risk SNPs to genes, 6468 AD risk SNPs were 
collected from published GWAS data6 at a cutoff of p < 1.0e-5. After filtering, 3498 SNPs located within promoter 
regions were selected for SNP-promoter loop discovery. We identified 75,953 SNP-promoter links with a contact-
ing frequency of >20. They included 2771 AD risk SNPs and 355 genes55. We attempted to evaluate if existing 
brain eQTL can help to link AD-related enhancers to their target genes. Therefore, we collected 7561 significant 
eQTLs from the GTEx database for six brain regions (the amygdala, anterior cingulate cortex, cortex, frontal cor-
tex, hippocampus, and hypothalamus). Among these eQTLs, 3417 were overlapped with Hi-C loops. Figure 4a 
shows the number of eQTLs and their overlaps with Hi-C loops in the six brain regions. Overall, a modest over-
lap was observed between Hi-C loops and eQTL. SNP-promoter links were then evaluated using the top 10 AD 
risk genes in the AlzGen database (see Fig. 4b). The promoters of nine genes were heavily contacted with the 
AD-associated SNPs. However, eQTLs only reported the links for one gene, CR1; that is, eQTL almost failed to 
identify the target genes of AD-associated SNPs. Taking BIN1 as an example, there were 126 AD-associated SNPs 
along the gene body and upstream regions. Hi-C data supported that 63 of them were linked to the promoter 
of the BIN1 gene(see Fig. 4c), which validated the roles of AD-associated SNPs in the activity of BIN1. Among 
AD-associated SNPs within or surrounding the BIN1 gene, rs4663105 was the most associated SNP, with a signif-
icance of p = 1.45e-44. However, it had no link with the BIN1 promoter. Similar results were observed for other 
AD risk SNPs, including the six most associated SNPs. Among the SNPs with Hi-C links to BIN1, rs35103166, 
an SNP located in the upstream region of BIN1, was associated with AD at p = 4.79e-23. The contacts between 
rs35103166 and BIN1 promoters were supported by 99 reads, supporting a high-confidence interaction. Similar 
results were observed with other AD risk SNPs. Unlike with Hi-C loops, we did not find any eQTL link between 
AD-associated SNPs and BIN1 expression. We also checked the eQTLs reported by BRAINEAC database45 and 
did not find eQTL links to BIN1 under a cutoff of p < 0.01. Another example can be seen with CR1 (see Fig. 4d), 
which was linked by eQTLs of multiple AD-associated SNPs. There were 48 AD-associated SNPs near or within 
the CR1 gene, among which 37 SNPs were linked to CR1 by 67 eQTLs in the six brain regions. Most of these 
SNP-gene links were supported by Hi-C SNP-promoter loops. Hi-C loops reported more SNP-promoter links for 
43 AD risk SNPs.

Fig. 4  Links of AD risk SNPs to target genes. (a) The significant eQTLs collected from the GTEx database for 
six brain regions and their overlaps with Hi-C loops. Here, eQTLs were selected at a cutoff of FDR <0.05.  
(b) More SNP-promoter links were identified by Hi-C loops than by eQTL. Using the top 10 AD risk genes as an 
example, SNP-promoter links were identified for nine out of ten AD risk genes by Hi-C loops, whereas only one 
gene was identified by eQTLs. (c,d) SNP-promoter links for BIN1 and CR1 genes. Here, both genes were heavily 
linked by AD-associated SNPs but no eQTL link was identified for the BIN1 gene. The green line marks the AD 
risk SNPs with links to the target genes.
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Integrating hyper-acetylated peaks to identify the dysregulated enhancer-promoter interac-
tions.  The expensive cost of Hi-C experiments limits its application to too many samples. To identify the 
changed enhancer-promoter regulation, a feasible solution is to integrate Hi-C annotation with other dysreg-
ulated signals. As a demonstration, we collected 1475 hyper-acetylated H3K27ac peaks from the published 
study23 and identify the target genes of 806 peaks56. Figure 5a shows the results of a peak on chr13:112101248–
112102698, which was reported as the most hyper-acetylated peak. This peak located at the downstream of 
ARHGEF7 and TEX29 genes. It interacted with the promoter of ENST00000483189, one transcript of ARHGEF7 
gene. This result suggested that ARHGEF7 might take a more important role in AD. It should be noticed that 
ARHGEF7 was not the proximal gene according to their genomic location, which suggested a necessity to 
use Hi-C results to annotate dysregulated regulatory elements. Figure 5b shows another example of the most 
hyper-acetylated peak on chr5:640598–642071, located in the ninth intron of CEP72. It interacted with the pro-
moter of ENST00000512038, a transcript of CEP72. Under our parameter setting, we failed to identify links from 
some top-ranked hyper-acetylated peaks and it is not clear if they are involved in transcription regulation.
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One of the hyper-acetylated peaks of chr17:43959954–43961546 is proximal to the MAPT gene. Figure 5c 
shows its chromatin interaction with MAPT transcript promoters. Multiple MAPT transcripts were linked to 
this peak, e.g. ENST00000571311, ENST00000420682, and ENST00000262410. Additionally, the same peak is 
also linked to the promoters of multiple transcripts of CRHR1 gene. CRHR1 has been reported for association 
with synaptic loss and memory in other neurological diseases57. This result might indicate its potential involve-
ment in AD.

Code availability
The Hi-C data analyses were performed using public tools. The following softwares were used to perform Hi-C 
data analysis:

1. FastQC v0.11.9 https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
2. HiC-Pro v2.11.3 https://github.com/nservant/HiC-Pro
3. Juicer tools v1.14.08 https://github.com/aidenlab/Juicebox
4. HOMER V2.0 http://homer.ucsd.edu/homer/interactions2/index.html
5. bedtools v2.29.2 https://bedtools.readthedocs.io/en/latest/
6. Gviz V1.40.0 https://bioconductor.org/packages/release/bioc/html/Gviz.html
7. ChIPseeker v1.32.0 http://bioconductor.org/packages/release/bioc/vignettes/ChIPseeker
8. HiCPlotter v0.6.6 https://github.com/akdemirlab/HiCPlotter
9. multiHiCcompare v1.14.0 https://dozmorovlab.github.io/multiHiCcompare/
10. MACS v2.2.6 https://github.com/macs3-project/MACS
11. R v3.6.2 https://cran.r-project.org/
12. limma v3.1.2 https://bioconductor.org/packages/release/bioc/html/limma.html
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