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A B S T R A C T

Supply chains have been impacted by the COVID-19 pandemic, which is the most recent worldwide disaster.
After the world health organization recognized the latest phenomena as a pandemic, nations became
incapacitated to provide the required medical supplies. In the current situation, the world seeks an essential
solution for COVID-19 Pandemic Wastes (CPWs) by pushing the pandemic to a stable condition. In this study,
the development of a supply chain network is contrived for CPWs utilizing optimization modeling tools. Also,
an IoT platform is devised to enable the proposed model to retrieve real-time data from IoT devices and
set them as the model’s inputs. Moreover, sustainability aspects are appended to the proposed IoT-enabled
model considering its triplet pillars as objective functions. A real case of Puebla city and 15 experiments
are used to validate the model. Furthermore, a combination of metaheuristic algorithms utilized to solve
the model and also seven evaluation indicators endorse the selection of efficient solution approaches. The
evaluation indicators are appointed as the inputs of statistical and multicriteria decision-making hybridization
to prioritize the algorithms. The result of the Entropy Weights method and Combined Compromise Solution
approach confirms that MOGWO has better performance for the medium-sizes, case study and an overall view.
Also, NSHHO outclasses the small-size and large-size experiments.
. Introduction

Global concerns regarding environmental issues have increased in
ecent decades, and organizations have sought to supplement environ-
ental and greening ideas with Supply Chain (SC) practices (Cher-

ghalipour et al., 2017). However, organizations must detect the neg-
tive impacts of current SCs, and reshape their processes in which
andling environmental aspects, economic progress, and social up-
iftment are considered, and it also helps to adjust the efficiency of
he businesses (Hashemi-Amiri et al., 2022). Generally, SC can be
rouped differently based on the flow of products throughout the
ystem; however, the main categories are identified as forward, reverse,
nd closed-loop SCs (Hajiaghaei-Keshteli et al., 2011; Golmohamadi
t al., 2017). Compared to forward SC, in which the products move
rom supplier or producers to end customers, reverse supply chain
RSC) encompasses reassigning used goods from consumers to separa-
ion centers, treatment centers, recyclers, and remanufacturers (Matsui,
022).

Generally, the collection process in the RSC includes receiving used
roducts and goods from different customers, examining these items
or residual benefit, and shipping gathered products to the recycling

∗ Corresponding author.
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unit. Goods with a terminated shelf life that are not economically
repairable for consumers are the fitted raw material for RSC that is
valuable to be recycled and reused. After COVID-19 pneumonia spread,
the world encountered enormous pressure to obtain medical, personal
protective equipment (PPE), and sanitizing equipment (Mosallanezhad
et al., 2021a). According to Fig. 1, it is estimated that discarded masks
worldwide might be more than three billion pieces. Predictably, this
drastic change is a consequence of the COVID-19 outbreak, which needs
significant consideration for this item’s reverse network.

Policies and guidelines made communities protect themselves by
using PPEs, which has left an extreme load of waste (de Sousa, 2020).
COVID-19 pandemic wastes (CPWs) refer to the wastes produced during
a novel pandemic and are generated during a novel outbreak. As Fig. 2
shows, CPWs have nine main categories: syringes, surgical aprons,
masks, shoe covers, blades and scalpels, medical/surgical gowns, latex
gloves, sanitizer containers, and shields (Al-Omran et al., 2021).

Most CPWs are solid waste associated with medical activities such
as examination, vaccination, and medication of individuals and even
animals (Nzediegwu and Chang, 2020). Health professionals (nurses
and physicians), patients, and healthy persons who touch infected
patients are required to wear standard PPE. Currently, all people in
ttps://doi.org/10.1016/j.engappai.2023.105903
eceived 16 March 2022; Received in revised form 3 December 2022; Accepted 21
vailable online 25 January 2023
952-1976/© 2023 Elsevier Ltd. All rights reserved.
January 2023

https://doi.org/10.1016/j.engappai.2023.105903
https://www.elsevier.com/locate/engappai
http://www.elsevier.com/locate/engappai
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2023.105903&domain=pdf
mailto:mostafahaji@tec.mx
https://doi.org/10.1016/j.engappai.2023.105903


B. Mosallanezhad, F. Gholian-Jouybari, L.E. Cárdenas-Barrón et al. Engineering Applications of Artificial Intelligence 120 (2023) 105903
Fig. 1. The estimated daily amount of discarded masks (Benson et al., 2021).
Fig. 2. COVID-19 Pandemic wastes.

most nations worldwide need to use facial protection like a mask or
shield during all outside activities. Thus, inevitably disposable PPEs
occupy the environment and bring about a tremendous amount of
infectious CPW as an inevitable threat to our health and environment
(Al-Omran et al., 2021; Hantoko et al., 2021).

Moreover, due to the unique, versatile characteristics of COVID-19,
the healthcare system has recently been involved with a complicated
situation caused by new variants such as Alpha, Beta, etc. Concerning
the infectiousness of new variants and their effects on human beings’
well-being, generated CPWs by societies require more observation and
consideration to be treated prior to the treatment process (Purnomo
et al., 2021). Fig. 3 displays the discarded infectious wastes in the
environment, which will become a massive disaster for our world.

The nations that make excessive CPW must assess their waste man-
agement policies and systems to suitably deal with these wastes during
the pandemic. In particular, waste management has different proce-
sses like collection, separation, pre-treatment, delivery, transportation,
2

disposal, and recycling (Valizadeh et al., 2021). These phases may
provide another avenue to spread the coronavirus, predominantly by
contact with infected areas and objects. Thereby, to hinder the dom-
ination of the contaminated virus and its new variants, provisions
and protections should be provided by authorities, and safety guide-
lines, both for human beings and the environment, must be considered
(Sangkham, 2020).

One of the most critical problems in organizations is a structure
that enables them to achieve real-time SCs information. Also, this
structure ensures organizations that the transmission of information
throughout the SC systems is safe and secure (Kordi et al., 2022; Kargar
et al., 2020a). Information technology (IT) excels in this situation and
plays an outstanding role because it generates, stores, processes, and
distributes information (Garrido-Hidalgo et al., 2020). IT has risen
to the forefront of the SC and RSC field in recent decades, provid-
ing more substantial and adaptable decision-making processes with
economic expenditures, as is empowered with the appearance of the
Internet of Things (IoT). Connected devices are the main constituents
of IoT platforms that transfer and receive information, leading to
corresponding decisions based on perceived data (Wang and Wang,
2022). Undoubtedly, the amplification of quality and integration of
Supply Chain Management depends on the ingenious use of IoT in SCs
and RSCs (Garrido-Hidalgo et al., 2020).

In fact, due to RSC’s high-risk characteristics for CPWs, IoT guaran-
tees prodigious development in the context of RSC, where convectional
waste management policies are incompetent for collecting, separating,
treatment, and recycling (Valizadeh et al., 2021). The adoption of
IoT facilitates the exploitation of information to make processes of
RSC for CPWs a more sustainable and quicker style, which results
in the exclusion of unnecessary expenses in the network, controlling
sustainable aspects in the network, and finally, managing the hazards
caused by a novel coronavirus and its recent variants.

In this paper, we propose an RSC for CPWs empowered by IoT as
a tool to collaborate with RSC design to control and overcome the
potential harms of coronavirus spread and its effect on all parties within
the network. Hence, this study expects to deal with several primary
goals, including (I) improvement of RSC processes to the highest safety
level in a way that minimizes the risk of collection, transportation,
treatment, and recycling of CPWs, (II) managing the cost of RSC
according to the authorities’ regulations and necessities, (III) taking
into account the sustainability aspects for the network. Considering
these three goals and healthcare challenges and guidelines enforced

by WHO for the governments result in presenting a multi-objective
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Fig. 3. Infectious wastes and environment.
oT-enabled RSC network for CPWs. The merit of this study is that
he proposed network embraces all centers exposed to generate CPWs
nd implements appropriate waste management using the information
rovided by IoT devices to centers and the calculation of the right
mount of waste generated over the network. It is noteworthy that the
aste amount of each center is estimated using customized formulation

o that IoT devices ascertain the required information for healthcare
enters by befittingly calibrating the proposed model. Moreover, a
etaheuristic framework is proposed to enable the network as well as

he IoT devices to pursue the computational complexity of the problem
nd quickly obtain the solutions. Last but not least, Puebla City, Mexico,
s chosen as a real-life example alongside a set of instances for the
alidation of the model.

. Literature review

There is substantial progress and development in the studies and
esearch in RSC. This part of the study tries to recapitulate the con-
emporary and RSC-related studies during the pandemic to identify the
esearch gap in recent literature.

.1. Reverse supply chain

One of the research fields that has drawn much attention in the
ast years is RSC. Many studies have focused on RSC with a wide
ange of variety in assumption and problem formulation. Furthermore,
umerous studies specifically focus on the RSC and its different aspects,
uch as Hrouga et al. (2022), and Doan et al. (2019).

Several research perspectives and methodologies have been con-
ucted in the field of RSC. Hosseini-Motlagh et al. (2022) investigated
novel saving-cost sharing contract for a sustainable pharmaceutical
SC network that fortifies the supply chain in profitmaking under
ompetition conditions. Shetty et al. (2022) modeled an RSC network
o collect plastic wastes from end-consumers and reinject the recy-
led products into the network for future applications. The proposed
etwork manages profitability, emission reduction, and new product
sage. Integrating technological and economic policies such as hard
nd soft path technologies as well as subsidizing considerations, Xu
t al. (2022) conducted a study on the RSC network for municipal
olid wastes. They followed three goals controlling costs, emissions,
nd employment. An optimized timing model was proposed by Matsui
2022) for dual-channel RSC. A supply chain was selected as the real
ase to corroborate the practicability of the model.

Furthermore, Rau et al. (2021) invoked a multi-echelon RSC net-
ork under demand uncertainty in which they assumed the network

s multi-period and multi-products. So, to cope with this problem, they
onducted postponement strategies. Moreover, Yılmaz et al. (2021), to
nvestigate the ripple effect in an RSC, carried out stochastic mathemat-
cal modeling. Also, an 𝛼-reliability approach and multiple scenarios
ere arranged to reinforce the model. A forward SC and RSC are

onducted by Alizadeh et al. (2020) to examine the biological risk
ithin the medical supply chain network and modify it by the Bounded
e Novo programming method. In this model, the authors tried to
ind the optimal location for the warehouses, sterilization centers, and

3

collection centers while dealing with the biological risks in clinics and
sterilization centers.

One of the critical issues in the globe’s current situation is to keep
the lead–acid battery RSC under control. For this purpose, Tosarkani
and Amin (2019) designed a fuzzy and stochastic RSC to optimize the
profit and environmental compliance in the network for all parties. This
multi-objective model, which considered the environmental aspects,
was implemented in Canada. Analogously, Jin et al. (2019) developed
an RSC network to optimize the model’s profit and environmental
benefits. This study tried to monitor the locations and trade-offs of
services and transportation at all points in the network. They formed
a methodological procedure using the exact technique to cope with a
case in California, the United States. A two-layer RSC was designed by
Guo et al. (2018), which adopted a differential game model concerning
publicity activities. Also, the model considered collection strategies
to find optimal recycling channels. Finally, a stochastic optimization
problem was discussed by Heydari et al. (2018) to obtain the optimal
paid reward under two specific cases: decentralized and centralized.

2.2. Reverse supply chain for pandemics

As a step toward controlling COVID-19 phenomena, scholars and
practitioners started to conduct studies in different fields, especially
SCM (Hosseini et al., 2021; Alizadeh et al., 2022). After the rapid
proliferation of CPWs, RSC as one of SCM arms and an important and
necessary problem during the pandemic attracted much attention.

A metaheuristic-oriented solution approach was implemented by
Tirkolaee et al. (2022) to solve the mask face supply chain prob-
lem taking into account sustainable aspects as well as RSC activities,
specifically recycling and reusing. They attempted to monitor the eco-
nomic, social, and environmental aspects of a sustainable network by
approaching the lowest amount of cost, pollution, and risk. Shadkam
(2022) carried out a reverse logistics (RL) model to optimize the
network’s related costs and increase customer satisfaction. The devel-
oped MILP concentrated on vaccination waste management more than
other medical wastes. Luo and Liao (2022) conceptualized RSC for the
COVID-19 outbreak by designing a multi-component routing-location
optimization model. Also, they firstly armed the distribution processes
by mobile processing centers to improve the network’s agility.

An RSC network formulated by Balci et al. (2022) for medical waste
during the pandemic in the metropolitan region of Istanbul, Turkey.
In addition to finding the optimum level of cost for the network,
the model helps the government with human resource and financial
decision-making. In order to outline a setting with the optimal level
of profit, environment impact, and social risk, Cao et al. (2022) imple-
mented mathematical modeling for medical waste management, taking
into account the diversity of wastes on multiple time windows under
the pandemic situation. Santos et al. (2022) designed an RSC net-
work for hazardous materials during COVID-19 to financially minimize
the network’s processes. In order to fortify the traceability, security,
and transparency of the supply chain network for the medical waste
management processes through the pandemic, Ahmad et al. (2021)
structured a decentralized blockchain-oriented framework.
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Additionally, Govindan et al. (2021) evoked a MILP model for
COVID-19 medical waste. This bi-objective model intends to optimize
infected individuals’ total costs and risks. Moreover, they tried to
identify the optimal solution for the proposed uncertain fuzzified model
using the goal programming technique. Lotfi et al. (2021) recom-
mended a two-echelon mathematical model for medical waste, which
considered resiliency and sustainability. This model was presented in a
robust stochastic setting. An optimization model was elicited by Mei
et al. (2021) to optimize total cost, safety risk, and disposal time
throughout the RSC network related to healthcare waste. A case was
elaborated to investigate the applicability of the proposed nonlinear
model. Since secure and safe transportation of COVID-19 medical waste
performs a vital task in stopping the increase of infected persons, Eren
and Rıfat Tuzkaya (2021) conducted a study to design an RSC for the
COVID-19 pandemic’s medical waste. The model attempts to render the
optimal vehicle routing considering safety and distance.

A fuzzy chance-constrained RSC model based on medical waste
management was suggested by Tirkolaee et al. (2021), according to
the feature of COVID-19. They contrived a model with sustainability
constraints for their subject of interest and then solved the model
using the goal programming technique. The revised multi-choice goal
programming (RMCGP) is an approach to cope with the optimization
models. In addition to all the preceding, Kargar et al. (2020b) presented
a linear context to design an RSC for medical waste of COVID-19-
involved locations. They used a case in Iran to justify the network and
solved it using RMCG. In developed structures, sustainability factors
also are regarded in picking treatment methods (see Table 1).

2.3. Application of IoT in reverse supply chain

Different studies, frameworks, schemes, and configurations have
been carried out to reinforce the RSC networks and waste management
processes. The IoT-based RSC networks and models strongly overlap
with waste management studies. For this section, research and works
on both fields, RSC and waste management, are reviewed. Also, some
literature reviews have been presented on this research area: Akram
et al. (2021), Anagnostopoulos et al. (2017), and de Souza Melaré et al.
(2017).

Roy et al. (2022) carried out an IoT-based routing optimization
problem for solid waste collection procedures based on financial objec-
tives, including allocation, routing, and human resources costs. Waste
bins are equipped with IoT devices responsible for detecting bins’ filling
levels. Salehi-Amiri et al. (2022) sought out a smart city skeleton by
embedding IoT kits throughout the waste collection system and tried
to optimize the system using a mathematical modeling problem, both
financially and environmentally. Akbarpour et al. (2021) presented a
model for MSW of smart cities to obtain the lowest possible total cost
for the model by setting up IoT devices. The main model of the study
is divided into two sub-models, including the vehicle routing problem
(VRP) and the allocation problem.

Alqahtani et al. (2020) combined IoT concepts and recurrent neural
network structure to scrutinize the information regarding collection
processes in cities so that they can easily analyze waste type and source
as well as vehicle capacity. Mishra and Kumar Ray (2020) tailored a
new routing modeling to financially control the waste collection frame-
work equipped with IoT cloud-based devices. Moreover, the retrieved
data from IoT devices were exploited to propose a novel cost function.

An IoT-empowered architecture designed by Shah et al. (2018) for
a routing problem in a waste collection system. The proposed routing
problem attempts to handle the network at the lowest transportation
cost and highest recovery value. Anagnostopoulos et al. (2015) devised
an IoT structure by embedding a sensor in bins all over the RSC
network. This structure recalls data from sensors for a dynamic routing
system and prioritizes the collection of bins. Among the early studies,
Faccio et al. (2011) configured a framework including several IoT
devices such as Global Positioning Systems (GPSs) and Radio Frequency
Identifications (RFIDs) to find the best locations and routes in the waste
collection system.
4

2.4. Research gap

Reviewing the recent works in previous sections endorses a dearth
of comprehensive and inclusive RSC designs for CPWs. Most commu-
nities are entangled by the novel outbreak, and demand for PPEs, in
addition to medical equipment, is escalated. As a result, the mentioned
situation leads to an increase in CPWs, so the authorities in the health-
care system should thwart this pandemonium. Although many studies
might be listed in RSC and waste management, limited works discuss
CPWs’ supply chain design. Above and beyond all other considerations,
the literature review revealed that the number of studies that developed
a mathematical model for CPWs is a few with many shortcomings.

A multi-objective RSC network is presented in the current work,
which simultaneously optimizes the network’s total cost, transportation
risk, environmental impact, CO2 emission, and job opportunity. Also,
the IoT platform empowers the model to obtain the required infor-
mation as the model’s inputs and is constrained by the sustainability
aspects to provide a nature-friendly RSC network. The pivotal merits
and contributions of current work are digested as follows:

• A comprehensive network is devised to contain all CPW pro-
ducers, including hospitals, temporary hospitals, clinics, laborato-
ries, residential locations, vaccination centers, and environmental
zones.

• A well-formed IoT platform is considered for the network to use
real-time information as parameters of a mathematical program.

• The IoT platform is empowered by an all-embracing setting to
help IoT-platform estimate the roughly accurate amount of CPWs
generated by each producer.

• The optimization model attempts to optimally track the total cost,
transportation risk, environmental impact, CO2 emission, and job
opportunity at the same time.

• The model facilitates moving toward sustainable settings.

3. Problem definition

The overall structure of this section takes the form of three parts.
The proposed RSC for CPWs is established in the first part. Afterward,
the configuration of IoT features for the proposed RSC is provided.
Lastly, the mathematical modeling of RSC for CPWs is developed.

3.1. Reverse supply chain for COVID-19 pandemic wastes

The proposed RSC structure for CPWs has been presented in Fig. 4.
There are several main constituents in this network. As the first layer of
the network, CPW producers generate waste based on their activities.
In order to keep the waste, they follow the regulations and guidelines
established by the WHO. CPW producers are hospitals, temporary
hospitals, clinics, laboratories, residential locations, and vaccination
centers. These points involve infected patients, or they might produce
waste because of health and safety procedures. On the other side, dur-
ing the outbreak, our environment was filled with CPWs, thoughtlessly
discarded. So, one of the primary responsibilities of governments and
nature friends non-governmental organizations (NF-NGOs) is to protect
the mother of nature from these destructive wastes. Therefore, as social
responsibility in the RSC, we consider that naturally discarded wastes
are moved to collection centers.

It is worth noting that the next level also needs to be informed
about the type of waste, the risk of waste, the possibility of infection,
and the policies that must be considered. The IoT devices communicate
this information throughout the network. As previously declared, IoT
supports the network in the highest health and safety situation.

Then, after collecting waste from the environment and CPW pro-
ducers, the separation center is the next destination of CPWs. CPWs
are grouped into two categories in this sector: recyclable and non-
recyclable. Through IoT devices, all information related to CPWs is
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Table 1
A review of state-of-the-art studies in the reverse supply chain.

Row Author Model configuration Solution approach Objective
function(s)

IoT-based
design

Waste
typeS M SC MC LP/ILP MILP NP MINLP SIO BIO MUO EX MT HU SM

1 Parker et al. (2010) ✔ ✔ ✔ ✔ ✔ C AW
2 Faccio et al. (2011) ✔ ✔ ✔ ✔ ✔ C/T/D ✔ MW
3 Hiete et al. (2011) ✔ ✔ ✔ ✔ ✔ C SW
4 Ghiani et al. (2012) ✔ ✔ ✔ ✔ ✔ NF SW
5 Samanlioglu (2013) ✔ ✔ ✔ ✔ ✔ C/TR/R HW
6 Zhang et al. (2014) ✔ ✔ ✔ ✔ ✔ C SW
7 Bing et al. (2015) ✔ ✔ ✔ ✔ ✔ C/CE SW
8 Zhao et al. (2016) ✔ ✔ ✔ ✔ ✔ C/R HW
9 Xu et al. (2017) ✔ ✔ ✔ ✔ ✔ C/CE SW
10 Shah et al. (2018) ✔ ✔ ✔ ✔ ✔ C/RV ✔ MW
11 Heydari et al. (2018) ✔ ✔ ✔ ✔ ✔ P SW
12 Guo et al. (2018) ✔ ✔ ✔ ✔ ✔ P EW
13 Jin et al. (2019) ✔ ✔ ✔ ✔ ✔ C/EI CW
14 Tosarkani and Amin

(2019)
✔ ✔ ✔ ✔ ✔ P CW

15 Alizadeh et al. (2020) ✔ ✔ ✔ ✔ ✔ P/R MW
16 Kargar et al. (2020b) ✔ ✔ ✔ ✔ ✔ C/TR CPW
17 Mishra and

Kumar Ray (2020)
✔ ✔ ✔ ✔ ✔ C ✔ SW

18 Yılmaz et al. (2021) ✔ ✔ ✔ ✔ ✔ C SW
19 Rau et al. (2021) ✔ ✔ ✔ ✔ ✔ P SW
20 Matsui (2022) ✔ ✔ ✔ ✔ ✔ P EW
21 Akbarpour et al.

(2021)
✔ ✔ ✔ ✔ ✔ D ✔ SMW

22 Tirkolaee et al.
(2021)

✔ ✔ ✔ ✔ ✔ T/DL/R CPW

23 Eren and
Rıfat Tuzkaya (2021)

✔ ✔ ✔ ✔ ✔ D/SF CPW

24 Mei et al. (2021) ✔ ✔ ✔ ✔ ✔ C/R/T CPW
25 Lotfi et al. (2021) ✔ ✔ ✔ ✔ ✔ C CPW
26 Govindan et al.

(2021)
✔ ✔ ✔ ✔ ✔ C/R CPW

27 Roy et al. (2022) ✔ ✔ ✔ ✔ ✔ C ✔ SW
28 Salehi-Amiri et al.

(2022)
✔ ✔ ✔ ✔ ✔ C/P/EI ✔ MW

29 Xu et al. (2022) ✔ ✔ ✔ ✔ ✔ C/E/JO MSW
30 Shetty et al. (2022) ✔ ✔ ✔ ✔ ✔ RW SW
31 Hosseini-Motlagh

et al. (2022)
✔ ✔ ✔ ✔ ✔ C PhW

32 Tirkolaee et al.
(2022)

✔ ✔ ✔ ✔ ✔ C/CE/R CPW

33 Shadkam (2022) ✔ ✔ ✔ ✔ ✔ C CPW
34 Luo and Liao (2022) ✔ ✔ ✔ ✔ ✔ C/R CPW
35 Balci et al. (2022) ✔ ✔ ✔ ✔ ✔ C/E/P CPW
36 Cao et al. (2022) ✔ ✔ ✔ ✔ ✔ P/E/R CPW
37 Santos et al. (2022) ✔ ✔ ✔ ✔ ✔ C CPW
38 This study ✔ ✔ ✔ ✔ ✔ C/TR/EI/CE/JO ✔ CPW

Model Configuration: Single-Period (S); Multi-Period (M); Single-Commodity (SC); Multi-Commodity (MC); Linear Programming (LP); Integer Linear Programming (ILP); Mixed
Integer Linear Programming (MILP); Non-linear Programming (NP); Mixed Integer Non-Linear Programming (MINLP); Single Objective (SIO); Bi-Objective (BIO); MUO (Multi-
Objective). Solution Approach: Exact (EX); Metaheuristic (MT); Heuristic (HU); Simulation (SM). Objective Function(s): Total Cost (C), Profit (P); Time (T); Distance (D);
Transportation Risk (TR); Risk (R); Environmental Impacts (EI); CO2 Emission (CE); Job Opportunities (JO), Recycled Waste (RW); Number of Facilities (NF); Recovery Value (RV);
afety (SF); Time Violation and Delay (DL). Waste Type: COVID-19 Pandemic Wastes (CPW); Medical Wastes (MW); Pharmaceutical Waste (PhW); Municipal Waste (MW); Solid
unicipal Waste (SMW); Agricultural Waste (AW); Hazardous Wastes (HW); Electronic/Electrical Waste (EW); Chemical Waste (CW).
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ransmitted to the next level. They are moved to treatment centers to
rotect society and the environment from non-recyclable CPWs such as
esting kits, facemasks, and gloves. In the centers, non-recyclable CPWs
re disinfected and decontaminated using a medium-temperature mi-
rowave, high-temperature pyrolysis technique, and chemical disinfec-
ion (Ilyas et al., 2020). Thereafter, unrecyclable items are transported
o determined locations for disposal or burial.

Recyclable pieces such as sanitizer containers, vaccine vials, or bro-
en plastic/glass shields become the raw material for recycling centers.
ike other segments of the RSC network, Recycling centers get informed
y IoT devices. However, in comparison to separation or treatment
enters and even transportation sections, recycling centers just need
etails on the types, infection risk, and amount of waste. Subsequently,
nformation sharing using IoT is explained comprehensively.
 p

5

.2. IoT-enabled RSC

Here, we explain how IoT assists the RSC in monitoring and trans-
erring essential information to each party within the network. In this
egard, the IoT structure is first presented, and the data analysis method
y IoT devices is presented.

.2.1. IoT platform
The platform of IoT for CPWs-RSC is displayed in Fig. 5. The concep-

ualized platform has been inspired by Liu et al. (2021) and Rezaei et al.
2017), which entails four layers: the configuration, process, applica-
ion, and users. The configuration layer is responsible for coordinating
oT devices’ sensing ability in RSC. Put differently, IoT devices in this

latform are handheld devices such as smartphones or temperature
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Fig. 4. Schema of RSC for CPWs.
Fig. 5. IoT platform for CPWs-RSC.
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ata loggers, monitors, sensors, and closed-circuit television cameras
CCTVs). These devices are implemented in different locations, such
s CPW producers’ locations, vehicles, collection centers, separation
enters, and treatment centers, and connected via Wi-Fi, Bluetooth, and
he internet. In this layer, data are gathered by IoT devices and sent to
he process layer.

The process layer undertakes the data processing and converting
ata to required information by each sector. Obtaining information
n this layer includes four main tasks: data clustering, data classi-
ication, data analysis, and data validation. After completing these
teps, information is sent to the sector for their situation and needs.
his information helps RSC control special conditions caused by the
andemic, thwart the proliferation of coronavirus infection, mitigate
he accompanying effects of the virus in waste management activities,
nd monitor policies and regulations.
 u

6

The application layer encompasses six services: CPWs analysis,
aste management, pandemic management, risk analysis, infection
revention and control, and tracking and tracing of WHO’s policies.
his layer has multiple application programming interfaces (APIs).
hey support and interact with users to make decisions according to the
ifferent conditions of the RSC network. For instance, CPWs analysis
eans that the waste producers should provide data in an API related

o the kind of waste, coronavirus/its variants, and amount of waste.
ccording to data provided by the waste producer, waste management
nd pandemic management devise their process according to data. For
xample, waste producers assert a load of CPW containing 100 kg
PEs of infected patients by delta variant. Thereby, the transportation
orkforce and other sectors know the guidelines to transport, separate,

reat, recycle, and bury this waste. The users layer indicates the
ser groups: CPW producers, separation centers, collection centers,
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Fig. 6. The detailed IoT architecture for the reverse supply chain network and processes within the network.
t

𝑗

reatment centers, recycling centers, and transportation units. The users
re responsible for providing exact data for each waste load and using
rocessed data and information for further procedures. The detailed IoT
rchitecture for the reverse supply chain network and processes within
he network are available in Fig. 6.

.2.2. IoT data analytics structure
As we previously stated, IoT devices collect data and convert them

o helpful information in the network. Among all the information,
wo cases play critical roles in authorities’ decision-making and each
egment of the RSC network: estimating the quantity of daily PPE
nd measuring the amount of medical waste respective to each CPW
roducer. In this regard, we explain how IoT devices compute this
nformation.

Nzediegwu and Chang (2020) adapted Eq. (1). to approximate the
mount of face masks in a day.

= 𝜌 × 𝑃𝑜𝑝 × 𝛼 × 𝜇 (1)

here:

= used mask pieces on a daily basis

op = Population

= Percentage of population in urban

= Perfection rate of the mask

=
Average consumption of face masks per capita

10, 000
(per day)

To customize Eq. (1) for the proposed model, we consider that 𝜏 is
the used PPE pieces per ton, 𝛼 is the acceptance rate of PPE, 𝜇 denotes
he average used PPEs per capita in a day divided by 10,000, and 𝜔 is

the weight of each piece of PPE. Consequently, we extend the previous
equation to Eq. (2) as follows:

𝜏 = 𝜌 × 𝑃𝑜𝑝 × 𝛼 × 𝜇 × 𝜔
10, 000

(2)

o estimate the quantity of waste generated at each CPWs producer
ocation, IoT devices use the proposed equation by Sangkham (2020)
s Eq. (3):

=
𝜋 × 𝛽
1000

(3)

where:
𝜑 = CPW produced by patients (tons/day)
7

𝜋 = Total number of infected persons by COVID-19 cases
𝛽 = generation rate of CPWs.
It is worth noting that 𝛽 for hospitals and clinics is 3.95 kg/bed/day

(Sangkham, 2020). However, the daily PPE weight per worker per each
center is proposed by Al-Omran et al. (2021) calculated as Eq. (4):

𝑒 = 𝑙 × 𝑘
1000

(4)

where:
e = CPW produced by medical staff (tons/day)
l = Average PPE weight per medical staff (kg/day)
k = Total number of medical staff.
Also, Al-Omran et al. (2021) proposed an estimation method for

waste weight in vaccination centers and laboratories. These equations
are as follows:

𝑜 = 𝑤 × 𝑡
1000

(5)

where:
o = CPW produced in laboratories (tons/day)
w = Weight of COVID-19 test kit (kg)
t = Total number of performed COVID-19 tests per day in labora-

ories.

=
𝑟 × 𝑓
1000

(6)

where:
𝑗 = CPW produced in vaccination centers (tons/day)
𝑟 = weight of syringe and vial (kg)
𝑓 = Total number of vaccinated people per day in vaccination

centers.

3.3. RSC problem formulation

The formulation for the RSC problem for CPWs is maintained in
this section. In this model, five objective functions are formulated to
optimize the model’s sustainability perspective (see Table 2).

Governments, policy-makers, businesses, and industries are incredi-
bly enthusiastic to process their supply chain at the lowest cost (Gupta
et al., 2022; Tarei et al., 2022). Thereby, the leading objective function
aims to optimize the entire RSC network economically. As Eq. (7)
shows, its constituents are the transportation cost (Eq. (8)), operation
cost (Eq. (9)), and fixed cost (Eq. (10)).

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 1 = 𝑇 𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 + 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡
(7)
+ 𝐹 𝑖𝑥𝑒𝑑 𝐶𝑜𝑠𝑡
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𝑂

+

∑

𝐹

+

∑

Table 2
Notation for the proposed RSC model.
Indices

𝑖 ∈ 𝐼 PPE waste producer
𝑗 ∈ 𝐽 Selected location in the environment
𝑘 ∈ 𝐾 Collection center
𝑙 ∈ 𝐿 Separation center
𝑚 ∈ 𝑀 Treatment center
𝑛 ∈ 𝑁 Recycling center
𝑜 ∈ 𝑂 Burial center
𝑞 ∈ 𝑄 Market
𝑝 ∈ 𝑃 Waste type
𝑡 ∈ 𝑇 Period

Parameters

- Transportation Cost (TC)

𝑇𝐶𝐼𝑖𝑙 TC between waste producer (i) and separation center (l)
𝑇𝐶𝐽𝑗𝑘 TC between location (j) and collection center (k)
𝑇𝐶𝐾𝑘𝑙 TC between collection center (k) and separation center (l)
𝑇𝐶𝐿𝑙𝑚 TC between PPE separation center (l) and treatment center (m)
𝑇𝐶𝑇𝑙𝑛 TC between PPE separation center (l) and recycling center (n)
𝑇𝐶𝑀𝑚𝑜 TC between PPE treatment center (m) and burial center (o)
𝑇𝐶𝑁𝑛𝑞 TC between PPE recycling center (n) and market (q)

- Operation Cost (OC)

𝑂𝐶𝐾𝑘 Collection cost for collection center (k) if opens
𝑂𝐶𝐿𝑙 Separation cost for treatment center (l) if opens
𝑂𝐶𝑀𝑚 Treatment cost for treatment center (m) if opens
𝑂𝐶𝑁𝑛 Recycle cost for recycling center (n) if opens
𝑂𝐶𝑂𝑜 Burial cost for burial center (o) if opens

- Fixed Cost (FC)

𝐹𝐶𝐾𝑘 FC for collection center (k) if opens
𝐹𝐶𝐿𝑙 FC for separation center (l) if opens
𝐹𝐶𝑀𝑚 FC for treatment center (m) if opens
𝐹𝐶𝑁𝑛 FC for recycling center (n) if opens
𝐹𝐶𝑂𝑜 FC for burial center (o) if opens

- Transportation Risk Possibility (RP) for waste type (p)

𝑅𝑃𝐼𝑖𝑙𝑝 RP between waste producer (i) and separation center (l)
𝑅𝑃𝐽𝑗𝑘𝑝 RP between location (j) and collection center (k)
𝑅𝑃𝐾𝑘𝑙𝑝 RP between collection center (k) and separation center (l)
𝑅𝑃𝐿𝑙𝑚𝑝 RP between separation center (l) and treatment center (m)
𝑅𝑃𝑇𝑙𝑛𝑝 RP between separation center (l) and recycling center (n)
𝑅𝑃𝑀𝑚𝑜𝑝 RP between treatment center (m) and burial center (o)
𝑅𝑃𝑁𝑛𝑞𝑝 RP between recycling center (n) and market (q)

(continued on next page)
p
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h
C
t
w
f
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t
O

𝑅

+

∑

+

∑

𝑇 𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 =
∑

𝑖

∑

𝑙

∑

𝑝

∑

𝑡
𝑇𝐴𝐼𝑖𝑙𝑝𝑡 × 𝑇𝐶𝐼𝑖𝑙𝑝

+
∑

𝑗

∑

𝑘

∑

𝑝

∑

𝑡
𝑇𝐴𝐽𝑗𝑘𝑝𝑡 × 𝑇𝐶𝐽𝑗𝑘𝑝+

∑

𝑘

∑

𝑙

∑

𝑝

∑

𝑡
𝑇𝐴𝐾𝑘𝑙𝑝𝑡 × 𝑇𝐶𝐾𝑘𝑙𝑝 +

∑

𝑙

∑

𝑚

∑

𝑝

∑

𝑡
𝑇𝐴𝐿𝑙𝑚𝑝𝑡 × 𝑇𝐶𝐿𝑙𝑚𝑝

+
∑

𝑙

∑

𝑛

∑

𝑝

∑

𝑡
𝑇𝐴𝑇𝑙𝑛𝑝𝑡 × 𝑇𝐶𝑇𝑙𝑛𝑝+

∑

𝑚

∑

𝑜

∑

𝑝

∑

𝑡
𝑇𝐴𝑀𝑚𝑜𝑝𝑡 × 𝑇𝐶𝑀𝑚𝑜𝑝 +

∑

𝑛

∑

𝑞

∑

𝑝

∑

𝑡
𝑇𝐴𝑁𝑛𝑞𝑝𝑡 × 𝑇𝐶𝑁𝑛𝑞𝑝

(8)
𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 =

∑

𝑘

∑

𝑡
𝑃𝐴𝐶𝑘𝑡 × 𝑂𝐶𝐾𝑘 +

∑

𝑙

∑

𝑡
𝑃𝐴𝑆𝑙𝑡 × 𝑂𝐶𝐿𝑙

∑

𝑚

∑

𝑡
𝑃𝐴𝑇𝑚𝑡 × 𝑂𝐶𝑀𝑚+

𝑛

∑

𝑡
𝑃𝐴𝑅𝑛𝑡 × 𝑂𝐶𝑁𝑛

(9)

𝑖𝑥𝑒𝑑 𝐶𝑜𝑠𝑡 =
∑

𝑘

∑

𝑡
𝐼𝑃𝐶𝑘𝑡 × 𝐹𝐶𝐾𝑘 +

∑

𝑙

∑

𝑡
𝐼𝑃𝑆𝑙𝑡 × 𝐹𝐶𝐿𝑙

∑

𝑚

∑

𝑡
𝐼𝑃𝑇𝑚𝑡 × 𝐹𝐶𝑀𝑚+

𝑛

∑

𝑡
𝐼𝑃𝑅𝑛𝑡 × 𝐹𝐶𝑁𝑛 +

∑

𝑜

∑

𝑡
𝐼𝑃𝐵𝑜𝑡 × 𝐹𝐶𝑂𝑜

(10)
8

Transportation of hazardous material (Hazmat) typically is accom-
anied by high-risk physical, social, and financial consequences for
usinesses (Ziaei and Jabbarzadeh, 2021). Undoubtedly, CPWs are
ighly potential to be labeled as Hazmats, and the transportation risk of
PWs certainly needs to be controlled within the network. Therefore,
ransportation risk in the proposed model stems from contagious CPWs,
hich minimizes using the second objective function. This objective

unction uses risk possibility parameters, which IoT devices evalu-
te. The risk possibility of each location is multiplied by the amount
f CPWs transported from that location to obtain the risk of CPWs’
ransportation.
bjective Function 2 = Risk of Transportation

𝑖𝑠𝑘 𝑜𝑓 𝑇 𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 =
∑

𝑖

∑

𝑙

∑

𝑝

∑

𝑡
𝑇𝐴𝐼𝑖𝑙𝑝𝑡 × 𝑅𝑃𝐼𝑖𝑙𝑝

∑

𝑗

∑

𝑘

∑

𝑝

∑

𝑡
𝑇𝐴𝐽𝑗𝑘𝑝𝑡 × 𝑅𝑃𝐽𝑗𝑘𝑝+

𝑘

∑

𝑙

∑

𝑝

∑

𝑡
𝑇𝐴𝐾𝑘𝑙𝑝𝑡 × 𝑅𝑃𝐾𝑘𝑙𝑝 +

∑

𝑙

∑

𝑚

∑

𝑝

∑

𝑡
𝑇𝐴𝐿𝑙𝑚𝑝𝑡 × 𝑅𝑃𝐿𝑙𝑚𝑝

∑

𝑙

∑

𝑛

∑

𝑝

∑

𝑡
𝑇𝐴𝑇𝑙𝑛𝑝𝑡 × 𝑅𝑃𝑇𝑙𝑛𝑝+

𝑚

∑

𝑜

∑

𝑝

∑

𝑡
𝑇𝐴𝑀𝑚𝑜𝑝𝑡 × 𝑅𝑃𝑀𝑚𝑜𝑝 +

∑

𝑛

∑

𝑞

∑

𝑝

∑

𝑡
𝑇𝐴𝑁𝑛𝑞𝑝𝑡 × 𝑅𝑃𝑁𝑛𝑞𝑝

(11)
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Table 2 (continued).
- The number of created Job Opportunities (JO) in period (t)

𝐽𝑂𝐶𝑘𝑡 By collection center (k)
𝐽𝑂𝑆𝑙𝑡 By separation center (l)
𝐽𝑂𝑇𝑚𝑡 By treatment center (m)
𝐽𝑂𝑅𝑛𝑡 By recycling center (n)
𝐽𝑂𝐵𝑜𝑡 By burial center (o)

- Environmental Impact per unit (EI) for waste type (p) in period (t)

𝐸𝐼𝐼𝑖𝑙𝑝𝑡 Transportation between waste producer (i) and separation center (l)
𝐸𝐼𝐽𝑗𝑘𝑝𝑡 Transportation between location (j) and collection center (k)
𝐸𝐼𝐾𝑘𝑙𝑝𝑡 Transportation between collection center (k) and separation center (l)
𝐸𝐼𝐿𝑙𝑚𝑝𝑡 Transportation between separation center (l) and treatment center (m)
𝐸𝐼𝐺𝑙𝑛𝑝𝑡 Transportation between separation center (l) and recycling center (n)
𝐸𝐼𝑀𝑚𝑜𝑝𝑡 Transportation between treatment center (m) and burial center (o)
𝐸𝐼𝑁𝑛𝑞𝑝𝑡 Transportation between recycling center (n) and market (q) per unit
𝐸𝐼𝐶𝑘𝑡 Establishment of collection center (k)
𝐸𝐼𝑆𝑙𝑡 Establishment of separation center (l)
𝐸𝐼𝑇𝑚𝑡 Establishment of treatment center (m)
𝐸𝐼𝑅𝑛𝑡 Establishment of recycling center (n)
𝐸𝐼𝐵𝑜𝑡 Establishment of burial center (o)

- CO2 Emission per unit (CE) in period (t) for waste type (p)

𝐶𝐸𝐼𝑖𝑙𝑝𝑡 Transportation between waste producer (i) and separation center (l)
𝐶𝐸𝐽𝑗𝑘𝑝𝑡 Transportation between location (j) and collection center (k)
𝐶𝐸𝐾𝑘𝑙𝑝𝑡 Transportation between collection center (k) and separation center (l)
𝐶𝐸𝐿𝑙𝑚𝑝𝑡 Transportation between separation center (l) and treatment center (m)
𝐶𝐸𝑇𝑙𝑛𝑝𝑡 Transportation between separation center (l) and recycling center (n)
𝐶𝐸𝑀𝑚𝑜𝑝𝑡 Transportation between treatment center (m) and burial center (o)
𝐶𝐸𝑁𝑛𝑞𝑝𝑡 Transportation between recycling center (n) and market (q)

- Rate (R)

𝛼𝑐𝑐 The processing rate of collection centers
𝛼𝑠𝑝 The processing rate of separation centers
𝛼𝑡𝑟 The processing rate of treatment centers
𝛼𝑟𝑐 The processing rate of recycling centers
𝛼𝑡 Recyclable amount of waste in period (t)
1 − 𝛼𝑡 Non-recyclable amount of waste in period (t)

Variables

- Transported Amount (TA) in period (t) for waste type (p)

𝑇𝐴𝐼𝑖𝑙𝑝𝑡 TA between waste producer (i) and separation center (l)
𝑇𝐴𝐽𝑗𝑘𝑝𝑡 TA between environment (j) and collection center (k)
𝑇𝐴𝐾𝑘𝑙𝑝𝑡 TA between collection center (k) and separation center (l)
𝑇𝐴𝐿𝑙𝑚𝑝𝑡 TA between separation center (l) and treatment center (m)
𝑇𝐴𝑇𝑙𝑛𝑝𝑡 TA between separation center (l) and recycling center (n)
𝑇𝐴𝑀𝑚𝑜𝑝𝑡 TA between treatment center (m) and burial center (o)
𝑇𝐴𝑁𝑛𝑞𝑝𝑡 TA between recycling center (n) and market (q)

- Processed Amount (PA) in period (t)

𝑃𝐴𝐶𝑘𝑡 The collected amount by collection center (k)
𝑃𝐴𝑆𝑙𝑡 The separated amount by separation center (l)
𝑃𝐴𝑇𝑚𝑡 The treated amount by treatment center (m)
𝑃𝐴𝑅𝑛𝑡 The recycled amount by recycling center (n)

- Implementation (IP) in period (t)

𝐼𝑃𝐶𝑘𝑡 If collection center (k) is implemented equals 1; otherwise, 0.
𝐼𝑃𝑆𝑙𝑡 If separation center (l) is implemented equals 1; otherwise, 0.
𝐼𝑃𝑇𝑚𝑡 If treatment center (m) is implemented equals 1; otherwise, 0.
𝐼𝑃𝑅𝑛𝑡 If recycling center (n) is implemented equals 1; otherwise, 0.
𝐼𝑃𝐵𝑜𝑡 If burial center (o) is implemented equals 1; otherwise, 0.
𝑻

+

∑

The environmental impacts of Hazmats, such as CPWs and CO2
missions related to supply chain processes and logistic activities within
he network, are nonnegligible (Mohammadi et al., 2017; Klemeš et al.,
021). Recently, a paucity of studies has highlighted the significance
f awareness and severe action against ever-increasing environmental
mpacts and CO2 emissions (Teimoury et al., 2017; Van Fan et al.,
021). Consequently, minimization of environmental impacts and CO2
missions is inevitable, even though the priorities are altered toward
ecreasing the casualties of the pandemic and enhancing the health
ecurity of societies.

The third objective function is to minimize the environmental im-
acts caused by transportation activities and each location’s implemen-
ation.
9

Objective Function 3 = Transportation EI + Implementation EI

𝒓𝒂𝒏𝒔𝒑𝒐𝒓𝒕𝒂𝒕𝒊𝒐𝒏 𝑬𝑰 =
∑

𝒊

∑

𝒍

∑

𝒑

∑

𝒕
𝑻𝑨𝑰 𝒊𝒍𝒑𝒕 × 𝑬𝑰𝑰 𝒊𝒍𝒑𝒕

∑

𝒋

∑

𝒌

∑

𝒑

∑

𝒕
𝑻𝑨𝑱 𝒋𝒌𝒑𝒕 × 𝑬𝑰𝑱 𝒋𝒌𝒑𝒕+

𝒌

∑

𝒍

∑

𝒑

∑

𝒕
𝑻𝑨𝑲𝒌𝒍𝒑𝒕 × 𝑬𝑰𝑲𝒌𝒍𝒑𝒕 +

∑

𝒍

∑

𝒎

∑

𝒑

∑

𝒕
𝑻𝑨𝑳𝒍𝒎𝒑𝒕 × 𝑬𝑰𝑳𝒍𝒎𝒑𝒕

+
∑

𝒍

∑

𝒏

∑

𝒑

∑

𝒕
𝑻𝑨𝑻 𝒍𝒏𝒑𝒕 × 𝑬𝑰𝑮𝒍𝒏𝒑𝒕

+
∑

𝒎

∑

𝒐

∑

𝒑

∑

𝒕
𝑻𝑨𝑴𝒎𝒐𝒑𝒕 × 𝑬𝑰𝑴𝒎𝒐𝒑𝒕 +

∑

𝒏

∑

𝒒

∑

𝒑

∑

𝒕
𝑻𝑨𝑵𝒏𝒒𝒑𝒕

×𝑬𝑰𝑵𝒏𝒒𝒑𝒕
(12)
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𝑰𝒎𝒑𝒍𝒆𝒎𝒆𝒏𝒕𝒂𝒕𝒊𝒐𝒏 𝑬𝑰 =
∑

𝒌

∑

𝒕
𝑰𝑷𝑪𝒌𝒕 × 𝑬𝑰𝑪𝒌𝒕 +

∑

𝒍

∑

𝒕
𝑰𝑷𝑺𝒍𝒕 × 𝑬𝑰𝑺𝒍𝒕

+
∑

𝒎

∑

𝒕
𝑰𝑷𝑻 𝒎𝒕 × 𝑬𝑰𝑻 𝒎𝒕+

∑

𝒏

∑

𝒕
𝑰𝑷𝑹𝒏𝒕 × 𝑬𝑰𝑹𝒏𝒕 +

∑

𝒐

∑

𝒕
𝑰𝑷𝑩𝒐𝒕 × 𝑬𝑰𝑩𝒐𝒕

(13)

The following objective function is responsible for optimizing the
CO2 emission caused by both transportation activities.

Objective Function 4 = CO2 Emission

𝐂𝐎𝟐 𝑬𝒎𝒊𝒔𝒔𝒊𝒐𝒏 =
∑

𝒊

∑

𝒍

∑

𝒑

∑

𝒕
𝑻𝑨𝑰 𝒊𝒍𝒑𝒕 × 𝑪𝑬𝑰 𝒊𝒍𝒑𝒕

+
∑

𝒋

∑

𝒌

∑

𝒑

∑

𝒕
𝑻𝑨𝑱 𝒋𝒌𝒑𝒕 × 𝑪𝑬𝑱 𝒋𝒌𝒑𝒕+

∑

𝒌

∑

𝒍

∑

𝒑

∑

𝒕
𝑻𝑨𝑲𝒌𝒍𝒑𝒕 × 𝑪𝑬𝑲𝒌𝒍𝒑𝒕 +

∑

𝒍

∑

𝒎

∑

𝒑

∑

𝒕
𝑻𝑨𝑳𝒍𝒎𝒑𝒕 × 𝑪𝑬𝑳𝒍𝒎𝒑𝒕

+
∑

𝒍

∑

𝒏

∑

𝒑

∑

𝒕
𝑻𝑨𝑻 𝒍𝒏𝒑𝒕 × 𝑪𝑬𝑻 𝒍𝒏𝒑𝒕

+
∑

𝒎

∑

𝒐

∑

𝒑

∑

𝒕
𝑻𝑨𝑴𝒎𝒐𝒑𝒕 × 𝑪𝑬𝑴𝒎𝒐𝒑𝒕 +

∑

𝒏

∑

𝒒

∑

𝒑

∑

𝒕
𝑻𝑨𝑵𝒏𝒒𝒑𝒕

×𝑪𝑬𝑵𝒏𝒒𝒑𝒕

(14)

Equitable distribution of job opportunities for the local population
is counted as one of the principal corporation social responsibilities
(CSRs) challenging every movement and business. Moreover, many
individuals lost their jobs or are susceptible to being laid off during
the pandemic. Therefore, it could be advantageous for stakeholders
to concentrate on social aspects of their network by adjusting job
employment (Vali-Siar and Roghanian, 2022; Pahlevan et al., 2021).
Finally, the fifth objective function optimizes the job opportunities
created by implementing each center throughout the network.

Objective Function 5 = Job Opportunities

𝑱𝒐𝒃 𝑶𝒑𝒑𝒐𝒓𝒕𝒖𝒏𝒊𝒕𝒊𝒆𝒔 =
∑

𝒌

∑

𝒕
𝑰𝑷𝑪𝒌𝒕 × 𝑱𝑶𝑪𝒌𝒕 +

∑

𝒍

∑

𝒕
𝑰𝑷𝑺𝒍𝒕 × 𝑱𝑶𝑺𝒍𝒕

+
∑

𝒎

∑

𝒕
𝑰𝑷𝑻 𝒎𝒕 × 𝑱𝑶𝑻 𝒎𝒕

+
∑

𝒏

∑

𝒕
𝑰𝑷𝑹𝒏𝒕 × 𝑱𝑶𝑹𝒏𝒕 +

∑

𝒐

∑

𝒕
𝑰𝑷𝑩𝒐𝒕 × 𝑱𝑶𝑩𝒐𝒕

(15)

Constraints:
∑

𝑙

∑

𝑝
𝑇𝐴𝐼𝑖𝑙𝑝𝑡 =

∑

𝑝
𝑊𝐴𝑖𝑝𝑡 ∀ 𝑖, 𝑡 (16)

Previous studies are inadequate considering CPW producers; hence,
current work covers all possible producers. Eq. (16) implies that the
amount of waste shipped from the CPW producer to the separation
center matches the estimated waste produced by the CPW producer
(WAipt), which is periodically estimated by IoT devices and used by
the model.
∑

𝑘

∑

𝑝
𝑇𝐴𝐽𝑗𝑘𝑝𝑡 =

∑

𝑝
𝑊 𝑉𝑗𝑝𝑡 ∀ 𝑗, 𝑡 (17)

What is not yet considered in previous publications is CPWs
discarded in the environment. Therefore, Eq. (17) asserts that the
amount of waste shipped from the selected location in the environment
to a collection center equals the estimated waste in that location.
∑

j

∑

p
TAJjkpt ≤ CAPKk × IPCkt ∀ k, t (18)

Eq. (18) declares that the amount of waste transported between the
environment and the collection center should match the capacity of the
10
implemented collection center.
∑

k
IPCkt ≥ 1 ∀ t (19)

Eq. (19) ensures that at least one collection center must be im-
plemented. Eq. (20) considers the processing amount of CPWs at the
collection center.
∑

j

∑

p
TAJjkpt × 𝛼𝑐𝑐 ≤ PACkt ∀ k, t (20)

∑

l

∑

p
TAKklpt = PACkt ∀ k, t (21)

Eq. (21) implies that the amount of collected waste type moved
between the collection and separation center should be equal to the
amount of processed waste in the collection center.
∑

i

∑

p
TAIilpt +

∑

k

∑

p
TAKklpt ≤ CAPLl × IPSlt ∀ l, t

(22)

Eq. (22) specifies that the amount of waste shipped from the CPW
producer to the separation center and the collected waste shipped
between the collection and separation centers should be fitted to the
capacity of implemented separation center.
∑

l
IPSlt ≥ 1 ∀ t (23)

Eq. (23) ensures that at least one separation center must be imple-
mented. Eq. (24) considers the processing amount of CPWs at separa-
tion centers.

(
∑

i

∑

p
TAIilpt +

∑

k

∑

p
TAKklpt) × 𝛼𝑠𝑝 ≤ PASlt ∀ l, t

(24)
∑

p

∑

m
TALlmpt +

∑

p

∑

n
TATlnpt = PASlt ∀ l, t

(25)

Eq. (25) implies that the waste moved between separation and
treatment centers and recycling centers should be equal to the amount
of processed waste in the separation center.
∑

p

∑

m
TALlmpt = 𝛼t × PASlt ∀ l, t (26)

∑

p

∑

n
TATlnpt =

(

1 − 𝛼t
)

× PASlt ∀ l, t (27)

Eqs. (26) and (27) express the amount of waste moved between
separation, treatment, and recycling centers.
∑

l

∑

p
TALlmpt ≤ CAPMm × IPTmt ∀ m, t (28)

Eq. (28) points out the amount of waste transported between separa-
tion and treatment centers and satisfies the capacity of the implemented
treatment center.
∑

m
IPTmt ≥ 1 ∀ t (29)

Eq. (29) ensures that at least one treatment center must be imple-
mented in each period.
∑

l

∑

p
TATlnpt ≤ CAPNn × IPRnt ∀ n, t

(30)

Eq. (30) points out the amount of waste moved between the sepa-
ration and recycling center and meets the capacity of the implemented
recycling center.
∑

n
IPRnt ≥ 1 ∀ t (31)
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Eq. (31) ensures that at least one recycling center must be imple-
mented in each period. Eq. (32) considers the processing amount of
CPWs at the collection center.
∑

p

∑

m
TALlmpt × 𝛼𝑡𝑟 ≤ PATmt ∀ m, t (32)

∑

o

∑

p
TAMmopt = PATmt ∀ m, t

(33)

Eq. (33) organizes that the amount of waste type shipped from the
treatment center to the burial location should be equal to the amount
of processed waste in the treatment center. Eq. (34) considers the
processing amount of CPWs at the collection center.
∑

p

∑

n
TATlnpt × 𝛼𝑟𝑐 ≤ PARnt ∀ n, t (34)

∑

q

∑

p
TANnqpt = PARnt ∀ n, t (35)

Eq. (35) confirms that the amount of waste shipped from the recy-
cling center to the market should be equal to the amount of processed
waste in the recycling center.
∑

m

∑

p
TAMmopt ≤ CAPOo × IPBot ∀ o, t

(36)

Eq. (36) points out the amount of waste shipped from the treatment
center to the burial location and is equal to or less than the capacity of
implemented burial location.
∑

n
IPBot ≥ 1 ∀ t (37)

Eq. (37) ensures that at least one burial location must be considered
in each period.
∑

n

∑

p
TANnqpt = DMqt ∀ q, t (38)

Eq. (38) points out that recycled waste is transported between the
recycling center and the market and is equal to the demand of the
market. Eq. (39) specifies the transportation amount of CPWs and the
processed amount of CPWs in the network. Also, binary variables for
the assignment of facilities are established by Eq. (40)

𝑇𝐴𝐼𝑖𝑙𝑝𝑡, 𝑇𝐴𝐽𝑗𝑘𝑝𝑡, 𝑇𝐴𝐾𝑘𝑙𝑝𝑡, 𝑇𝐴𝐿𝑙𝑚𝑝𝑡, 𝑇𝐴𝑇𝑙𝑛𝑝𝑡,

𝑇𝐴𝑀𝑚𝑜𝑝𝑡, 𝑇𝐴𝑁𝑛𝑞𝑝𝑡,

𝑃𝐴𝐶𝑘𝑡, 𝑃𝐴𝑆𝑙𝑡, 𝑃𝐴𝑇𝑚𝑡, 𝑃𝐴𝑅𝑛𝑡 ≥ 0

∀ i, j, k, l,m, n, o, q, p, t

(39)
𝐼𝑃𝐶𝑘𝑡, 𝐼𝑃𝑆𝑙𝑡, 𝐼𝑃𝑇𝑚𝑡, 𝐼𝑃𝑅𝑛𝑡, 𝐼𝑃𝐵𝑜𝑡 ∈ {0, 1} ∀ k, l,m, n, o, q, t

(40)

4. Solution approach

This section discusses solution approaches for the proposed model,
which is classified into two parts. The first part introduces the encoding
and decoding strategies to form feasible chromosomes. In the second
part, metaheuristic algorithms are presented. These four well-known
optimizers are classic, modern, and hybrid algorithms.

4.1. Encoding and decoding

Various methods can be found in the literature for encoding and
decoding purposes, among which random key (RK), as the most com-
petent method, is selected for this study. The RK suggests that the
chromosome should be made in a matrix with values specified by
uniform random distribution between 0 and 1. Then, the matrix values
are sorted in descending order so that the largest value possesses the
highest prioritization. This matrix is recognized as the priority-based
11
Fig. 7. The proposed chromosome for the RSC model.

matrix. To make it clear, an example is provided (Bahadori-Chinibelagh
et al., 2022; Liao et al., 2020).

Suppose an RSC network for CPWs with 2, 1, 2, 3, 2, 2, 1, and 2
waste producers, selected location in the environment, collection cen-
ter, separation center, treatment center, recycling center, burial center,
and market, respectively. Fig. 7 displays the RK method’s mentioned
procedures and priority-based chromosome matrix for the proposed
RSC model. Each column of chromosomes in Fig. 7 has a value between
0 and 1 and represents a facility within the network. These values are
arranged in descending order to support the flow of material between
the different segments of the model. It is worthwhile to add that flows
in the RSC network are forward.

4.2. Metaheuristics

In optimization problems, different features significantly influence
the problem’s computational complexity. The RSC problems are
grouped as NP-hard optimization problems (Khezerlou et al., 2021;
Boonmee et al., 2018; Farrokhi-Asl et al., 2017; Ghezavati and Beigi,
2016). In other words, the exact method is incompetent to solve the
NP-hard models in logical execution time, and it encounters high
computational complexity and exponential time consumption, partic-
ularly in large-size problems. This condition is entitled to NP-hardness
in optimization terms. Therefore, scholars engage metaheuristic algo-
rithms in the solution approach to overcome the NP-harness of the
problems. Consequently, six multi-objective metaheuristic algorithms
are the proposed tools for the RSC model. Here, the metaheuristic
algorithms are expounded in a brief manner.

4.2.1. Multi-objective Keshtel Algorithm
Keshtel Algorithm (KA) is attributed as one of the modern, efficient

metaheuristics founded on the population base structure. It was firstly
proposed by Hajiaghaei-Keshteli and Aminnayeri (2014) and applied
in many fields (Chouhan et al., 2021). The concept of MOKA is almost
similar to conventional KA (Mosallanezhad et al., 2021a). In the first
step of MOKA, an initial population, namely Keshtels, is selected. Based
on on-dominating sorting and crowding distance, the primary Keshtels
are sorted. Then, they are grouped into three subpopulations: (I) 𝑁1:
the lucky Keshtels; (II) 𝑁2: the Keshtels that are exposed to movement
operator; and (III) 𝑁3: the worst Keshtels that are replaced by new
Keshtels. Due to the fact that this algorithm has both intensification and
diversification phases, two operators named swirling and movement are
responsible for each of those phases in the algorithm. This algorithm
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has both intensification, and diversification phases, so two operators
named swirling and movement are responsible for each of those phases.
Chouhan et al. (2022) is a proper reference for more information and
pseudo-code.

4.2.2. Multi-objective social engineering optimizer
The SEO was primarily developed by Fathollahi-Fard et al. (2018)

and applied in numerous studies involving supply chain network de-
sign. It is a point-based optimizer with considerable processing time
and incredible potential to find the feasible global point. The SEO gets
the two initial solutions as capabilities of human beings and labels them
attacker and defender. Therefore, the attacker evaluates the defender’s
capabilities to discriminate against the dominant capability. To study
more about the MOSEO, refer to (Mousavi et al., 2021).

4.2.3. Non-dominated sorting genetic algorithm II
The first development of the genetic algorithm (GA) was proposed

by Holland (1975), and it was employed in many problems in dif-
ferent fields. Due to the nature of the real case problem, researchers
sought a multi-objective alternative for GA. Meanwhile, numerous
versions of multi-objective GA were developed, among which the most
recognized algorithm happened to be NSGA-II. It is famous due to
its non-dominating sorting and crowding distance estimation proce-
dure. The non-dominating sorting technique enables the algorithms
to classify the feasible solution into multiple Pareto frontiers. Then,
nominated feasible solutions for the next generation are obtained using
crowding distance. Also, the NSGA-II preserved the natural opera-
tors of traditional GA, i.e., crossover and mutation. To obtain more
information, refer to Mousavi et al. (2021).

4.2.4. Multi-Objective Grey Wolf Optimizer (MOGWO)
This recently-devised metaheuristic algorithm possesses a

population-based structure and imitates the hierarchical hunting of
grey wolves. The algorithm considers an initial pack of grey wolves,
selects the top three wolves, and nominates them as the pack’s leaders.
The conventional GWO algorithm was primarily propounded by Mir-
jalili et al. (2014), and lately, the multi-objective GWO was established
by Mirjalili et al. (2016). Interested readers may check the mentioned
studies to follow the details of the algorithm.

4.2.5. Non-Dominated Harris Hawks Optimizer (NSHHO)
The hunting fashion of Harris hawk birds became an inspiration

for Heidari et al. (2019) to implement Harris Hawks Optimization
(HHO). In the global search phase, the birds seeking for prey at various
places, and in each iteration, the birds’ positions are updated. On the
other hand, the birds perform attacks in the exploitation phase in
order to embezzle and slow down the prey. Recently, Jangir et al.
(2021) developed the non-sorted multi-objective HHO (NSHHO), which
inclines toward the elitism and non-dominated sorting process.

4.2.6. Hybrid multi-objective Keshtel algorithm and social engineering opti-
mizer

The proposed MOKASEO, a hybrid form of MOKA and MOSEO,
is proposed in this study. As previously mentioned, the MOKA is
a population-based algorithm with three subpopulations, including
𝑁1, 𝑁2 and, 𝑁3. It also possesses both diversification and intensification
phases. The former phase is performed to help the algorithm in the local
optimization process while a point-based metaheuristic can reinforce it.
Here, we propose the SEO optimization approach to help MOKA in the
diversification phase. The pseudo-code for the MOKASEO is available
in Fig. 8.

5. Evaluation outline

We provide an evaluation outline to enlighten the practicability
of the proposed model and solution methodology in real-world and
experimental situations by presenting a case of Puebla city, Mexico,
and 15 practical experiments. In the following subsections, the details

of the evaluation outline are explained.

12
5.1. Case study and practical experiments

During the ongoing pandemic era, Mexico is recognized as one
of the nations struggling with an enormous number of infected pop-
ulations, casualties, and fatalities (Piña-García and Espinoza, 2022).
The Mexican government could control the shocking situation of the
current pandemic through numerous strategies, such as hygiene and
healthcare regulations or extensive vaccination coverage in all states
(Peci et al., 2022). Undoubtedly, controlling CPWs by federal and local
governments is listed as one of the high-priority actions in the current
position. Puebla city is positioned in the southern part of Mexico and
belongs to Puebla State (Fig. 9). We consider Puebla city as the real
case for the study to examine our network in reality.

From the beginning moments, the Secretary of Health of the State
of Puebla1 endeavored to handle the situation. It appointed hospitals,
medical centers, and outpatient departments to admit infected individ-
uals and hospitalize emergency cases. Furthermore, they repetitively
advertised a weekly scheduling scheme for vaccination against COVID-
19 in predefined zones throughout the Puebla state. Also, certified
laboratories by the Secretary of Health of the State of Puebla were
responsible for COVID diagnosis tests. Therefore, these healthcare and
medical centers are recognized as the main CPW producers, as well
as a number of nominated residential locations. The required data of
CPW producers are obtained from the official portal of the Secretary of
Health of the State of Puebla.2 Also, selected residential locations are
determined based on municipality classification and the existing acces-
sibility of waste collection in related areas. Fig. 10 reveals the location
of CPWs and potential points for the centers within the proposed RSC
network. It is worthwhile to mention that the planning duration for the
case study is six months, and 18 types of CPW are considered, among
which discarded or used masks, gloves, sanitizer containers, and shields
are the most significant.

In addition to a real case in Puebla city, 15 practical experiments are
designed to comprehensively evaluate the performance of algorithms.
The practical experiments are partitioned into three groups: small,
medium, and large. These experiments aim to explore the computa-
tional performance and solution quality of metaheuristic algorithms un-
der different sizes of problems. The details of practical experiments are
stated in Table 3. Moreover, Table 4 contains the range of parameters
for the RSC network.

5.1.1. Evaluation indicators
The results of multi-objective metaheuristic algorithms are Pareto

solutions which can be analyzed in two ways to demonstrate the per-
formance of algorithms and their solutions qualities: quantifying them
as single values using different techniques such as weighted sum values
or evaluating by well-known indicators. Here, we pursue the latter
to examine the Pareto solutions and the performance of algorithms.
Although numerous studies have recommended evaluation indicators
for multi-objective metaheuristic algorithms, the most applicable indi-
cators for supply chain network design and RSC problems are deployed
for this study. The indicators are as follows (Gholian-Jouybari et al.,
2023; Yacoubi et al., 2022):

1. Spread of non-dominated solutions (SNS): It is calculated using
Eq. (41), which is a tool to quantify the spread of the solution.
SNS is a profit-type indicator, so the higher value is merely the
superior optimizer.

SNS =

√

∑n
i=1

(

𝛾 − 𝛾i
)2

n − 1
(41)

where 𝛾i = ‖

‖

fi − f∗‖‖, 𝛾 = fi
n , f∗ = {min

(

f1
)

,… ,min
(

fk
)

}.

1 Secretaría de Salud del Estado de Puebla (https://ss.puebla.gob.mx/).
2 https://previenecovid19.puebla.gob.mx/vacuna.

https://ss.puebla.gob.mx/
https://previenecovid19.puebla.gob.mx/vacuna
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Fig. 8. The Pseudo-code of the MOKASEO.
Table 3
Problem dimensions for the case study and practical experiments.

Problem Small Medium Large Puebla City

S1 S2 S3 S4 S5 M1 M2 M3 M4 M5 L1 L2 L3 L4 L5

i 10 15 20 25 30 40 45 55 60 70 90 100 110 120 150 44
j 2 3 3 3 3 15 20 25 35 40 50 55 60 70 80 5
k 2 3 5 5 5 8 8 9 9 10 20 25 30 35 40 2
l 3 4 4 5 5 6 7 8 9 10 20 25 30 35 40 3
m 4 5 5 5 6 6 7 8 9 10 20 25 30 35 40 2
n 2 4 5 5 6 6 7 8 9 10 20 25 30 35 40 2
o 4 5 6 6 7 8 10 10 15 20 30 35 40 45 50 5
q 4 5 5 5 6 6 7 8 9 10 20 25 30 35 40 2
p 6 6 6 9 9 9 12 12 12 12 15 15 18 18 18 18
t 3 3 3 4 4 4 6 6 6 6 12 12 12 12 12 6
Table 4
Values for the parameters of the network.

Parameter Distribution Range Parameter Distribution Range

Lower bound Upper bound Lower bound Upper bound

𝑇𝐶𝐼𝑖𝑙 Uniform 100 200 𝐹𝐶𝐿𝑙 Uniform 10 20
𝑇𝐶𝐽𝑗𝑘 Uniform 20 50 𝐹𝐶𝑀𝑚 Uniform 8 15
𝑇𝐶𝐾𝑘𝑙 Uniform 20 30 𝐹𝐶𝑁𝑛 Uniform 8 20
𝑇𝐶𝐿𝑙𝑚 Uniform 75 105 𝐹𝐶𝑂𝑜 Uniform 10 14
𝑇𝐶𝑇𝑙𝑛 Uniform 30 70 𝐷𝑀𝑞𝑡 Uniform 10 15
𝑇𝐶𝑀𝑚𝑜 Uniform 5 15 𝛼𝑡 Uniform 0.3 0.5
𝑇𝐶𝑁𝑛𝑞 Uniform 50 75 𝛼𝑐𝑐 Uniform 0.90 0.95
𝐹𝐶𝐾𝑘 Uniform 10 20 𝛼𝑠𝑝 Uniform 0.90 0.95
𝑂𝐶𝐾𝑘 Uniform 100 800 𝛼𝑡𝑟 Uniform 0.90 0.95
𝑂𝐶𝐿𝑙 Uniform 500 2500 𝛼𝑟𝑐 Uniform 0.90 0.95
𝑂𝐶𝑀𝑚 Uniform 650 1150 𝐶𝐴𝑃𝑀𝑚 Uniform 500 600
𝑂𝐶𝑁𝑛 Uniform 1100 1200 𝐶𝐴𝑃𝐾𝑘 Uniform 20 30
𝑂𝐶𝑂𝑜 Uniform 400 850 𝐶𝐴𝑃𝐿𝑙 Uniform 200 360
𝑊𝐴𝑖𝑝𝑡 Uniform 0.1 2 𝐶𝐴𝑃𝑁𝑛 Uniform 200 300
𝑊 𝑉𝑗𝑝𝑡 Uniform 0.1 0.2 𝐶𝐴𝑃𝑂𝑜 Uniform 100 250
RP Uniform 0.05 0.4 𝐽𝑂𝐶𝑘𝑡 – {5, 6, . . . , 10}
EIT Uniform 0.2 10 𝐽𝑂𝑆𝑙𝑡 – {7, 8, . . . , 15}
EIIM Uniform 0.1 2 𝐽𝑂𝑇𝑚𝑡 – {3, 4, . . . , 10}

CE – {1,2, . . . , 10} 𝐽𝑂𝑅𝑛𝑡 – {10, 11, . . . , 20}
𝐽𝑂𝐵𝑜𝑡 – {1, 2, . . . , 10}

RP (All parameters related to transportation risk possibility); EIT (All parameters related to the environmental impact of transportation); EIIM (All parameters related to the
establishment of facilities); CE (All parameters related to CO2 emission).
2. Mean ideal distance (MID): It concentrates on the distance of
solutions from the ideal reference point. Thus, MID is marked as
a cost metric in which the lower value is preferable. Considering
m and n represent the number of objective functions and optimal
13
solutions, the formulation of MID is as follows:

MID =
n
∑

√

√

√

√

m
∑

(

fji−f∗j ∕fmax*
j −fmin*

j

)2/
n (42)
i=1 j=1
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Fig. 9. Map of Puebla state.

where 𝑓 ∗
𝑗 , 𝑓𝑚𝑎𝑥∗

𝑗 and 𝑓𝑚𝑖𝑛∗
𝑗 stand for the best, the maximum, and

the minimum case for each algorithm.
3. Maximum Spread (MS): It aims to measure the dispersion of

Pareto optimal solutions, and is a profit-type indicator. Suppose
m is the number of objective functions, and 𝑓𝑚𝑎𝑥∗

𝑗 and 𝑓𝑚𝑖𝑛∗
𝑗

denote the maximum and the minimum case for each algorithm.
MS is computed as follows:

𝑀𝑆 =

√

√

√

√

𝑚
∑

𝑗=1

(

𝑓𝑚𝑎𝑥∗
𝑗 − 𝑓𝑚𝑖𝑛∗

𝑗

)2
(43)

4. Hyper-Volume (HV): This profit-type indicator aims to scalarize
the portion of objective space occupied by the Pareto front
solutions. Given RF is a set of reference solutions, PF is the set
of Pareto frontier, and L𝑚 then HV is computed in the following
manner:

𝐻𝑉 = L𝑚

(

⋃

𝛾∈𝑃𝐹
[𝛾, 𝑅𝐹 ]

)

(44)

The m-dimensional Lebesgue measure is denoted by L𝑚.
5. Generational Distance (GD): The distance between each solution

of the Pareto frontier and nominated reference solutions is ob-
tained by GD, a cost-type indicator. The reference solutions can
be either the true Pareto front or non-dominated solutions that
are superior compared to other non-dominated solutions of the
algorithm. This indicator is calculated as follows:

𝐺𝐷 = 1
𝑛

⎛

⎜

⎜

⎝

𝑛
∑

𝑖=1

√

√

√

√

𝑚
∑

𝑗=1

(

𝑓𝑃𝐹
𝑖,𝑗 − 𝑓𝑅𝐹

𝑗

)2⎞
⎟

⎟

⎠

(45)

which 𝑓𝑃𝐹
𝑖,𝑗 is the 𝑗th objective function value of 𝑖th solution

in the Pareto front (PF) and 𝑓𝑅𝐹
𝑗 is the 𝑗th objective function

value in the reference solution (RF). Also, m and n denote the
number of objective functions and solutions in the Pareto front,
respectively.

6. Inverted Generational Distance (IGD): This cost-type indicator is
an extended formulation of GD in which the difference between
IGD and GD is the reference solution. To be more specific, 𝑓𝑅𝐹

𝑗
is considered the nearest solution to 𝑓𝑃𝐹

𝑖,𝑗 in IGD calculations.
7. CPU Time (CT): The computational time of an algorithm is

distinguished as CT, and a lower value of CT is satisfactory.
14
.1.2. Parameters tuning
Typically, each metaheuristic algorithm contains multiple parame-

ers that directly influence the quality of the solution. Each algorithm
enders better solutions for an optimization problem under a spe-
ific level of parameters (Mosallanezhad et al., 2021b). So, tuning
arameters defines as finding the optimal level for an algorithm’s
arameters so that it shows sound performance compared to other
evels (Sadeghi-Moghaddam et al., 2019). Parameter tuning prevents
ime-taking execution of algorithms and improves the reliability of
btained solutions (Babaveisi et al., 2018). Among existing design of
xperiment (DOE) techniques, Taguchi has recorded a solid background
n tuning parameters of metaheuristic algorithms, and it has extensive
pplication in this field of research (Arjomandi et al., 2022; Colomba-
oni et al., 2020). The response value (Y) for the Taguchi technique is
efined as Eq. (46) to preserve the convergence and diversity of Pareto
olutions:

𝐶𝑂𝑉 = 𝑀𝐼𝐷
𝑀𝑆

(46)

Then, the 𝐿9 orthogonal array is formed for MOGWO, and the rest
of the algorithm is adjusted by 𝐿27 orthogonal arrays. S/N ratio as
Eq. (47) is used for experiment 𝑀3 to find the optimal level for the
parameters (Gholian Jouybari et al., 2016):

𝑆
𝑁

= −10 × log
(

∑ 𝑌 2

𝑛

)

(47)

The results of the Taguchi technique and parameter tuning process
are available in Table 5.

6. Computational outputs

In this part, the outputs of metaheuristic algorithms for the pro-
posed problem are reviewed and compared using both statistical and
decision-making approaches. The metaheuristic algorithms were coded
in MATLAB 2022a software to solve the designed networks using
a laptop with the following features: Intel® Core i5-3320M CPU @
2.60 GHz, 8 GB RAM, and Interl® 4 GB graphic card. To begin with, the
distribution of the Pareto solution for problem 𝑆3 is shown in Fig. 11
to visually provide the behavior of algorithms. Then, the evaluation
indicators’ results are obtained and separately reported in Table 6.
The results of statistical tests and decision-making approaches are thor-
oughly explained in the next two subsections. Since the RSC problem is
a multi-objective problem, analyzing the algorithm’s convergence based
on a single objective function is impossible. Then, we need a substitu-
tion to demonstrate the convergence of the proposed algorithms. To
this end, we employ IGD and HV, two of the well-known indicators for
multi-objective optimizers, instead of single objective function value
and plot the convergence plots as in Fig. 12. Here, the maximum
iteration of all optimizers is set on the 200 iterations to perform the
convergence analysis justifiably. Then, three problems, namely 𝑆3,
𝑀3, and 𝐿3, out of 16 designed problems, are nominated for the
convergence analysis. The IGD plots for 𝑆3, 𝑀3, and 𝐿3 demonstrate
that although algorithms are unstable in initial iterations, they reach
the convergence status in the middle.

Moreover, these plots assert that MGWO and NSHHO converge
in a shorter time. HV plots confirm the capability and effectiveness
of the algorithms in solving the problems while convergent to the
highest value of HV. It is however possible to differentiate between
the convergence behavior of optimizers in terms of HV for different
problem sizes.

6.1. Statistical comparison

It was previously mentioned that 15 test problems and a case study
are designed to investigate the performance of the proposed network
under various dimensions. As a result, the indicators values for each

defined problem are completely distinguishable. So, we transform these
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Fig. 10. Position of CPW producers in Puebla city.
Table 5
The optimal level of algorithms.

Algorithm Parameter

NSGA-II Maximum Iterations (200a, 300, 400); Population Number (100, 200a, 300); Crossover Population (0.75, 0.80a, 0.85); Mutation Population (0.10,
0.15a, 0.20)

MOSEO Maximum Iterations (200, 300a, 400); Number of Connection (100, 150a, 200); a (0.30, 0.40a, 0.50); b (0.20, 0.35a, 0.50)

MOKA Maximum Iterations (200, 300a, 400); Number of Keshtels (100, 200a, 300); Maximum Swirling (10, 15, 20); 𝑁1 Percentage (0.05, 0.1a, 0.15);
𝑁2 Percentage (0.2a, 0.25, 0.30);

MOKASEO Maximum Iterations (200, 300a, 400); Number of Keshtels (100, 200, 300a); Maximum Swirling (10, 15, 20); 𝑁1 Percentage (0.05, 0.1, 0.15); 𝑁2
Percentage (0.2, 0.25, 0.30a); Number of Connection (100a, 150, 200); a (0.30a, 0.40, 0.50); b (0.20, 0.35a, 0.50);

MOGWO Maximum Iterations (200a, 300, 400); Population Number (100, 200a, 300); Propensity to attackb (𝑝0𝑎 = 0.5; 𝑝𝑇𝑎 = 2); Propensity to cruiseb (𝑝0𝑐 = 1;
𝑝𝑇𝑐 = 0.5)

NSHHO Maximum Iterations (200a, 300, 400); Population Number (100a, 200, 300); Mutation Probability (0.6, 0.7a, 0.8); Scaling Factor (0.5, 0.7, 0.8a);
Recovery Number (10, 12, 15a)

aThe optimal level.
bThe selected parameters have the default value based on the conventional form.
Fig. 11. Pareto solutions for experiment 𝑆3.
values into [0, 1] intervals using the Relative Deviation Index (RDI) to
facilitate the next steps of the study (Abdi et al., 2020):

𝑅𝐷𝐼 =
|

|

|

𝐸𝐼𝐴𝑙𝑔 − 𝐸𝐼𝑏𝑒𝑠𝑡
|

|

|

𝐸𝐼𝑚𝑎𝑥 − 𝐸𝐼𝑚𝑖𝑛
(48)

where the best, maximum, and minimum value of the indicator in
each experiment are 𝐸𝐼𝑏𝑒𝑠𝑡, 𝐸𝐼𝑚𝑎𝑥, and 𝐸𝐼𝑚𝑖𝑛 while 𝐸𝐼𝐴𝑙𝑔 the obtained
value of the indicator by a specific algorithm in each experiment.
Now, interval plots with a 5% acceptance threshold or 95% confidence
distance are plotted as shown in Figs. 13–19 and categorized into
four groups. The mean of interval plots at the lowest RDI confidence
15
distances appoints the superior algorithms. The results declare that the
performance of all optimizers is considerable and close in terms of
various metrics.

The interval plots affirm that NSGA-II, MOGWO, and NSHHO con-
quer other metaheuristics in terms of SNS for all four categories.
With respect to the MID indicator, it is discernible that MOGWO and
NSHHO have tight competition in small and medium size experiments.
Nonetheless, NSHHO outperforms the first two categories, and for
large-size experiments, NSGA-II is the superior algorithm. In an overall
view, NSHHO overcomes other metaheuristic algorithms. In terms of
MS, MOKASEO, MOGWO, and NSHHO outpace every other algorithm
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Fig. 12. Convergency analysis: (a) IGD of 𝑆3, (b) IGD of 𝑀3, (c) IGD of 𝐿3, (e) HV of 𝑆3, (f) HV of 𝑀3, (e) HV of 𝐿3.
S
n

𝜌

S
E

in all sizes. Still, NSHHO surpasses other algorithms’ performance for
small-size, medium-size, large-size, and overall views in terms of MS.

NSGA-II, MOGWO, and NSHHO are unrivaled in terms of compu-
tational time for all problem sizes and overall views. Additionally, the
computational duration of all four algorithms is available in Fig. 20,
in which the details of execution times for all algorithms and problems
are represented. With respect to HV, GD and IGD three algorithms have
close performance: MOKASEO, MOGWO, and NSHHO. The interval
plots of HV contend that MOKASEO is superior for medium-size prob-
lems and in general perspective, but NSHHO has better performance for
small-size and large-size problems. From the GD standpoint, NSHHO
is the top optimizer for all problem sizes. Finally, MOGWO outpaces
large-size problems in terms of IGD. Nonetheless, NSHHO is specified
as the superior optimizer with respect to IGD.

6.2. Algorithm comparison using entropy weights method and CoCoSo

Generally, MCDM tools are recognized and prevalent for priori-
tization or ranking purposes (Arjomandi and Mosallanezhad, 2022;
Cheraghalipour et al., 2017). A hybrid MCDM structure is proposed in
this section to prioritize the algorithm based on the result of evaluation
indicators in a general manner. Typically, the hybrid MCDM architec-
ture constitutes two or more techniques to first find the significance
weights of decision-making criteria and then prioritize the alternatives
(Arjomandi et al., 2021). The hybrid structure encompasses two MCDM
methods: Entropy Weights Method (EWM), a popular MCDM tool to
determine the weights of criteria or indicators in our case, as well
as Combined Compromise Solution (CoCoSo) to rank the alternatives
or metaheuristic algorithms in this study. The inputs of the proposed
hybrid MCDM are the means RDI value of each indicator for different
problem sizes. It is suggested to refer to Chodha et al. (2021) and
16
Yazdani et al. (2019) for details on the EWM and CoCoSo. Here are
the steps of hybrid MCDM:

Step 1: Construct the decision matrix (𝑋): Here, there are four indicators
and algorithms in this study. So, the decision matrix is a 6 × 7 matrix,
including the mean RDI value of indicators. For instance, 𝑥11 is the RDI
of the first indicator (SNS) for the first algorithm (NSGA-II). Thus, for
this problem, the number of rows and columns is denoted by n, and m
equals 6 and 7, respectively.

X =

⎡

⎢

⎢

⎢

⎢

⎣

x11 ⋯ x1m

⋮ ⋱ ⋮

xn1 ⋯ xnm

⎤

⎥

⎥

⎥

⎥

⎦

tep 2: Normalize the decision matrix (𝑋̃): Using Eq. (49) matrix X is
ormalized.

ij =
xij

∑n
i=1 xij

j = [1,… ,m] (49)

tep 3: Obtain entropy value (e): The entropy value is calculated by
q. (50) which quantifies the amount of decision information in 𝑋̃.

ej = − 1
logn

n
∑

i=1
𝜌ij log

(

𝜌ij
)

j ∈ [1,… ,m]

(50)

Step 4: Compute diversification degree (d): This value is attained by
Eq. (51)

dj = 1 − ej j ∈ [1,… ,m] (51)
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Fig. 13. Interval plots of SNS for four cases.
Step 5: Assess the weight (w): Using Eq. (52) the weights of all indicators
are calculated.

wj =
dij

∑n
i=1 dij

j ∈ [1,… ,m] (52)

Step 6: Calculate the 𝛿𝑖𝑗 : Normal matrix (𝑋̃) related to the CoCoSo
technique is formed.

𝛿ij =
max𝑖 𝜌ij − 𝜌ij

min𝑖 𝜌ij − max𝑖 𝜌ij
j ∈ [1,… ,m]

(53)

Step 7: Determine (𝑆𝑖) and (𝑃𝑖): The weighted comparability sequence
(Si) and power weight of comparability sequences (Pi) are computed
using Eqs. (54) and (55).

Si =
m
∑

j=1
wj𝛿ij i ∈ [1,… , n] (54)

Pi =
m
∑

j=1

(

𝛿ij
)wj i ∈ [1,… , n] (55)

Step 8: Calculate relative weights (𝑘𝑖𝑎), (𝑘𝑖𝑏) and (𝑘𝑖𝑐): Using three
guidelines as Eqs. (56), (57), and (58), 𝑘𝑖𝑎 (relative weights embracing
arithmetic mean of 𝑆𝑖 and 𝑃𝑖), 𝑘𝑖𝑏 (the sum of relative scores of 𝑆𝑖 and
𝑃𝑖), and 𝑘𝑖𝑐 (the balanced compromise of Si and Pi) are calculated. In
Eq. (58), 𝜆 is considered 0.5.

kia =
Si + Pi

∑m
j=1(Si + Pi)

i ∈ [1,… , n] (56)

kib =
Si

min𝑖 Si
+

Pi
min𝑖 Pi

i ∈ [1,… , n] (57)

kic =
𝜆(Si) + (1 − 𝜆)(Pi)

(𝜆(max𝑖 Si) + (1 − 𝜆)(max𝑖 Pi))
i ∈ [1,… , n] , 0 ≤ 𝜆 ≤ 1

(58)

Step 9: Prioritize the algorithms: The final prioritization is established
using Eq. (59)

ki =
(

kiakibkic
)
1
3 + 1

3
(kia + kib + kic) i ∈ [1,… , n]
(59)

17
This hybrid MCDM structure helps us sort algorithms according
to evaluation indicators for four scales small, medium, large, and all
problems together. Tables 7–10 includes implementation steps related
to the entropy weights method. Using these steps, weights of evaluation
indicators are obtained. Then, Tables 11–14 shows the steps of the
CoCoSo technique. The result of hybrid entropy-CoCoSo certifies that
for small and large sizes, NSHHO has more superiority than other
algorithms. For the Medium size experiments, MOGWO overcomes
other metaheuristics. In the entire perspective, the hybrid suggests that
MOGWO is better with regard to all evaluation indicators.

6.3. Sensitivity analysis

Sensitivity analysis considerably supports a meticulous view of the
proposed model’s behavior in every study by changing the model’s
main parameters (Gholian-Jouybari et al., 2018; Hajiaghaei-Keshteli
and Sajadifar, 2010). Here, we consider problem S3 to perform the
sensitivity analysis. On the other hand, the hybrid MCDM approach
selected the NSHHO as the most well-performed algorithm for small-
size problems; therefore, we utilize the NSHHO optimizer alongside the
S3 model for sensitivity analysis. The goal parameters for this process
are partitioned into three categories: (I) processing rates (𝛼𝑐𝑐 , 𝛼𝑠𝑝, 𝛼𝑡𝑟,
𝛼𝑟𝑐), (II) CPW production amount (WAipt and WVjpt) and (III) facilities
capacities (CAPKk , CAPLl, CAPMm and CAPNn). 16 experiments with
multiple values of parameters are designed and solved in each category.

The first sets of experiments are designed based on the smallest and
largest processing rates (0.7 and 0.95). Other parameters are kept fixed.
The outputs for the first group of experiments rates are captured in
Table A.1, and the normalized values are displayed in Fig. A.1. It is
concluded that the Z1, Z2, and Z3 are very sensitive to an increase in
processing rates, especially 𝛼𝑠𝑝, 𝛼𝑡𝑟 and 𝛼𝑟𝑐 . Also, it can be revealed
that separation, recycling, and treatment centers are the most effective
facilities in the RSC network.

The second set of experiments concentrates on the production of
CPWs in different medical centers. These experiments are formed based
on the maximum and minimum amount CPW production rate. The
experiments are sorted in ascending order of 𝑊𝐴𝑖𝑝𝑡. The results are
exhibited in Table A.2, and the normalized values of the results are
outlined in Fig. A.2. It is concluded that the behavior of objective
function tightly follows the change of CPWs amounts. Notice Exp. 16,

which has performed at the maximum level of both CPWs’ production
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Evaluation Indicators of Algorithms.
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𝑆1 2.6969E+05 3.4973E+05 2.4597E+05 3.1029E+05 3.0889E+05 3.3985E+05 1.7170 1.6419 1.6833 1.9251 1.5350 1.5291 1.6477E+06 2.1014E+06 2.1446E+06 2.3529E+06 2.1313E+06 2.4711E+06 81 144 145 269 87 83

𝑆2 7.3679E+05 6.6907E+05 7.1612E+05 7.3025E+05 7.4561E+05 8.1775E+05 1.3140 1.4512 1.3239 1.0573 1.0294 1.0752 6.8308E+06 7.1208E+06 8.1554E+06 8.7054E+06 7.8566E+06 8.6359E+06 146 233 514 520 163 143

𝑆3 1.0624E+06 9.1421E+05 9.9589E+05 1.0691E+06 1.0166E+06 1.0777E+06 1.0318 1.8511 1.8123 1.6580 1.7129 1.5728 6.9132E+06 6.7267E+06 6.6897E+06 8.5205E+06 9.0613E+06 9.9392E+06 246 318 426 705 231 237

𝑆4 1.6507E+06 1.2453E+06 1.5486E+06 1.6178E+06 1.6987E+06 1.5728E+06 1.7729 1.5147 1.1959 1.3541 1.1430 1.0589 1.1452E+07 1.2094E+07 1.2177E+07 1.4593E+07 1.4691E+07 1.3143E+07 589 976 1429 1782 599 564

𝑆5 2.1039E+06 2.1084E+06 2.1962E+06 2.0378E+06 2.1842E+06 1.9282E+06 1.2439 1.1213 1.6858 1.9952 1.2548 1.0835 2.4665E+07 2.4706E+07 2.4713E+07 2.6141E+07 2.3752E+07 2.7096E+07 1996 3122 3248 4015 1883 1898

𝑀1 2.7055E+06 2.5817E+06 2.6766E+06 2.6079E+06 2.3976E+06 2.3726E+06 1.4618 1.0870 1.7418 1.9411 1.1900 1.0666 2.3504E+07 2.3425E+07 2.6502E+07 2.9424E+07 3.1356E+07 2.7616E+07 1451 1542 1743 3132 1450 1304

𝑀2 2.9359E+06 3.1957E+06 3.1123E+06 3.1815E+06 2.9978E+06 3.5835E+06 1.1700 1.0947 1.4254 1.3945 1.0140 1.0952 4.7953E+07 6.1157E+07 7.3536E+07 6.5282E+07 8.0775E+07 8.0653E+07 3822 4740 5473 6339 3408 3412

𝑀3 3.8323E+06 3.6492E+06 3.5215E+06 3.6224E+06 3.6969E+06 3.8157E+06 1.2479 1.5985 1.5534 1.4465 1.5464 1.5835 3.5644E+07 4.1871E+07 5.0141E+07 8.6921E+07 7.8962E+07 8.1366E+07 2570 2748 3400 4334 2884 2412

𝑀4 5.6336E+06 5.6763E+06 4.9401E+06 4.9816E+06 6.3452E+06 5.6807E+06 1.1434 1.7932 1.5971 1.9380 1.5468 1.3941 6.1055E+07 7.0446E+07 7.1974E+07 7.3504E+07 6.7106E+07 8.1431E+07 2669 4966 9185 9483 2773 2568

𝑀5 5.8271E+06 5.5189E+06 5.9371E+06 6.0554E+06 5.8725E+06 5.3213E+06 1.6872 1.9713 1.2689 1.9370 1.2699 1.1494 5.2789E+07 6.5766E+07 7.0473E+07 8.5672E+07 7.5753E+07 7.5988E+07 12 533 14 117 16 078 22 858 13 250 11 815

𝐿1 6.1509E+06 6.1263E+06 6.0351E+06 6.1748E+06 5.9639E+06 6.8815E+06 1.1657 1.7215 1.9880 1.7991 1.6935 1.8327 3.1849E+08 3.4594E+08 1.0133E+09 1.0151E+09 9.6172E+08 1.0448E+09 14 834 18 204 24 959 26 551 16 000 15 095

𝐿2 6.0881E+06 6.2981E+06 6.3425E+06 5.9525E+06 7.0011E+06 6.1197E+06 1.0468 1.1441 1.4433 1.6832 1.0972 1.1780 3.9234E+08 4.8026E+08 1.3751E+08 7.7991E+08 7.4326E+08 7.4702E+08 18 627 25 555 32 205 37 423 20 755 19 780

𝐿3 6.9775E+06 6.3392E+06 7.0118E+06 6.4905E+06 6.6092E+06 6.8911E+06 1.2126 1.5143 1.5391 1.9726 1.5740 1.3980 2.7606E+08 3.9634E+08 4.1966E+08 1.2325E+09 1.2845E+09 1.3908E+09 27 379 28 198 37 331 37 368 28 928 24 391

𝐿4 7.3635E+06 7.0202E+06 6.9056E+06 7.1657E+06 7.5588E+06 7.4162E+06 1.0861 1.2135 1.1536 1.7183 1.1791 1.1450 1.8357E+08 4.6347E+08 8.7116E+08 9.6806E+08 1.0832E+09 1.0384E+09 24 097 34 878 49 053 55 857 29 259 24 171

𝐿5 7.8728E+06 7.7302E+06 7.6602E+06 7.5814E+06 8.0486E+06 8.8305E+06 1.8568 1.5611 1.3912 1.6778 1.3544 1.3289 4.3563E+08 8.6714E+08 9.8257E+08 1.1758E+09 1.2112E+09 1.1315E+09 24 364 28 078 36 852 46 255 24 899 25 516

Puebla 2.9931E+06 2.8764E+06 2.9768E+06 3.1723E+06 2.7983E+06 2.7375E+06 1.6693 1.0628 1.1811 1.8284 1.0583 1.0732 5.0377E+07 6.2913E+07 7.5195E+07 6.6759E+07 7.4163E+07 8.2822E+07 28 173 35 435 56 900 60 216 30 027 31 011

HV GD IGD

NSGA-II MOSEO MOKA MOKASEO MOGWO NSHHO NSGA-II MOSEO MOKA MOKASEO MOGWO NSHHO NSGA-II MOSEO MOKA MOKASEO MOGWO NSHHO

𝑆1 0.5858 0.8156 0.5194 0.7442 0.8680 0.7222 0.0678 0.0824 0.0474 0.0654 0.0463 0.0430 0.2709 0.2240 0.2874 0.1533 0.1652 0.1410

𝑆2 0.5240 0.4515 0.5758 0.6187 0.5870 0.6172 0.0630 0.0777 0.0476 0.0590 0.0527 0.0521 0.2093 0.2416 0.3112 0.1984 0.2140 0.1901

𝑆3 0.5265 0.5168 0.8139 0.7611 0.9061 0.7932 0.0564 0.0764 0.0524 0.0496 0.0537 0.0463 0.2849 0.2724 0.3041 0.2174 0.2305 0.2411

𝑆4 0.4037 0.3311 0.6460 0.7642 0.6432 0.5875 0.0733 0.0646 0.0460 0.0627 0.0486 0.0441 0.2217 0.2159 0.3484 0.1664 0.1749 0.1542

𝑆5 0.4726 0.7281 0.3327 0.8141 0.8061 0.6741 0.0651 0.0616 0.0554 0.0554 0.0609 0.0522 0.4230 0.2586 0.3761 0.1550 0.1697 0.1427

𝑀1 0.3481 0.7261 0.4320 0.7640 0.7582 0.7283 0.0719 0.0391 0.0471 0.0365 0.0417 0.0343 0.3930 0.2873 0.3542 0.2274 0.2194 0.2487

𝑀2 0.4866 0.6521 0.3616 0.8412 0.7193 0.6514 0.0524 0.0115 0.0473 0.0102 0.0126 0.0121 0.2649 0.2474 0.3242 0.1513 0.1634 0.1364

𝑀3 0.4675 0.6151 0.2687 0.8790 0.6798 0.5585 0.0284 0.0537 0.0578 0.0258 0.0311 0.0250 0.2924 0.2398 0.3450 0.1338 0.1386 0.1198

𝑀4 0.4372 0.8554 0.4334 0.8168 0.9361 0.8773 0.0213 0.0597 0.0585 0.0206 0.0223 0.0231 0.4465 0.2239 0.3292 0.1616 0.1750 0.1647

𝑀5 0.7789 0.3146 0.3724 0.7312 0.8555 0.7118 0.0095 0.0640 0.0483 0.0087 0.0095 0.0093 0.4385 0.2351 0.3985 0.2102 0.2248 0.1986

𝐿1 0.8241 0.3234 0.3534 0.7912 0.8782 0.7816 0.0209 0.0270 0.0514 0.0179 0.0211 0.0211 0.5525 0.2523 0.3714 0.0748 0.0664 0.0839

𝐿2 0.6754 0.2712 0.4665 0.7431 0.7199 0.6296 0.0118 0.0381 0.0478 0.0113 0.0128 0.0107 0.4339 0.2284 0.3076 0.2344 0.2541 0.2104

𝐿3 0.7356 0.2777 0.2876 0.9128 0.7895 0.6761 0.0103 0.0377 0.0575 0.0093 0.0106 0.0097 0.5646 0.2983 0.4305 0.0507 0.0548 0.0502

𝐿4 0.2067 0.7174 0.3918 0.8144 0.6698 0.6997 0.0280 0.0409 0.0606 0.0252 0.0264 0.0246 0.3850 0.3046 0.3499 0.2053 0.1851 0.2166

𝐿5 0.2624 0.7125 0.4955 0.7732 0.7157 0.6925 0.0109 0.0218 0.0458 0.0104 0.0122 0.0113 0.3216 0.2567 0.3636 0.1158 0.1173 0.1249

Puebla 0.1793 0.7689 0.5836 0.7843 0.6811 0.7860 0.0121 0.0083 0.0514 0.0079 0.0084 0.0079 0.4522 0.3559 0.3689 0.2688 0.2897 0.2544
Fig. 14. Interval plots of MID for four cases.
able 7
nitial decision matrix for all problem sizes.

All experiments Small size Medium size and case study Large size

SNS MID MS CPU HV GD IGD SNS MID MS CPU HV GD IGD SNS MID MS CPU HV GD IGD SNS MID MS CPU HV GD IGD

NSGA-II 0.281 0.328 0.953 0.045 0.685 0.372 0.841 0.229 0.302 0.932 0.023 0.779 0.695 0.634 0.268 0.253 0.998 0.064 0.758 0.372 0.908 0.305 0.320 0.200 0.046 0.684 0.056 0.944
MOSEO 0.222 0.336 0.718 0.292 0.545 0.615 0.429 0.401 0.344 0.760 0.335 0.666 0.886 0.472 0.100 0.432 0.706 0.257 0.351 0.507 0.400 0.081 0.157 0.373 0.292 0.461 0.343 0.560
MOKA 0.324 0.283 0.521 0.670 0.722 0.658 0.827 0.271 0.230 0.636 0.617 0.553 0.125 0.967 0.338 0.295 0.452 0.616 0.838 0.817 0.796 0.307 0.285 0.455 0.788 0.629 1.000 0.801
MOKASEO 0.285 0.210 0.178 1.000 0.085 0.129 0.050 0.194 0.327 0.179 1.000 0.146 0.388 0.052 0.329 0.114 0.267 1.000 0.078 0.014 0.051 0.136 0.137 0.886 1.000 0.001 0.004 0.058
MOGWO 0.298 0.250 0.239 0.088 0.115 0.132 0.093 0.190 0.240 0.427 0.023 0.097 0.266 0.143 0.334 0.270 0.238 0.090 0.128 0.085 0.094 0.356 0.224 0.278 0.150 0.153 0.035 0.062
NSHHO 0.376 0.232 0.100 0.016 0.246 0.025 0.043 0.291 0.203 0.103 0.006 0.283 0.030 0.055 0.412 0.259 0.146 0.015 0.232 0.020 0.030 0.237 0.216 0.271 0.028 0.192 0.008 0.065
able 8
ormalized decision matrix for all problem sizes.

All experiments Small size Medium size and case study Large size

SNS MID MS CPU HV GD IGD SNS MID MS CPU HV GD IGD SNS MID MS CPU HV GD IGD SNS MID MS CPU HV GD IGD

NSGA-II 0.157 0.200 0.352 0.022 0.286 0.193 0.368 0.145 0.183 0.307 0.011 0.309 0.291 0.273 0.150 0.156 0.356 0.031 0.318 0.205 0.399 0.215 0.239 0.081 0.020 0.323 0.039 0.379
MOSEO 0.124 0.205 0.265 0.138 0.227 0.319 0.188 0.255 0.209 0.250 0.167 0.264 0.371 0.203 0.056 0.266 0.251 0.126 0.147 0.279 0.175 0.057 0.117 0.152 0.127 0.218 0.237 0.225
MOKA 0.182 0.172 0.192 0.317 0.301 0.341 0.362 0.172 0.140 0.209 0.308 0.219 0.052 0.416 0.190 0.182 0.161 0.302 0.351 0.450 0.349 0.216 0.213 0.185 0.342 0.296 0.691 0.322
MOKASEO 0.160 0.128 0.066 0.473 0.035 0.067 0.022 0.123 0.199 0.059 0.499 0.058 0.162 0.022 0.185 0.070 0.095 0.490 0.033 0.008 0.023 0.096 0.102 0.360 0.434 0.000 0.003 0.023
MOGWO 0.167 0.152 0.088 0.042 0.048 0.068 0.041 0.120 0.146 0.141 0.011 0.038 0.111 0.062 0.188 0.166 0.085 0.044 0.054 0.047 0.041 0.250 0.168 0.113 0.065 0.072 0.024 0.025
NSHHO 0.211 0.142 0.037 0.008 0.103 0.013 0.019 0.185 0.123 0.034 0.003 0.112 0.013 0.024 0.231 0.159 0.052 0.007 0.097 0.011 0.013 0.167 0.161 0.110 0.012 0.091 0.006 0.026
18
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Fig. 15. Interval plots of MS for four cases.
Fig. 16. Interval plots of CT for four cases.
Table 9
Entropy value and diversification degree for all problem sizes.

All experiments Small size Medium size and case study Large size

SNS MID MS CPU HV GD IGD SNS MID MS CPU HV GD IGD SNS MID MS CPU HV GD IGD SNS MID MS CPU HV GD IGD

𝑒𝑗 0.993 0.992 0.866 0.694 0.867 0.820 0.747 0.980 0.990 0.890 0.629 0.883 0.824 0.775 0.964 0.965 0.891 0.700 0.842 0.709 0.733 0.945 0.976 0.926 0.726 0.819 0.480 0.749
𝑑𝑗 0.007 0.008 0.134 0.306 0.133 0.180 0.253 0.020 0.010 0.110 0.371 0.117 0.176 0.225 0.036 0.035 0.109 0.300 0.158 0.291 0.267 0.055 0.024 0.074 0.274 0.181 0.520 0.251
Table 10
Weights of evaluation indicators all problem sizes.

All experiments Small size Medium size and case study Large size

SNS MID MS CPU HV GD IGD SNS MID MS CPU HV GD IGD SNS MID MS CPU HV GD IGD SNS MID MS CPU HV GD IGD

𝑤𝑗 0.007 0.008 0.131 0.299 0.130 0.177 0.248 0.044 0.023 0.242 0.815 0.257 0.388 0.495 0.080 0.076 0.241 0.659 0.346 0.640 0.587 0.120 0.052 0.163 0.603 0.398 1.143 0.552
rates. It proves that more optimal objective function values stem from
the higher CPWs production.

Finally, the last set of experiments is created based on a 10%
increase in the lowest value of the main facilities’ capacities. Also,
to avoid the potential resistance of the model to objective function
19
changes, the other capacity parameters are increased in parallel. The
results of these experiments are provided in Table A.3 and Fig. A.3.
The results prove that the objective functions trail the increase of the
model’s main facilities. Therefore, the more capacity of the facilities
would bring about a higher value of objective functions.
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Fig. 17. Interval plots of HV for four cases.
Fig. 18. Interval plots of GD for four cases.
Table 11
CoCoSo’s normalized matrix.

All experiments Small size Medium size and case study Large size

SNS MID MS CPU HV GD IGD SNS MID MS CPU HV GD IGD SNS MID MS CPU HV GD IGD SNS MID MS CPU HV GD

NSGA-II 0.615 0.060 0.000 0.970 0.058 0.451 0.000 0.815 0.299 0.000 0.983 0.000 0.223 0.363 0.463 0.562 0.000 0.950 0.105 0.554 0.000 0.184 0.000 1.000 0.981 0.000 0.947
MOSEO 1.000 0.000 0.276 0.719 0.278 0.068 0.516 0.000 0.000 0.207 0.669 0.165 0.000 0.541 1.000 0.000 0.343 0.754 0.641 0.386 0.579 1.000 0.888 0.747 0.728 0.326 0.659
MOKA 0.336 0.423 0.507 0.335 0.000 0.000 0.017 0.616 0.804 0.357 0.385 0.331 0.888 0.000 0.237 0.432 0.641 0.389 0.000 0.000 0.128 0.179 0.192 0.628 0.218 0.082 0.000
MOKASEO 0.589 1.000 0.908 0.000 1.000 0.836 0.991 0.979 0.118 0.908 0.000 0.929 0.581 1.000 0.267 1.000 0.859 0.000 1.000 1.000 0.976 0.797 1.000 0.000 0.000 1.000 1.000
MOGWO 0.504 0.684 0.837 0.927 0.952 0.830 0.937 1.000 0.733 0.609 0.983 1.000 0.725 0.900 0.251 0.509 0.893 0.923 0.935 0.912 0.927 0.000 0.522 0.886 0.874 0.777 0.969
NSHHO 0.000 0.822 1.000 1.000 0.746 1.000 1.000 0.519 1.000 1.000 1.000 0.727 1.000 0.997 0.000 0.545 1.000 1.000 0.798 0.992 1.000 0.431 0.566 0.897 1.000 0.720 0.996
7. Conclusion

In today’s world, SC is one of the focal components of the global
economy and stability. The occurrence of any kind of disruptions in
SCs, even natural or even-made disasters, may raise global concerns. In
the last widespread disruption in global SCs, namely the COVID-19 pan-
demic, many nations, and governments encountered severe difficulties
in supplying medical supplies and materials, particularly PPEs. In the
current situation, after finding a vaccination for the novel coronavirus,
20
the main trouble for global societies is finding a way to confront
hazardous pandemic waste or CPWs steadily.

Reviewing the recent studies and related literature revealed that
although there are a few numbers of research on controlling the CPWs,
there is an unfilled spot for a comprehensive RSC model to cope with
CPWs’ problems. Furthermore, technologies can also be involved in
the RSC model to highly empower the RSC. This study developed an
IoT-enabled RSC structure for CPWs to underpin the global healthcare
systems and nations. The proposed model aims to consider all potential
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s

Fig. 19. Interval plots of IGD for four cases.
Table 12
The 𝑆𝑖 and 𝑃𝑖 values.

All experiments Small size Medium size and case study Large size

Si Pi Si Pi Si Pi Si Pi

NSGA-II 0.382 4.524 1.110 4.115 1.097 4.008 1.860 3.745
MOSEO 0.434 5.067 0.905 2.771 1.469 4.730 1.851 5.665
MOKA 0.177 3.986 0.875 4.920 0.538 3.564 0.387 3.790
MOKASEO 0.655 5.951 1.225 5.720 1.863 5.850 2.241 4.973
MOGWO 0.899 6.892 1.992 6.698 2.334 6.644 2.666 5.736
NSHHO 0.959 5.961 2.170 6.891 2.440 5.875 2.804 6.725
Table 13
Relative weights value for all problem sizes.

All experiments Small size Medium size and case study Large size

kia kib kic kia kib kic kia kib kic kia kib kic

NSGA-II 0.137 3.298 0.625 0.133 2.754 0.577 0.126 3.164 0.562 0.132 5.811 0.588
MOSEO 0.153 3.728 0.701 0.093 2.035 0.406 0.153 4.057 0.682 0.177 6.298 0.789
MOKA 0.116 2.000 0.530 0.147 2.776 0.640 0.102 2.000 0.452 0.098 2.012 0.438
MOKASEO 0.184 5.198 0.841 0.176 3.464 0.766 0.191 5.105 0.849 0.170 7.123 0.757
MOGWO 0.217 6.815 0.992 0.221 4.695 0.959 0.222 6.202 0.988 0.198 8.426 0.882
NSHHO 0.193 6.920 0.881 0.230 4.968 1.000 0.206 6.184 0.915 0.225 9.046 1.000
Table 14
Final ranking of each algorithm.

All experiments Small size Medium size and case study Large size

ki Rank ki Rank ki Rank ki Rank

NSGA-II 2.009 5 1.749 5 1.892 5 2.944 5
MOSEO 2.264 4 1.270 6 2.383 4 3.380 4
MOKA 1.379 6 1.827 4 1.302 6 1.292 6
MOKASEO 3.005 3 2.245 3 2.987 3 3.655 3
MOGWO 3.811 1 2.956 2 3.579 1 4.306 2
NSHHO 3.720 2 3.111 1 3.487 2 4.690 1
CPW producers in the structure. At the same time, it forms a well-
structured IoT platform to feed RSC models with real-time data. In
addition to current issues, global agencies and institutions have pro-
ceeded with extreme cautions concerning sustainability matters. Thus,
the current study designed the RSC model according to sustainability
guidelines so that total cost, transportation risk, environmental im-
pact, CO2 emission, and job opportunity guarantee three aspects of a
ustainable model, i.e., economic, environmental, and social.
21
To examine the practicability of the RSC network, in reality, a real
instance in Puebla city, Mexico, and 15 experiments are created. Then,
a mixture of modern, classic, and hybrid metaheuristic algorithms are
utilized to solve experiments. Moreover, four evaluation indicators
become in charge of finding the efficient solution approach. To this
aim, statistical as well as MCDM approaches analyze the evaluation
indicators. For the statistical procedure, interval plots and LSD are
conducted. A hybrid entropy weight method and CoCoSo construct
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Fig. 20. CT plot of metaheuristics for experiments.
potent decision-making tool. The results show that metaheuristic
lgorithms behave differently in the case of various sizes of problems.
evertheless, the MCDM corroborates that for small-size and large-

ize RSC problems, NSHHO is preferable. The performance of MOGWO
or solving medium-size problems is better than other algorithms. But,
n the overall view, conducting a hybrid MCDM technique chooses
OGWO as the leading algorithm.

The barriers and limitations are entangled with research processes,
nd scholars likely encounter both expected and unforeseen boundaries
hat affect the research. Owing to privacy issues in regulations of
ealthcare and medical organization and confidentiality of information
uring the pandemic, finding required data for parameters of math-
matical modeling was the most substantial restriction of this study
nd beyond the authors’ control. The next formidable obstacle of the
urrent research was the lack of information on the processing capacity
f collection, treatment, recycling, and burial centers which prevented
ccurate implementation of the model and correspondingly lack devia-
ion from reality. Last but not least, the validation and comparison of
he current study and previous works remain out of reach due to the
act that there is no scientific research with similar scope or framework
o our study.

From an applicability point of view, this study not only provides an
xcellent opportunity for bewildered policymakers and governments to
urvive the overloaded burden of CPWs in their territory but also takes
ustainability standards into account to establish a reliable solution for
he future of human beings. Nonetheless, numerous suggestions can be
ade for potential prospective research. To begin with, machine learn-

ng techniques are powerful toolkits for IoT platforms. For instance, a
ultilayer perceptron (MLP) network can help IoT devices to predict
SC model parameters. This framework engenders a different method

or authorities to arrange required resources within the RSC network
n advance.

The RSC problems for a pandemic similar to COVID-19 can face un-
ertainty due to chaotic situations during disasters, such as constantly
hanging infected populations, limitations in the capacity of healthcare
enters, etc. Hence, key parameters of the model, like demand for
edical supplies, PPE, test kits, and vaccines or capacity of main

omponents of the network, are unpredictable. Correspondingly, this
ituation extremely affects the relations and processes within the pro-
osed RSC. Thereby, uncertain capacities and demands can be joined
nto the RSC model to provide a realistic view of the pandemic atmo-
phere. Previously, we mentioned that supply chains are susceptible
o disruption by any disaster. For future studies, the proposed RSC
22
network can be framed under scenario-based considerations such that
relevant responses and preparation will exist based occurrence of each
scenario. On the other hand, the processing rate in each center depends
on various elements like full attendance of human capital or lack of
restrictions for businesses. These factors could be considered during the
formulation of RSC to approach reality.
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Fig. A.1. The behavior of the RSC model under processing rates analysis.

Fig. A.2. The behavior of the RSC model under CPW amount analysis.

Fig. A.3. The behavior of the RSC model under facilities’ capacity analysis.
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Table A.1
Sensitivity analysis on processing rates.

Experiments Parameters Objective functions

𝛼𝑐𝑐 𝛼𝑠𝑝 𝛼𝑡𝑟 𝛼𝑟𝑐 𝑍1 𝑍2 𝑍3 𝑍4 𝑍5

Exp. 1 0.70 0.70 0.70 0.70 631,650.14 55.5 527.3 958.006 616
Exp. 2 0.70 0.70 0.70 0.95 637,200.94 55.1 532.8 1027.72 631
Exp. 3 0.70 0.70 0.95 0.70 613,436.76 57.9 556.1 1014.40 599
Exp. 4 0.70 0.70 0.95 0.95 623,722.49 56.3 554 1001.10 608
Exp. 5 0.70 0.95 0.70 0.70 594,576.26 54.3 529.8 1034.80 583
Exp. 6 0.70 0.95 0.70 0.95 627,611.86 57.6 551.9 973.258 607
Exp. 7 0.70 0.95 0.95 0.70 627,234.37 55.9 542.9 1044.96 612
Exp. 8 0.70 0.95 0.95 0.95 633,225.79 55.9 546.3 1047.28 625
Exp. 9 0.95 0.70 0.70 0.70 595,729.07 55.2 533.8 1029.27 588
Exp. 10 0.95 0.70 0.70 0.95 595,412.69 55.8 544.1 971.872 577
Exp. 11 0.95 0.70 0.95 0.70 607,644.36 60.5 543.4 1053.57 599
Exp. 12 0.95 0.70 0.95 0.95 604,711.57 60.6 581.2 1005.12 584
Exp. 13 0.95 0.95 0.70 0.70 625,421.31 57.4 531.3 1001.80 605
Exp. 14 0.95 0.95 0.70 0.95 632,355.24 53.6 556.8 996.331 611
Exp. 15 0.95 0.95 0.95 0.70 634,397.77 58.8 578.4 996.70 632
Exp. 16 0.95 0.95 0.95 0.95 643,771.83 57.5 551.1 1075.33 633
Table A.2
Sensitivity analysis on CPW amounts.

Experiments Parameters Objective functions

𝑊𝐴𝑖𝑝𝑡 𝑊 𝑉𝑗𝑝𝑡 𝑍1 𝑍2 𝑍3 𝑍4 𝑍5

Exp. 1 0.1 0.1 198,190.88 6.28 102.5 110.426 576
Exp. 2 0.1 0.18 200,150.55 7.25 106.5 129.302 579
Exp. 3 0.25 0.1 211,964.11 13.9 172 242.216 579
Exp. 4 0.25 0.18 212,901.19 14.7 177.3 270.532 580
Exp. 5 0.5 0.1 295,960.47 26.2 302.3 492.773 578
Exp. 6 0.5 0.18 302,366.20 27.4 299.6 508.398 588
Exp. 7 0.75 0.1 420,617.67 41.5 408.1 696.52 591
Exp. 8 0.75 0.18 456,142.44 39.8 407.8 764.244 596
Exp. 9 1 0.15 582,944.15 52.5 523.5 949.469 594
Exp. 10 1 0.2 561,255.23 56 500.8 998.42 593
Exp. 11 1.25 0.15 750,369.93 64.5 629.4 1190.95 601
Exp. 12 1.25 0.2 726,561.10 67.6 661.9 1257.21 598
Exp. 13 1.5 0.15 839,623.53 80.5 787.3 1469.67 601
Exp. 14 1.5 0.2 828,212.70 82.9 754 1475.48 601
Exp. 15 2 0.15 1,100,416.03 103 951.1 1892.55 610
Exp. 16 2 0.2 1,094,207.40 104 968.9 1851.42 623
Table A.3
Sensitivity analysis on facilities’ capacity.

Experiments Parameters Objective functions

𝐶𝐴𝑃𝐾𝑘 𝐶𝐴𝑃𝐿𝑙 𝐶𝐴𝑃𝑀𝑚 𝐶𝐴𝑃𝑁𝑛 𝑍1 𝑍2 𝑍3 𝑍4 𝑍5

Exp. 1 20 200 500 200 1,552,624.65 60.8 526.8 957.047 574
Exp. 2 22 220 550 220 1,569,428.76 59.5 526.9 1005.87 577
Exp. 3 24 242 605 242 1,609,751.79 63.8 549.4 1045.77 577
Exp. 4 27 266 666 266 1,557,695.43 63.6 564.7 1082.13 580
Exp. 5 29 293 732 293 1,561,906.32 61.9 533.8 1052.73 586
Exp. 6 32 322 805 322 1,631,961.69 65.2 561.6 1109.11 590
Exp. 7 35 354 886 354 1,697,337.79 71.2 610.8 1121.86 588
Exp. 8 39 390 974 390 2,031,893.58 71 595.6 1194.15 591
Exp. 9 43 429 1072 429 2,021,971.35 70.9 617.5 1205.62 599
Exp. 10 47 472 1179 472 2,087,346.41 75.5 630.5 1230.02 598
Exp. 11 52 519 1297 519 2,631,363.95 72.3 669.6 1307.59 607
Exp. 12 57 571 1427 571 2,768,844.14 77.7 627 1319.90 606
Exp. 13 63 628 1569 628 3,033,875.89 76.2 657.9 1325.33 613
Exp. 14 69 690 1726 690 3,388,091.16 84.3 732.2 1397.49 611
Exp. 15 76 759 1899 759 3,795,222.73 86.8 690.8 1478.46 627
Exp. 16 84 835 2089 835 3,765,090.37 84.9 762 1534.88 628
24
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