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ABSTRACT
BACKGROUND: Mental health and vulnerabilities to neuropsychiatric disorders involve the interplay of genes and
environment, particularly during sensitive developmental periods. Early-life adversity (ELA) and stress promote
vulnerabilities to stress-related affective disorders, yet it is unknown how transient ELA dictates lifelong
neuroendocrine and behavioral reactions to stress. The population of hypothalamic corticotropin-releasing factor
(CRF)–expressing neurons that regulate stress responses is a promising candidate to mediate the long-lasting
influences of ELA on stress-related behavioral and hormonal responses via enduring transcriptional and epigenetic
mechanisms.
METHODS: Capitalizing on a well-characterized model of ELA, we examined ELA-induced changes in gene
expression profiles of CRF-expressing neurons in the hypothalamic paraventricular nucleus of developing male
mice. We used single-cell RNA sequencing on isolated CRF-expressing neurons. We determined the enduring
functional consequences of transcriptional changes on stress reactivity in adult ELA mice, including hormonal
responses to acute stress, adrenal weights as a measure of chronic stress, and behaviors in the looming shadow
threat task.
RESULTS: Single-cell transcriptomics identified distinct and novel CRF-expressing neuronal populations,
characterized by both their gene expression repertoire and their neurotransmitter profiles. ELA-provoked
expression changes were selective to specific subpopulations and affected genes involved in neuronal
differentiation, synapse formation, energy metabolism, and cellular responses to stress and injury. Importantly,
these expression changes were impactful, apparent from adrenal hypertrophy and augmented behavioral
responses to stress in adulthood.
CONCLUSIONS: We uncover a novel repertoire of stress-regulating CRF cell types differentially affected by ELA and
resulting in augmented stress vulnerability, with relevance to the origins of stress-related affective disorders.

https://doi.org/10.1016/j.bpsgos.2021.12.006
Mental health and vulnerability to neuropsychiatric disorders
involve the interplay of genes and environment during sensitive
developmental periods (1–3). Genetic and environmental fac-
tors contribute to the development and maturation of neurons,
synapses, and brain circuits, which in turn drive long-lasting
phenotypes.

Early-life adversity (ELA) promotes vulnerability to stress
and stress-related affective disorders, but the mechanisms for
these enduring phenotypes are incompletely understood
(1,2,4,5). Stress-sensitive corticotropin-releasing factor (CRF)–
expressing neurons residing in the hypothalamus are candi-
date mediators of the long-lasting effects of ELA because they
contribute to both hormonal and behavioral response to stress
021 THE AUTHORS. Published by Elsevier Inc on behalf of the Society
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(6–10). CRF release from hypothalamic paraventricular nucleus
(PVN) neurons induces pituitary adrenocorticotropic hormone
secretion, which stimulates corticosterone release from the
adrenals (11–13). CRF may also signal to local CRF-responsive
neurons (14,15).

CRF-expressing PVN neurons have traditionally been
divided into three major subpopulations (16–19). Preautonomic
neurons project to the brainstem and spinal cord (20); mag-
nocellular neurons coexpressing arginine vasopressin or
oxytocin project to the posterior pituitary (21); and neuroen-
docrine parvocellular cells, the predominant population of CRF
cells within the PVN (22), project to the median eminence and
release CRF (16). In contrast to this traditional classification,
of Biological Psychiatry. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).
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recent single-cell analyses of hypothalamic transcriptomes
have identified multiple molecular-defined clusters of CRF-
expressing neurons that may represent different sub-
populations or distinct neuronal functional states (23–26).

CRF expression and the connectivity of CRF cells in PVN
are modulated by early-life experiences. Optimal rearing con-
ditions, including augmented maternal care, repress CRF
expression (27–29), whereas adversity in early life may
increase (29,30) or decrease (31) the peptide’s expression.
Augmented maternal signals reduce excitatory synapses to
CRF cells (27,32), whereas adversity increases excitatory glu-
tamatergic transmission to the same cell population (30,33).
There is evidence that changes in synaptic neurotransmission
induce transcriptional reprogramming of neurons (34–36).
These enduring transcriptomic alterations in CRF cells might
underlie the augmented stress responses induced by ELA
(37–40). However, it remains unclear how ELA-influenced gene
expression programs CRF cells, if such changes are specific to
subpopulations, and whether the transcriptional changes are
associated with increased vulnerabilities to stress throughout
life.

Here, we used a model of ELA that provokes major alter-
ations in cognitive and emotional outcomes (2,41–56),
including augmented responses to stress (31,33,57). We
focused on the change in gene expression profiles of stress-
Figure 1. Single-cell RNA sequencing of corticotropin-releasing factor cells
ulations. (A) Mice exposed to either CTL or ELA conditions during the 10 days
ventricular nucleus cells during postnatal days 10–12. (B) Corticotropin-releasi
dissecting a paraventricular nucleus–containing tissue block, sorted into individu
sorted cells and revealed eight distinct groups of cells, the majority of which were
majority of Crh-expressing cells, further clustered into five subpopulations (E). CTL
UMAP, Uniform Manifold Approximation and Projection.
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regulating PVN CRF neurons following ELA in male mice. We
used single-cell RNA sequencing to probe the effects of ELA
on gene expression programs in distinct neuronal populations,
determine the potential selectivity of the effects of ELA, and
identify their downstream consequences.

METHODS AND MATERIALS
Animals

Crh-IRES-Cre1/1 (58) dams were paired with Ai14 tdTomato
(59) males, both on a C57BL6 background. The resulting
offspring were Crh-IRES-Cre;Ai14 tdTomato, which express
tdTomato with nearly full overlap of native CRF (22,60). Mice
were housed in a 12-hour light/dark cycle with ad libitum food
and water. All experiments were carried out in accordance with
the Institutional Animal Care and Use Committee at the Uni-
versity of California, Irvine, and were consistent with federal
guidelines.

ELA Paradigm Cages With Limited Bedding and
Nesting

We imposed ELA on neonatal mice, simulating poverty by
limiting nesting and bedding materials in cages during the early
developmental period as described previously and in
Supplemental Methods (Figure 1A) (31,41,47). For RNA
in the hypothalamic paraventricular nucleus reveals distinct neuronal pop-
of life were either kept for functional testing or used for collection of para-
ng factor cells were collected from Crh-IRES-Cre;Ai14 tdTomato mice by
al wells using FACS, and sequenced. (C) UMAP was performed on cluster-
classified as neurons based on expression of Snap25. (D) These neurons, the
, control; ELA, early-life adversity; FACS, fluorescence-activated cell sorting;
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sequencing, pups remained on the limited bedding and nesting
paradigm until tissue was collected on postnatal day (P) 10 to
P12. For experiments in adulthood, experimental groups were
transferred to standard cages on P10 and were weaned on
P21; mice were housed by sex with littermates. All mice used
in this study were male mice, and females were the focus of
further studies.

Single-Cell Preparation

Male P10 to P12 pups were killed via decapitation, brains
were removed immediately and placed on ice, and the PVN
was dissected (Figure 1B and Supplemental Methods) (con-
trol: n = 50 pups from 14 litters, and ELA: n = 38 pups from 10
litters). The trimmed slices were placed into papain (20 units/
mL) and homogenized. Supernatant was removed, and cells
were resuspended in 500 mL 2% fetal bovine serum in
phosphate-buffered saline. Immediately before sort, cell sus-
pension was run through a 70-mM filter and washed with 500-
mL 2% fetal bovine serum in phosphate-buffered saline. Cells
were sorted into 8 well strip tubes and immediately spun
down at 4 �C and frozen on dry ice (see Supplemental
Methods for full details and Figure 1B).

RNA Sequencing Pipeline

Tdtomato-positive hypothalamic cells from both ELA (153
cells) and control (101 cells) mice were processed using the
SmartSeq2 RNA sequencing protocol and Illumina Library prep
(Nextera XT DNA Library Preparation Kit) and sequenced using
Illumina NextSeq500 sequencer (Illumina) to an average depth
of 3.8 million reads per cell. Reads were mapped and quanti-
fied using kallisto (61). Cells were filtered for .1000 expressed
genes per cell, and genes expressed in four or more cells were
included. The resulting transcript per million matrix was
quantile normalized and clustered using the R package Seurat
followed by nonlinear dimensional reduction (62). Complex-
Heatmap was used for heatmap generation (63). Metascape
(64) was used to determine Gene Ontology and pathways.

Immunofluorescence Staining

Perfused brains were sectioned coronally (20 mm; 1:6 series)
Immunofluorescence was performed on brain sections derived
from P10 male tdTomato-Crh (Crh-IRES-Cre;Ai14) transgenic
mice as described (60,65) and imaged using confocal micro-
scopy (see Supplemental Methods for details).

Tests of CRF1 PVN Cell Function

Looming Shadow Task. The looming shadow task is
associated with PVN CRF neuronal activity (8). The entire task
was performed in the dark active phase as described previ-
ously (66) and in the Supplement. Response to the looming
stimulus was scored as absent, freezing, or escape behavior
and recorded both live and on video (control: n = 15 mice from
4 litters; ELA: n = 15 mice from 5 litters). Percentage escape
was calculated as (number of escapes/number of total
trials) 3 100.

Stress in Adulthood. Acute (1 hour) concurrent stresses
(67,68) were imposed, including restraint, bright light, and loud
music (67–71) (see Supplemental Methods for details).
Biological Psychiatry: Global
Corticosterone Assay. Serum corticosterone was
analyzed using the corticosterone EIA Kit (Cayman) according
to the manufacturer’s instructions (control baseline: n = 5 mice
from 1 litter, control stress: n = 10 mice from 3 litters; ELA
baseline: n = 5 mice from 2 litters, ELA stress: n = 7 mice from
2 litters). For full methods, see Supplemental Methods.

Adrenal Gland Collection. In a separate cohort of mice
(control: n = 6 mice from 2 litters; ELA: n = 7 mice from 3 litters),
gross dissection isolated both adrenals, which were weighed
together. Adrenal size is expressed per body weight (see
Supplemental Methods for details).

Statistical Considerations and Analyses

Where possible, data collection and analyses were performed
blinded to treatment group. Statistical analyses for c2 tests
and functional tests were performed using GraphPad Prism 9.0
(GraphPad Software) using a Student t test with significance
set at p # .05. All other analyses were performed using R
studio version 4.0.2 (72). Graphs show the mean 6 standard
error of the mean.

RESULTS

CRF-Expressing Neurons in the Developing Mouse
Hypothalamus Belong to Distinct Populations With
Unique Gene Expression Profiles

The hypothalamic PVN harbors several types of CRF-
expressing neurons, including neuroendocrine cells releasing
CRF into the portal bloodstream and others projecting to
specific brain areas (16,17). The majority of PVN CRF-
expressing (CRF1) cells coexpress glutamate, a key excit-
atory neurotransmitter (73,74), whereas others express genes
associated with inhibitory GABAergic (gamma-aminobutyric
acidergic) neurotransmission (75). To delineate these pop-
ulations in developing mouse PVN and determine their
potential contribution to the phenotypic consequences of ELA,
we used single-cell transcriptomics.

Whereas weight gain was slightly slower in ELA mice
(Figure S2A), harvested cells did not cluster based on age or
weight of the mice or harvest batch (Figure S1A–C). Individual
cells passing filter criteria were characterized as CRF1 neu-
rons or microglia, astrocytes, or endothelial cells, based on
marker genes (Figure 1C), and the latter were excluded from
further analyses. We also excluded cells expressing Pgr15l,
which is coexpressed with CRF in GABAergic neurons residing
at the border of the dorsomedial hypothalamus and PVN
(Figure S1D) (24,76). Focusing on cells coexpressing Crh and
the neuronal synaptic protein encoding gene Snap25
(Figure 1D), we characterized them using shared nearest
neighbor clustering (using the Seurat package) (62), which
segregated CRF1 neurons into five distinct clusters
(Figure 1E).

ELA Significantly Affects Gene Expression
Programs in Hypothalamic CRF Cells

The overall distribution of CRF1 cells within clusters did not
distinguish between mice reared under control conditions and
those experiencing a week of ELA during a sensitive
Open Science January 2023; 3:99–109 www.sobp.org/GOS 101
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developmental period (c2
4 [n = 254] = 7.42, p = .11) (Figure 2A);

there was slight underrepresentation in cluster 2 and over-
representation in cluster 4 of ELA cells compared with chance
(Figure S3A). In contrast, transcriptional analyses of ELA
compared with control cells revealed profound changes in the
expression of several key genes and gene families (Figure 2B,
C). Using a false discovery rate , 0.1, 46 genes were differ-
entially expressed in the CRF1 population of control and ELA
mice. Of these, 28 were higher in controls and 18 in ELA cells
(Figure 2B).

String network (77) and Gene Ontology enrichment (64)
analyses of genes differentially upregulated in ELA mice
revealed their predicted protein interactions (Figure 2D) and
functional pathway associations (Figure 2E). Genes upregu-
lated after ELA included pathways involved in cellular response
to stress and in protein folding (Figure 2D, E). Two genes
encoding heat-shock proteins, Hspa8 and Hsp90ab1, which
are members of the HSP90 family associated with response to
environmental stressors (78) were augmented, as well as
Psma6 and Ppia. There was also enrichment of genes asso-
ciated with regulation of synaptic vesicle content and transport
(Vamp2, Chgb, Atp5a1, and Scn3b), membrane trafficking
(Atp5a1, Vamp2, and Scn3b) and neuronal structure (Actg1,
Hspa8, and Stmn1) (Figure 2D, E). String analyses demon-
strated predicted protein interactions of the upregulated heat-
shock proteins and the products of genes associated with the
multiple enriched pathways (Figure 2D). In cells from ELA mice,
pathway analysis also confirmed upregulation of translation
(Eif1, Mrps12, Rpl39, and Rps13) (Figure 2E). We then
Figure 2. Transcriptomic changes induced by ELA in corticotropin-releasing fac
ELA (152 cells) mice are similarly distributed across the UMAP clusters. (B) The vo
and ELA (purple) cells. (C) ELA and CTL cells have different transcriptomic profiles
protein interaction (Cytoscape) of genes enriched in ELA. Nodes represent p
confidence of predicted interactions between 0 and 1. Cool colors represent g
associated with translation and protein folding. (E) Metascape analysis revealed
by Gene Ontology. CTL, control; ELA, early-life adversity; FC, fold change; P, po
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determined if these gene expression changes, apparent at a
single-cell level, could be detected in a tissue block and if they
were altered enduringly. We performed quantitative polymer-
ase chain reaction for a subset of these genes using whole
PVN punches from adult male mice (Figure S4). Whereas
genes associated with neuronal structure (Stmn1) were
detectably upregulated in the tissue blocks from adult ELA
mice, genes associated with response to stimulus (Psma6,
Hsp90ab1) were not. In contrast to the several gene networks
enriched in ELA cells described above, network analyses of
genes upregulated in control cells did not reveal significantly
interacting genes or enriched pathways.

Gene Expression Programs Are Differentially
Influenced by ELA in Distinct Subpopulations of
CRF-Expressing Cells

CRF1 cells in the PVN belong to populations with distinct
functional outputs (16,17,26). Therefore, we examined if spe-
cific populations of the individually analyzed cells were differ-
entially influenced by ELA. To better identify potential neuronal
subpopulations, we first delineated the genes whose expres-
sion defined individual cell clusters (Figure 1E). The
expression-based clustering identified patterns of gene
expression that suggested that clusters 1, 3, and 4 are pri-
marily glutamatergic and clusters 2 and 5 are GABAergic (for
detailed summary, see Figure S3B). This cluster analysis was
based on CRF1 neurons from both ELA and control pop-
ulations. Therefore, to exclude the possibility that ELA might
tor neurons of the paraventricular nucleus. (A) Cells from CTL (102 cells) and
lcano plot identifies genes that are significantly enriched (logFC) in CTL (blue)
that are independent of age or cluster (logFC by row). (D) Predicted protein-

roteins and edges represent predicted interaction; line strength indicates
enes associated with neuron activation, and warm colors represent genes
genes significantly (2logp) associated with predicted pathways as identified
stnatal day; UMAP, Uniform Manifold Approximation and Projection.
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modulate the expression state or clustering of the population
of PVN CRF cells in the developing mouse, we performed the
same cluster analysis on control cells only and determined that
segregation of PVN CRF cells into several biologically distinct
clusters was not driven by ELA-induced changes to tran-
scription (Figure S5).

We then determined if these expression-defined cell sub-
populations were differentially affected by ELA by computing
differential expression between ELA and control cells (using a
false discovery rate , 0.1) separately for each cluster
(Figure S6). Strikingly, differentially expressed genes after ELA
were exclusive to cluster 1 (Figure S6A). Genes upregulated in
cluster 1 included Calr, Hsbp1, Nnat, Rpl10, Sez6l2, Stmn1,
and Vamp2 (Figure S6A).

Neurotransmitter Profiles Uncover Novel
Populations of PVN CRF Cells That Are Selectively
Vulnerable to ELA

A canonical characteristic of neurons involves their major
neurotransmitters, including glutamate and GABA. The above
expression-based clustering suggested that clusters 1, 3, and
4 are primarily glutamatergic and clusters 2 and 5 are
GABAergic. Therefore, we determined whether individual
CRF1 neurons in developing mouse PVN coexpress either or
Biological Psychiatry: Global
both neurotransmitters and how the neurotransmitter-defined
cell populations related to those defined by agnostic gene
expression profiles. We superimposed the Seurat-based
clusters onto the expression of glutamatergic markers (the
transporter VGLUT2/Slc17a6 and the enzyme glutaminase/Gls)
versus GABAergic markers (the synthesizing enzyme GAD2/
Gad2 and the vesicular GABA transporter VGAT/Slc32a1). As
illustrated in Figure 3A, GABAergic CRF1 cells strongly over-
lapped with clusters 2 and 5, whereas glutamatergic cells
dominated the other clusters (c2

4 [n = 254] = 52, p , .00001).
The few cells devoid of any neurotransmitter were equally
distributed among clusters, suggesting that their expression of
neurotransmitter markers simply did not reach detection
threshold. Notably, ELA did not significantly change the rela-
tive distribution of neurotransmitter-defined subpopulations
(c2

3 [n = 254] = 4.351, p = .226).

Differential expression analysis between neurons from the
ELA and control groups within each neurotransmitter-defined
cluster revealed that differentially expressed genes (false dis-
covery rate , 0.1) between control and ELA cells were highly
subtype specific (Figure 3B). There were no differentially
expressed genes in the GABAergic cluster or that comprised
cells expressing no neurotransmitter markers. By contrast,
cells within the glutamatergic cluster were transcriptionally
Figure 3. Cell type–specific transcriptomic
changes induced by ELA. (A) Expression of neuro-
transmitters overlaid on the UMAP clustering (Seurat
clusters 1–5 circled in colored lines, glutamatergic
cells expressing Slc17a6/VGLUT2 and Gls in greens
and GABAergic cells expressing Gad2 and Slc32a1/
VGAT in blue). (B) Normalized expression of top
genes in CTL and ELA cells across the two types
of clusters. (C) Genes with significantly increased
gene expression changes comparing CTL and ELA
glutamatergic cells. (D) Predicted protein-protein
interaction (Cytoscape) of genes enriched in ELA.
Nodes represent proteins and edges represent pre-
dicted interaction; line strength indicates confidence
of predicted interactions from 0 to 1. Cool colors
represent genes associated with neuron activation,
and warm colors represent genes associated with
nonsense-mediated decay and protein trafficking. (E)
Metascape analysis identifies genes significantly
(2logp) associated with predicted pathways, which
are represented by Gene Ontology terms. CTL,
control; ELA, early-life adversity; FC, fold change;
GABAergic, gamma-aminobutyric acidergic; UMAP,
Uniform Manifold Approximation and Projection.
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modulated by early-life experiences: 23 differentially expressed
genes were enriched in control cells and 15 were enriched in
ELA glutamatergic cells (Figure 3C).

Of the genes enriched in control glutamatergic CRF1 cells,
14 were also differentially expressed in the global control
condition (Figure 2B), including Cbx3, Cox7c, Gnl3l, Gabra2,
Inpp4a, and Tatdn1. Genes enriched uniquely in the control
glutamatergic cluster and not in the global control population
included Nrxn2, Ubb, Cycs, Sec23ip, Sap18b, Pin1, and
Ndufa8. Broadly, the genes upregulated in control cells are
those that are involved in the use of the electron transport
chain and promote growth: Cox7c is required in the oxidative
phosphorylation pathway for adenosine triphosphate (ATP)
generation (79,80); Ndufa8, the NADH dehydrogenase ubiqui-
none 1 a subcomplex, is heavily involved in mitochondrial
oxidative phosphorylation and is expressed in the hypothala-
mus (81); and Cycs is the somatic isoform of cytochrome c and
is upregulated by neural activity (82). The differential expres-
sion of the ubiquitin-encoding gene Ubb between control and
ELA excitatory CRF cells may represent differences in post-
translational modifications (83). Gene Ontology analysis of
these genes upregulated in control cells indicated significant
enrichment in pathways involved in ATP synthesis–coupled
electron transport, positive regulation of the intrinsic
apoptotic signaling pathway, and regulation of protein binding
representing typical cellular metabolism and activity.

Of the 15 differentially expressed genes enriched in the ELA
cells, nine were identified in the overall population analyses
(Figure 2B) and six were unique to the glutamatergic cluster:
Rps24, Rpl36a, Sec24b, Dynll1, Nd4l, and Rpl27a. Pathway
104 Biological Psychiatry: Global Open Science January 2023; 3:99–1
analysis suggested that these genes are associated with
response to environmental stressors, regulation of cellular
movement, and upregulation of translation. The protein in-
teractions (Figure 3D) and functional pathway associations
(Figure 3E) for genes upregulated in glutamatergic ELA cells
indicate similar gene networks and interaction patterns to
those of the total ELA CRF cell population, namely over-
representation of genes associated with response to environ-
mental stressors and neuronal activation. Hsp90ab was again
a central regulator with predicted associations with gene
products involved in protein targeting and nonsense-mediated
decay, cellular response to stress, membrane trafficking, and
cellular movement and differentiation (Figure 3D, E).
Novel Populations of Glutamatergic Cells Are
Differentially Affected by ELA

The neurotransmitter-based segregation of CRF1 PVN cells
strongly suggested that glutamatergic cells further belonged to
two distinct subgroups (Figure 4A). Therefore, we examined if
the impact of ELA on gene expression was selective to one of
these subpopulations. The two subclusters of glutamatergic
CRF cells were distinguished by their expression of Avp, the
gene encoding vasopressin, or Ntng1, a cellular adhesion
molecule important for axon guidance (84–86) (Figure 4A).
Indeed, differential gene expression between ELA and control
neurons was distinct and nonoverlapping in these two subsets:
in the Avp-positive subcluster (Figure 4B), differentially
expressed genes were specifically enriched in control cells and
included Tatdn1, a long noncoding RNA (87); Ndufa8, which
Figure 4. ELA-induced transcriptomic changes
are specific to novel subpopulations of CRF-
expressing glutamatergic neurons, which are differ-
entially spatially organized in the paraventricular
nucleus. (A) In CRF-expressing paraventricular nu-
cleus cells, neurotransmitter coexpression with Avp
or Ntng1 overlaid on the UMAP clustering demon-
strates distinct glutamatergic subclusters. Seurat
clusters 1–5 are circled, glutamatergic CRF1 cells
expressing Slc17a6 and Gls in are labeled in greens,
and GABAergic cells expressing Gad2 and Slc32a1
are labeled in blue. (B, C) Distinct effects of ELA on
gene expression in the Avp and Ntng1 subclusters.
Genes with significantly increased logFC in CTL and
ELA glutamatergic cells expressing Avp (B) and
Ntng1 (C) (CTL = blue and ELA = purple). (D) Dual
immunohistochemistry and confocal microscopy
demonstrate the spatial organization of neurons
coexpressing CRF promoter–driven tdTomato and
AVP. (E) Pattern of distribution of paraventricular
nucleus neurons coexpressing CRF promoter–driven
tdTomato and Netrin-g1. Coexpressing cells are
highlighted by white arrows. Scale bar = 20 mM. AVP,
arginine vasopressin; CRF, corticotropin-releasing
factor; CTL, control; ELA, early-life adversity; FC,
fold change; GABA, gamma-aminobutyric acid;
UMAP, Uniform Manifold Approximation and
Projection.
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encodes a subunit of NADH dehydrogenase, part of the elec-
tron transport chain (83); Cbx3, a member of the heterochro-
matin protein 1 family that stimulates cellular differentiation
(88); the prosurvival gene Rap2b (RAP2B) (89); and Bc1, which
is important for translation (90). The functions of these genes
enriched in control Avp CRF1 cells are required for normal
cellular maturation and activity.

Four genes were enriched in the control glutamatergic
Ntng1 subcluster (Figure 4C), including Ubb, Ndufa8, Cox7c,
and Pold4, and the latter was uniquely identified in this sub-
cluster analysis. Ndufa8 and Cox7c are required for the elec-
tron transport train (79–81). Ubb encodes ubiquitin, which
controls protein targeting and degradation and has a role in
controlling the stress response (91,92). Pold4 encodes a
subunit of DNA polymerase and is critical for DNA repair (93).
Notably, several genes (Stmn1, Rpl10, and Actg1) with
important neuronal growth functions were uniquely down-
regulated in the control glutamatergic Ntng1-positive sub-
cluster (enriched in ELA cells) (Figure 4C).

Novel Populations of PVN CRF1 Neurons Are
Spatially Organized

The discovery of novel populations of CRF1 glutamatergic
cells in the PVN, which are differentially influenced by ELA,
relied on single-cell transcriptomics and cluster and neuro-
transmitter analyses. To better characterize them, we deter-
mined their physical distribution in the PVN using
immunohistochemistry. As shown in Figure 4D, a subset of
Biological Psychiatry: Global
PVN neurons in a P10 mouse expressing tdTomato under the
CRF promoter coexpressed arginine vasopressin and resided
primarily in the dorsal PVN. By contrast, cells expressing
CRF1 netrin-g1 were distributed throughout the PVN, without
apparent spatial organization (Figure 4E).

Transcriptional Changes Provoked by ELA Herald
Enduring Alterations of Behavioral and Hormonal
Responses to Stress

To determine the potential functional long-term significance of
the transcriptional changes induced by ELA in glutamatergic
PVN CRF cells, we tested stress-related behavioral and hor-
monal parameters in adult ELA and control mice. We assessed
measures of chronic increases of CRF release and the release
of its downstream stress hormones using adrenal gland
weights (94). We also measured hormonal responses to acute
stress. Adrenals of adult ELA mice were significantly heavier
than those of control mice (t11 = 4.1, p = .002), an effect that
persisted when corrected for body weight (t11 = 8.1, p , .0001)
(Figure 5A) (37,43), indicating chronically heightened stress
reactivity (94). After acute stress (67,68), serum corticosterone
levels rose dramatically (F1,23 = 89.11, p , .0001), with no main
effect of ELA (F1,23 = 0.03, p = .87) and no stress by ELA
interaction (F1,23 = 0.03, p = .85) (Figure 5B). Together, these
experiments indicate that transcriptional changes induced by
transient ELA result in an enduring and robust stress pheno-
type. Whereas responses to acute stress do not distinguish
adult ELA from control mice, ELA mice release much more
Figure 5. ELA-induced transcriptional changes in
corticotropin-releasing factor–expressing para-
ventricular nucleus neurons herald enduring
augmentation of neuroendocrine and behavioral
responses to stress. (A, B) ELA causes significant
increase in adrenal size (n = 6–7 per group), a hall-
mark of a chronic stress state. (C) Hormonal
responses to acute stress, measured as serum
corticosterone at baseline or after 1 hour of multiple
acute stress, are not influenced by ELA (n = 5–10 per
group). (D) Schematic of looming disk threat stim-
ulus test. (E, F) Results from each of the five looming
threat stimulus trials for each mouse identify a
significant increase in escape behaviors in ELA mice
(n = 15 per group). Bars represent mean 6 SEM;
circles represent individual mice. CTL, control;
CORT, corticosterone; ELA, early-life adversity.
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hypothalamic CRF and pituitary adrenocorticotropic hormone
chronically (33), resulting in adrenal hypertrophy, the hallmark
of a chronic stress state.

The functional role of PVN CRF cells in orchestrating
behavioral responses to stress has not been fully elucidated. A
requirement of these neurons in behavioral responses to threat
was recently shown (8), andsowe testedELAandcontrolmice in
a test eliciting threat responses, the looming shadow task (66).
Escape behaviors of ELA mice were significantly higher than
control mice (t22 = 2.449, p = .02) (Figure 5C, D), suggesting that
ELA-induced transcriptional changes may contribute to altered
adult behavioral responses to stressful threats.

DISCUSSION

Several principal findings emerge from these studies, which use
single-cell transcriptomics analysis of CRF-expressing PVN
neurons and determine the impact of adverse/stressful early-life
experiences on gene expression patterns. CRF-expressing
neurons in PVN cluster into distinct populations by both their
gene expression profiles and their neurotransmitter phenotype,
and these populations are distinctly spatially organized. ELA
modifies gene expression patterns, affecting transcriptional
programs of neuronal development and differentiation and
enhancing gene families involved in responses to stress and
inflammation. The use of single-cell transcriptomics reveals that
ELA affects gene expression profiles in a cell type–specific
manner, with unique influence on different clusters and sub-
populations ofCRFneurons. Finally, the transcriptional changes
identified immediately after ELA herald significant enduring
disruptions of hormonal and behavioral stress responses.

PVN Contains Discrete, Molecularly Defined
Clusters of CRF Cells

Clustering using Seurat identified differences in gene expres-
sion profiles of CRF-positive PVN neurons, which may be
consistent with prior work (24–26,95). Clusters 1 and 3 had
increased expression of Avp and steroid hormone receptors,
whereas the transcriptomic profile of cluster 5 suggests that
these represent a small population of cells that coexpress
GABA and CRF. Previous studies suggested that molecularly
defined clusters were not spatially organized within the PVN
yet may define cells performing different functions or sampled
at differing stages of development (26,96). Here, we identify
novel populations of CRF1 cells, with distinct spatial organi-
zation and differential responses to ELA. To fully elucidate
transcriptomic and functional phenotypes of these patterns,
future work will harness technologies that allow for analysis of
greater cell numbers and those that provide spatial resolution.

ELA Enriches Genes Associated With Neuronal
Maturation, Differentiation, and Stress

Analysis of the entire CRF cell population revealed specific
changes in ELA and control cells’ gene expression profiles.
Specifically, while control cells engage in typical growth/
metabolism functions, ELA cells are enriched for genes
important for neuronal maturation, differentiation, and miti-
gating neuronal stress. Genes such as Cox7c and Micu3 that
are required in the oxidative phosphorylation pathway for ATP
106 Biological Psychiatry: Global Open Science January 2023; 3:99–1
generation (79,80) were enriched in control cells, as was Cbx3.
A gene important for neural differentiation, Cbx3 increases
expression of neuronal genes and inhibits expression of genes
specific to other fates (88). Thus, its downregulation in ELA
cells suggests a potential adaptive neuronal dedifferentiation
of CRF cells consequent to ELA, similar to observations in the
hippocampus (33). A neuronal fate is highly expensive meta-
bolically, requiring energy-intensive maintenance of membrane
potential and neuronal firing. Dedifferentiation may save the
cell from death in stressful conditions.

Contrary to control cells, ELA cells have expression profiles
consistent with response to stress and neuronal activation
(Figure 2D, E). For example, the HSP90 family of heat-shock
proteins facilitates steroid hormone receptor function, main-
tains the glucocorticoid receptor in the high-affinity binding
state, and enables translocation to the nucleus (97,98). Upre-
gulation of Hsp90ab1 in ELA mice may be important for
signaling cascades responsible for cellular adaptation to
stress. Future work will use single-cell resolution in situ ex-
periments to fully validate if these effects are enduring and
characterize spatial organization of the clusters.

Genes Upregulated in ELA Hypothalamic CRF Cells
Are Those That Typically Contribute to Increased
Activity in Glutamatergic Excitatory Neurons

The clustering analyses here highlight the complexity of PVN
CRF-expressing cells (Figure 1E) and identify neuronal pop-
ulations beyond those described previously. Specifically, we
orthogonally categorized cells also by neurotransmitter
expression patterns (Figure 3A). As described previously
(9,22,60,99), PVN CRF-expressing cells were predominately
glutamatergic, and the effects of ELA were only observed in
these glutamatergic CRF1 cells. Notably, the transcriptomic
changes following ELA observed here take place in immature
mice. Thus, it is possible that analyses of neurons from mature,
adult mice may reveal alterations in other populations (e.g.,
GABAergic cells).

What might the ELA-induced changes in gene expression
patterns of glutamatergic CRF cells signify? Following ELA,
there is a significant increase in functional excitatory synapses
on PVN CRF cells (30,33). This may increase their metabolic
demand and their response to input from other brain regions
that process stress. Our results support both of these possi-
bilities: first, differentially expressed genes enriched in gluta-
matergic ELA cell clusters (Dynll1, Nd4l, Rpl27a, Rpl36a,
Rsp24, and Sec24b) largely encode proteins required for
transcription and translation complexes (100–102), and Gene
Ontology identifies nonsense-mediated decay as a signifi-
cantly upregulated pathway after ELA. Nonsense-mediated
decay involves targeted degradation of messenger RNA in
conditions of cell stress and apoptosis (103).

Notably, among the two novel subclusters of glutamatergic
cells (Avp1 or Ntng11) (Figure 3), all ELA-induced gene
expression enrichment occurred in the Ntng1 group driving
global transcriptomic changes after ELA. Netrin-G proteins
regulate synapses. Loss of netrin-G1 interaction with its ligand
(NGL-1) reduces excitatory synaptic plasticity (104). Although
the function of the Ntng11 PVN CRF1 cluster is unknown,
09 www.sobp.org/GOS
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ELA-provoked changes in these cells are congruent with—and
may mediate—the aberrant increase in excitatory synapses
onto ELA CRF1 cells. Finally, the gene expression changes
support increased activity of ELA PVN CRF cells, consistent
with their increased excitatory innervation as described previ-
ously (30,33). If persisting in the adult, such changes may
enhance cellular activity in response to stressors over the life
span, resulting in increased neuroendocrine responses and
adrenal size, often associated with chronic stress. Function-
ally, activity of CRF1 PVN cells is associated with responses
to threat (8). Accordingly, we observed augmented escape
behaviors of ELA mice compared with control mice, suggest-
ing augmented activity of PVN CRF cells (8).

Conclusions

In conclusion, the use of single-cell transcriptomics enables an
unprecedented level of insight into the diverse CRF-expressing
neuronal populations within the PVN and the altered gene
expression patterns provoked by ELA in these neurons. We
highlight a new level of transcriptomic heterogeneity of PVN
CRF cells and segregate them into biologically meaningful
clusters with distinct spatial organization and differential
vulnerability to ELA. Understanding which cell types undergo
transcriptional programming in response to early environ-
mental signals and how these experiences are encoded tran-
scriptionally is vital for identifying novel targets for mitigating
the enduring adverse consequences of ELA.
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