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ABSTRACT

Gene expression in mammalian cells is highly vari-
able and episodic, resulting in a series of discontin-
uous bursts of mRNAs. A challenge is to understand
how static promoter architecture and dynamic feed-
back regulations dictate bursting on a genome-wide
scale. Although single-cell RNA sequencing (scRNA-
seq) provides an opportunity to address this chal-
lenge, effective analytical methods are scarce. We
developed an interpretable and scalable inference
framework, which combined experimental data with
a mechanistic model to infer transcriptional burst ki-
netics (sizes and frequencies) and feedback regula-
tions. Applying this framework to scRNA-seq data
generated from embryonic mouse fibroblast cells,
we found Simpson’s paradoxes, i.e. genome-wide
burst kinetics exhibit different characteristics in two
cases without and with distinguishing feedback reg-
ulations. We also showed that feedbacks differently
modulate burst frequencies and sizes and conceal
the effects of transcription start site distributions
on burst kinetics. Notably, only in the presence of
positive feedback, TATA genes are expressed with
high burst frequencies and enhancer–promoter in-
teractions mainly modulate burst frequencies. The
developed inference method provided a flexible and
efficient way to investigate transcriptional burst ki-
netics and the obtained results would be helpful for
understanding cell development and fate decision.

INTRODUCTION

The gene-expression variability resulting from programmed
and stochastic processes has emerged as a central preoc-

cupation for investigating gene regulation (1,2). Genes are
stochastically transcribed often in a discontinuous burst-
ing manner (3,4). Transcriptional bursting is regarded as a
primary proxy of stochasticity in gene expression and con-
tributes to cell-to-cell variability (5–7), but the molecular
mechanisms governing transcriptional bursting kinetics still
remain elusive. Many experimental studies have provided
evidence for linking static promoter architecture and se-
quence to transcriptional bursting and, therefore, to the re-
sulting variability in gene expression (5,8). This variability
can propagate from mRNA to protein and further to the
downstream target genes via a complex regulatory network
(9,10). This raises important issues: On the genome-wide
scale, how do static promoter regulatory sequences encode
transcriptional burst kinetics, and how do dynamic gene
regulatory networks shape burst kinetics?

An intuitive view is that there is an indispensable link
of gene-expression variability to promoter architecture
(11,12). This link is due to the fact that a basic step of
RNA synthesis is to copy the genetic information from the
gene promoter. Much effort has been devoted to rational-
izing the promoter-architecture encoding of transcriptional
burst kinetics on genome-wide scales. For example, genes
with TATA boxes increase variability in expression levels,
whereas the presence of CpG island significantly lowers the
variability (13–15). The sharp distributions of transcription
start sites (TSS) lead to higher gene-expression variabil-
ity than the broad TSS distributions (13). A recent study
(16) has revealed that the increases in burst sizes are depen-
dent on the presence of TATA box and initiator elements
(characteristics of the core promoter), and burst frequencies
are regulated by enhancer–promoter (E–P) interactions. All
these studies and others (17–21) indicate the importance of
promoter architecture in modulating transcriptional burst
kinetics.

Another viewpoint is that feedback regulations modu-
late transcriptional burst kinetics by creating a higher-level
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structure regulatory pattern (10). In fact, feedback regula-
tions exist extensively in biological systems, and their func-
tions may be reflected by the circuits of interacting genes
and proteins (22). In particular, auto-regulatory feedback
loops have been identified in various regulatory systems,
where transcription factors directly or indirectly regulate
the corresponding gene expression (23). In general, feed-
backs can be categorized into positive and negative ones.
Experimental investigations for a few genes or transcripts
have demonstrated that different kinds of feedback played
diverse roles (10). For example, negative feedback limits
large expression variability and accelerates responses (24–
26). Conversely, positive feedback amplifies expression vari-
ation, induces bimodal expression, and stimulates genes to
‘active’ states (27–30). In addition, negative feedback with
a long delay loop can display increased variability (31).
Theoretical analysis has also shown that different feed-
back mechanisms modulate burst kinetics in different man-
ners (32,33). All these studies indicate the important roles
of feedback regulations in mediating gene expression, in-
cluding transcriptional bursts, but it is unclear whether
the results obtained for case-by-case studies can hold on a
genome-wide scale.

The above two viewpoints are not solitary but are com-
plementary to each other. A challenging task is to investi-
gate how static promoter architecture and dynamic feed-
back regulation coordinate transcriptional burst kinetics
on a genome-wide scale. Previous studies of transcriptional
bursting were limited to low-throughput experimental ap-
proaches, where observed experimental results could not
be generalized across different genes or cell types (34–
40). Recently, single-cell RNA sequencing (scRNA-seq)
has enabled the in-depth measurement of expression lev-
els within cell populations, providing an opportunity to
study genome-wide transcriptional mechanisms (41). An
important step toward this study is to develop mathemat-
ical models for the genome-wide inference of burst kinetics.
The models for inference should satisfy some requirements.
First, these models should be interpretable, i.e. they can cap-
ture essential gene-expression dynamics and convey kinetic
information about transcriptional bursts (16,42–44) (https:
//doi.org/10.1101/2021.09.06.459173). Previous studies re-
lied on inferring the direct correlations between features
across molecular scales (13,45). However, these correlations
are insufficient to uncover the mechanisms of gene expres-
sion. Second, the inference models should be tractable, i.e.
they can effectively treat a large number of cells and genes.
In general, a complex mechanistic model incorporating reg-
ulatory factors is difficult to analyze on the one hand (46),
and a genome-wide inference needs expensive computa-
tional cost on the other hand. Therefore, an interpretable
and tractable inference framework integrating experimen-
tal data and molecular mechanisms is strongly demanded.

Here we developed a statistical framework based on the
model-driven and data-driven combination to perform a
scalable genome-wide inference. This framework used the
static snapshots of scRNA-seq data to infer the regula-
tory mechanisms underlying transcriptional burst kinetics.
Specifically, it integrated the expected information on gene-
expression variability, burst frequencies, burst sizes, and
feedback regulation forms. Applying this inference method
to the scRNA-seq data generated from embryonic mouse

fibroblast cells (16), we showed that feedbacks differently
modulate burst frequencies and sizes, TATA genes are ex-
pressed with high burst frequencies only in the presence of
positive feedback, feedback regulations conceal the effects
of TSS distribution on transcriptional burst kinetics, and E–
P interactions mainly modulate burst frequencies only in the
presence of positive feedbacks. Briefly, we found that char-
acteristics of genome-wide transcriptional burst kinetics in
the case without feedback regulations were different from
those in the case with feedback regulations, implying Simp-
son’s Paradox, an interesting statistical phenomenon.

MATERIALS AND METHODS

A mechanistic hierarchic model for statistical inference

The observed counts in a scRNA-seq experiment reflect a
combination of the true expression level and the measure-
ment level of each gene in each cell. We describe the ob-
served counts by a two-level hierarchical model (See details
in Supplementary Text 1.1, Figure 1D, and Supplementary
Figure S1a–c):

P (Y = y) =
∫ ∞

0
Pmeas (y |n ) Pgene (n)dn, (1)

where Pmeas(y|n) is for a measurement model and Pgene(n)
for a gene expression model.

The first level represents the measurement process for the
observed count Ycg conditional on the true expression level
Ncg of gene g in cell c, with a conditional probability distri-
bution (Supplementary Figure S1b):

Ycg
∣∣ Ncg ∼ Pmeas (y |n ) . (2)

The Pmeas(y|n) describes all aspects of the technical noise
produced in the measurement process for a given true ex-
pression level Ncg, and is suggested as a Binomial distribu-
tion or Poisson distribution which is supported by empirical
analyses and theoretical arguments in many existing meth-
ods (47,48). By adding an extra sampling probability λcg
in the sequencing process, we characterize the sequencing
depth and assume that intercellular molecules are indepen-
dent of each other and only the proportional products are
captured and sequenced using Binomial distribution

Ycg
∣∣ Ncg ∼ Binomial

(
n, λcg

)
. (3)

In our calculations, we set the sampling probability λcg =
λ = 0.5 without loss of generality since the setting of λcg
does not influence our qualitative results.

The second level is the true expression level of gene g
across cells, which is assumed to follow a probability dis-
tribution

Ncg ∼ Pgene (n) . (4)

The underlying model describes the intrinsic dynamics
of stochastic gene expression. How an appropriate gene-
expression model Pgene(n) is chosen is critical. In general,
this choice needs to satisfy two basic requirements: (i) the
model should capture the essential gene-expression dynam-
ics of interest (e.g. transcriptional burst kinetics); and (ii)
the inference based on the model should be effective and
scalable to large numbers of cells and genes. As combin-
ing mechanistic models to infer the entire gene regulatory
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network would lead to sophisticated models that become
intractable, we simplified the gene regulatory network to a
feedback loop, which is the most common form existing in
gene expression systems. For these purposes, we adopt a
model of stochastic gene expression (Supplementary Text
1.1, Figure 1B and Supplementary Figure S1c), which si-
multaneously characterizes transcriptional burst kinetics
and auto-regulatory feedbacks with the below distribution

Pgene (n) =

N
∫ ∞

0
Poisson (n |x ) xa(1+ε)−1e−x/b

(
1 + (

x
/

k
)h

)−a/h
dx, (5)

where N is a normalization factor. Note that the discrete
gene expression distribution (Equation (5)) is a Poisson rep-
resentation in form, i.e. Pgene(n) = ∫ ∞

0 Poisson(n|x) f (x)dx,
where f (x) is a kernel density function that has the same
form as the continuous distribution of proteins in (49). As il-
lustrated in Figure 1B, this kernel function f (x) can extract
several kinetic parameters, denoted by θ = (a, b, ε, k, h),
of the steady-state gene-product distribution from a dy-
namic model with auto-regulatory feedback described by
some meaningful kinetic parameters: switching rates be-
tween inactive and active state (kon, koff ), mRNA transcrip-
tion rates (ksyn) and degradation rates (kdeg). Here, a is the
number of bursts per cell cycle (burst frequency), and b
is the mean number of gene products generated per burst
(burst size), and h is a vital parameter of capturing the feed-
back regulation dynamics of gene products, which is ac-
tually a Hill coefficient. Furthermore, this model can de-
scribe two most common feedback loops in gene expres-
sion: positive-feedback loop (i.e. hlt; 0) and negative feed-
back loop (i.e. h > 0). It should be noted that the auto-
regulatory feedbacks involve gene products, which directly
or indirectly regulate the corresponding target gene itself
through feedback loops, resulting in a repressing or activat-
ing expression. The small leakiness proportion of the pro-
moter ε contains the information on the baseline bursts in
the absence of regulation, and k contains the information
on the equilibrium binding constant (see details in Sup-
plementary Text 1.1). Overall, Equation (5) is a mecha-
nistic model, which can simultaneously describe the burst-
production and feedback-regulation processes of gene ex-
pression. More importantly, as a special case of this model,
h = 0 corresponds to the negative binomial distribution of
gene expression Pgene(n) (i.e. non-feedback).

By combining Equations (3) and (5) and substituting into
Equation (1), the discrete probability distribution of Ycg can
be computed but is expressed in an integral form (see details
in Supplementary Text 1.1):

P (Y = y; ·) =
∫ ∞

0
Pmeas (y |n ) Pgene (n)dn

=
∫ ∞

0
Poisson (Y = y |λx ) f (x) dx

= N ·
∫ ∞

0

(λx)y

y!
e−λxxa(1+ε)−1e−x/b(1 + (x/k)h)−a/h

dx. (6)

For the case of non-feedback, we employ the negative bi-
nomial distribution, which is then given by

P (Y = y; ·) =
∫ ∞

0

(λx)y

y!
e−λx 1

ba� (a)
xa−1e−x/bdx. (7)

where �(·) is the Gamma function.

Maximum likelihood estimation of parameters

Here we introduce a method of estimating the kinetic pa-
rameters in our hierarchical model using the expression
data of each gene. For a given expression read of observed
cells, the most common parameter estimation method is the
maximum likelihood estimation, which can be formulated
as the following optimization problem of five parameters
θ = (a, b, ε, k, h) in our case

arg
θ

min (−L (y; θ )) = arg
θ

min
∑

y

− ln(P(Y = y; θ )), (8)

where P(Y = y; θ ) is described in Equation (6).
Because of the complex integral and unnormalized prob-

ability mass function in Equation (6), calculating the inte-
gral directly through the MCMC method (50) would be at
a high cost of computation, and in particular, it is hard to
use in the analysis of genome-wide data. Therefore, we ap-
ply the Generalized Gauss-Laguerre Quadrature Rules (51)
to Equation (6) instead of the use of the MCMC method,
realizing a rapid calculation in inference:

P (Y = y; θ) =N
∫ ∞

0

(λx)y

y!
e−λxxa(1+ε)−1e−x/b

(
1 + (x/k)h

)−a/h
dx

≈ N
n∑

i=1

wi f (xi ), (9)

where xi , wi can be determined by the generalized Laguerre
polynomials.

In particular, a simple algebraic transformation in Equa-
tion (7) yields the explicit expression of the probability dis-
tribution in the case of non-feedback:

P (Y = y; ·) =
∫ ∞

0

(λx)y

y!
e−λx 1

ba� (a)
xa−1e−x/bdx

= (bλ)y

(a + y) B (a, y + 1) (bλ + 1)y+a , (10)

where B(·, ·) is the Beta function.

Optimization method and initial values setting

To realize a fast calculation for solving the optimization
problem (Equation (8)) of parameter estimation, we use
the fmincon function in the LBFGS method of MAT-
LAB (https://www.mathworks.com/products/matlab.html),
a nonlinear programming solver, to find the minimum
of the optimization problem given a set of initial val-
ues and parameter intervals a = (10−1, 30), b = (1, 20), k =
(1, 103), h = (−10,−1)or(1, 10). For each gene and each
case of positive, negative, and non-feedbacks, we repeatedly
solve the optimization problem 30 times.

We restrict that the initial values of the optimization
problem obey the following rules. First, we consider initial

https://www.mathworks.com/products/matlab.html


Nucleic Acids Research, 2023, Vol. 51, No. 1 71

points of a (burst frequency) and b (burst size). Here X is a
random variable of the distribution in Equation (5). Since
Gamma distribution is a special case of Equation (5), we
assume that the initial points a and b follow

E [X] = ab, Var [X] = ab2. (11)

On the other hand, by considering the initial values of Y
generated by our hierarchical model, we have

E [Y] = E [E [Y |X ]] =λE [X] = λab, (12)

Var [Y] = E [Var [Y |X ]] + Var [E [Y |X ]] = λab + λ2ab2. (13)

Given the expectation and variance of Y, we can in return
estimate burst frequency a and burst size b by rearranging
Equations (12) and (13), which are then taken as initial val-
ues

a = E[Y]2

Var [Y] − E [Y]
, b =

(
Var [Y]
E [Y]

− 1
)/

λ. (14)

Usually, the transcriptional rate in the OFF state is much
smaller than that in the ON state. And a small enough leaky
rate does not affect the distribution shape of gene expres-
sion. Therefore, we fix ε at the constant of 0.05 during our
inference. The h value is extracted from a uniform distribu-
tion between the integer -5 and -1 (positive feedback) or in-
tegers 1 and 5 (negative feedback). And the values of param-
eter k are extracted from the log-uniform (logarithm base
10) distribution on interval [0, 2].

Model selection

Using the above inference method, we obtain 90 inferred re-
sults for each case of positive, negative, and non-feedbacks.
Then, we filter out the unreliable results on the inference
boundary, which are possibly caused by the optimization
program setting. On this basis, we compute the value of the
corrected Akaike information criterion (AICc) (52) and se-
lect the best model corresponding to the smallest AICc,

AICc = −2 log L
(
θ̂
) + 2k + 2k (k + 1)

n − k − 1
, (15)

where the maximum likelihood L(θ̂) is the result during the
inference run, k is the number of model parameters, and n
is the sample size of observed data.

Validation on synthetic scRNA-seq data

In order to check whether the above statistical inference
method can effectively infer burst frequency, burst size, and
feedback form in our hierarchical model, we produce syn-
thetic single-cell RNA data. Given a set of model param-
eter values θ = (a, b, ε, k, h), we first calculate the prob-
ability distributions of these parameters according to the
method described in the above section and then carry out
random samples according to the probability of each pa-
rameter value to obtain the input data for the inference pro-
cess.

We show the precision regions for the inference of burst
kinetics (burst frequencies and burst sizes) under different

feedback strengths h and different equilibrium binding con-
stants k (Supplementary Figure S4–S6). And the error be-
tween true parameters θ true = (b f true, bstrue) and estimated
parameters θ est = (b f est, bsest) is calculated according to:

Error
(
θ true, θ est) = (

log
(
b f true) − log

(
b f est))2

+(
log

(
bstrue) − log

(
bsest))2

. (16)

We show the robustness of the inference in the cases of
positive, negative, and non-feedbacks, respectively (Supple-
mentary Figure S4–S6). To explore the robustness of the
cell numbers to the inference, we select different sampled
cell numbers (200, 300, 500, 1000, 5000) to synthesize data
50 times, and at each time, set 30 different initial points for
optimization in each case of feedback forms. The optimiza-
tion process is the same as the inference process of real data.
The same process is used to explore the effects of stochastic
losses of mRNA molecules (sensitivity), missing randomly
at a certain probability (0.1, 0.3, 0.5, 0.7 or 0.9) from suf-
ficient samples (number = 2000). The results of inference
robustness analysis are illustrated with two different distri-
bution examples in the three cases of feedback forms (Sup-
plementary Figure S4–S6).

Inference evaluation

To assess whether the observed data came from the distribu-
tion generated via the parameters inferred by our method,
we use goodness-of-fit statistics that obey chi-square distri-
bution of large samples:

χ2 =
∞∑

k=0

(Ok − Ek)2

Ek
, (17)

where Ok is the observed sample number whose mRNA
number is k, and Ek is the expected sample number. Note
that in some sequencing techniques, the cell samples of
scRNA-seq data are not large enough, so it is needed to use
the Monte Carlo method to generate the null distribution
of chi-square goodness-of-fit test instead of the asymptotic
distribution. For each gene, we first generate the same num-
ber of samples as that in the observed data from the prob-
ability of each point with the inferred parameters and then
compute the χ2

sim statistic according to Equation (17). After
repeating the Monte Carlo simulation procedure for 1000
times, we judge whether the resulting inference is a good fit
by comparing χ2

obs with the resulting 1000 χ2
sim. The crite-

rion that an inferred parameter is a good fit is that the χ2
obs

is at least less than five percentage numbers of χ2
sim (Supple-

mentary Figure S7a).

Data analysis

scRNA-seq data processing. We utilize the processed
scRNA-seq data for 10727 genes of transcriptomes from
224 individual mouse embryonic fibroblasts for each allele
(C57 × CAST) (16). In that paper, the quantification of
gene transcription is based on the Smart-seq2 scRNA-seq
libraries, and UMI counts is used to reduce the amplifica-
tion noise. To ensure that the inference process is not hin-
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dered by low-quality elements of the data as far as pos-
sible, we carry out a certain degree of quality control of
the original data (from the file: SS3 cast UMIs concat.csv
and SS3 c57 UMIs concat.csv). We filter out the genes ex-
pressed in less than 50 cells. Also, we filter out the cells ex-
pressed in <2000 genes. In addition, we filter out the genes
whose overall average expression levels are <2. After these
manipulations on each allelic data (C57 × CAST), the genes
that meet the conditions are combined to facilitate infer-
ences from more adequate samples and give a single-cell ex-
pression matrix composed of 2162 genes and 413 cells. This
treatment is based on the assumption that the distributions
of almost all genes for the CAST and c57 alleles have simi-
lar shapes and that the transcriptional dynamic behavior is
consistent between alleles for most genes, which is also sup-
ported by previous studies (16,53). And, we removed the
outlier data with the tail 5% of the distribution. In addi-
tion, our method can be also applied to any high-quality
non-allelic scRNA-seq data.

Identification of promoter motif and TSS distribution. The
recognition and coordinates of the promoter motifs (TATA
box, Initiator, CCAAT box, GC box) are downloaded from
‘the Select/Download Tool’ of the EPD New database (54).
In order to determine the TSS distribution of mouse embry-
onic fibroblasts, MEFs FANTOM5 Cap Analysis of gene
expression data is retrieved through the CAGEr R package
(55). After normalization and TSS clustering, TSS distribu-
tion is defined as ‘sharp’ if the promoter width is less than
15bp (this length is taken as the median of all genes), and
as ‘broad’ otherwise.

Identification of enhancer–promoter intensity. The data
about the interaction between enhancer and promoter is
downloaded from (16). The dataset is used to compare the
correlation between burst kinetics and enhancer activity of
fibroblasts and mESCs. Enhancer activity is calculated ac-
cording to the intensity of the H3K27ac peak measured in
the defined EPUs region (which is considered that enhancer
and promoter interactions occur more possibly) via ChIP-
seq in a previous study (56). In our study, we only utilize the
collated data that includes the peak of H3K27ac in EPUs of
MEFs.

Statistical analysis

Gene expression variability. Gene expression variability is
usually quantified by the square of the coefficient of varia-
tion (CV2), which is defined as the ratio of the variance over
the square of the mean. According to this definition, we cal-
culate gene-expression variability in a given set of observed
data Y for gene g. Similarly, we use the inferred θ est to calcu-
late the theoretical CV2 of our hierarchical model for gene
g, that is,

CV2
g = Var

[
Y; θ est

g

]
E

[
Y; θ est

g

]2 . (18)

When fitting CV2 with a cubic spline, we find that there is
a strong correlation between the mean expression level and

CV2 (Supplementary Figure S9a). Many studies have dis-
cussed the relationship between gene-expression variabil-
ity and mean (57,58). Note that in the classical telegraph
model, the total mRNA variability can be decomposed into
two parts: the mRNA internal variability generated from
transcription and the promoter variability due to the switch-
ing between active and inactive states. Inspired by (15), we
adjust the variability by subtracting the inverse of the loga-
rithmic mean (logarithm base 2), thus obtaining the resid-
ual squared coefficient of variation (rCV2). For example, for
gene g, we have

rCV2
g = CV2

g − 1

log2

(
μg

) , (19)

where μg = E[Y; θ est
g ]. As a result, the influence of the mean

expression level on the expression variability is basically
eliminated after performing a linear regression on rCV2

(Supplementary Figure S9b).

Linear regression model in promoter motif analysis. After
having obtained the promoter motifs of each gene from
the EPD database and its burst kinetics (rCV2, burst fre-
quency, burst size) by inference, we conduct multivariate
linear regression with interaction terms to find the corre-
lations between quantities of interest in cases of positive,
negative, and non-feedbacks. Specifically, we perform mul-
tivariate linear regression according to

rCV2 ∼ (T AT A∗ Inr + CC AAT ∗ GC) × f eedback,

log10 (bf ) ∼ (T AT A∗ Inr + CC AAT ∗ GC) × f eedback,

log10 (bs) ∼ (T AT A∗ Inr + CC AAT ∗ GC) × f eedback.

(20)

In Figure 4B–D and Supplementary Figure S10c–e, we
show the t-value in the regression results. The absolute of t-
value is larger in the test of the linear regression coefficient,
indicating that the resulting correlations are significant.

RESULTS

An integrated statistical framework for learning promoter-
dependent yet feedback-constrained transcriptional burst ki-
netics on a genome-wide scale

Cell-to-cell heterogeneity in gene expression is primarily at-
tributed to transcriptional bursting (12,59,60), which is rep-
resented by a vector y of components including burst fre-
quency, burst size, expression variability, etc. (Figure 1C).
Transcriptional bursts result from complex molecular pro-
cesses on multilayered sources (1), which are represented
by a vector x of components including static DNA se-
quences, epigenetic modifications (61), transcription, trans-
lation, dynamic network regulations, etc. (2). Then, the
question of how these molecular processes coordinate tran-
scriptional busting can be mathematically described as y =
f (x), where f is a vector function describing the correlation
of x to y.

Static promoter architecture is an essential DNA se-
quence for binding transcription factors during mRNA
synthesis. Specifically, promoter motifs (such as initiator,
TATA-box, CCAAT-box, GC-box), broad and sharp TSS
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Figure 1. Overview of a scalable genome-wide inference method. (A) Schematic for important ingredients in gene expression process, including static
promoter architecture information and dynamic regulation. Promoter architecture (represented by x1) consists of promoter motifs (Initiator, TATA-
box, CCAAT-box, and GC-box), TSS distributions (‘sharp’ and ‘broad’) and enhancer–promoter interactions. Dynamic regulation (represented by x2) is
referred to as a series of processes, such as transcription and translation as well as feedback loops, in which the gene product (as a transcription factor)
regulates its own expression, possibly via a complex regulatory network. (B) Model-driven: schematic for a mechanistic model of stochastic gene expression,
which considers an active (ON) state and an inactive (OFF) state of the promoter and auto-regulatory feedback. Here kon is the switching rate from OFF to
ON and koff from ON to OFF; ksyn is the transcription rate when the gene is in ON state and kdeg is the degradation rate of mRNAs. (C) Kinetic parameters
to be inferred, which include expression variability, burst frequency, burst size, and dynamic regulation. (D) Comparison between two static distributions
(the left panel is for ‘true’ mRNA levels in the mechanistic gene model and the right panel for ‘observed’ mRNA counts in a given set of scRNA-seq
data) by a hierarchical model can determine the values of the kinetic parameters in (C) via a scalable genome-wide inference method. (E) Data-driven:
genome-wide scRNA-seq data of mouse embryonic fibroblasts gives an expression matrix that further gives the observed static distribution in (D).

distributions, and enhancer–promoter interactions are es-
sential features of eukaryotic promoter architecture (Fig-
ure 1A, left). Meanwhile, variability in gene expression can
propagate from mRNA to protein and further to target
genes, possibly through a dynamic and complex gene reg-
ulatory network. A common form of dynamic regulation
is auto-regulation which directly or indirectly regulates the
corresponding target gene itself through a feedback loop,
resulting in a repressing or activating expression (Figure
1A, right). For clarity, we let vectors x1 and x2 represent
static promoter architecture and dynamic feedback regu-
lation, respectively (Figure 1A). The information on pro-
moter architecture (x1) can be recovered from public bioin-
formatics databases such as the EPD database (54), Biocon-
ductor (62), and UCSC Genome Browser (63). In general,
the mechanisms of dynamic regulation (x2) and burst kinet-
ics ( y) are not directly measurable but hidden in data sets.
Unlike some imaging-based technologies such as MS2 sys-
tem (64) that were limited to a few genes and could not
be extended to the whole genome, single-cell sequencing
technologies made it possible to recover the information
on dynamic regulations (x2) and burst kinetics ( y) from
static snapshots (Figure 1E). Figure 1B–E summarizes the

genome-wide inference procedure proposed here. This pro-
cedure used a statistical framework of the model-driven
(Figure 1B) and data-driven (Figure 1E) combination to in-
fer dynamic feedback regulations and transcriptional burst
kinetics from static scRNA-seq data (Figure 1C, D) under
the assumption that the abundances of mRNA and protein
were highly dependent (65).

Specifically, our statistical inference framework used a
mechanistic model of gene expression (Figure 1B), which
simultaneously considered transcriptional burst kinetics
( y) and feedback regulations (x2), to obtain ‘true’ gene
expression distributions (Figure 1D, left). On the other
hand, the known scRNA-seq data gave ‘observed’ gene
expression distributions, implying possible errors in the
sequencing technologies (66,67). A hierarchical statistical
model (see ‘Materials and Methods’) was proposed to
link ‘true’ gene-expression levels (Figure 1D, left) and ‘ob-
served’ mRNA counts (Figure 1D, right), thus determin-
ing key kinetic parameters (expression variability, burst
size, burst frequency, and dynamic regulation) (Figure 1C).
We emphasized that the proposed framework was a scal-
able genome-wide inference, which was particularly use-
ful in revealing how both static promoter architecture and
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dynamic feedback regulation coordinate transcriptional
bursting.

A hierarchical model provides the genome-wide inference of
transcriptional burst kinetics and feedback regulations from
single-cell snapshots

The hierarchical statistical model developed here can give
a mechanistic interpretation for Unique Molecular Iden-
tifiers (UMIs) based on scRNA-seq data. In fact, this
model not only captured the characteristics of transcrip-
tional burst kinetics and feedback regulations, but also de-
scribed the measured noise of UMIs data (see ‘Materials
and Methods’). Then, we used the maximum likelihood
method to determine burst kinetics and feedback forms
(positive-, negative-, non-feedback) within biologically rea-
sonable ranges of model parameters. Note that the infer-
ences with traditional MCMC methods (50) would need
huge and even unaffordable computational costs since the
static mRNA distribution was expressed in a high-order in-
tegral that is difficult to solve. To overcome this difficulty,
we developed a fast algorithm for computing this distribu-
tion based on generalized Gauss-Laguerre quadrature rules,
thus realizing a scalable genome-wide inference (51) (see
‘Materials and Methods’).

To evaluate the validity of our inference method, we first
explored the sensitivity of distribution shapes to changes
in model parameters. We found that the genes with high
expression levels were more sensitive to model parameters
than the other genes (Supplementary Figures S2 and S3).
Then, to test the reliability of the method in inferring kinetic
parameters, we generated synthetic single-cell RNA data
by stochastic sampling from the distribution for the hierar-
chical model with known parameter values. Through infer-
ence using the synthetic data, we can give robust estimates
of burst frequencies, burst sizes, and feedback forms from
the corresponding static mRNA distributions (Supplemen-
tary Figure S4–S6). Besides, we also assessed the robust-
ness of our inference method to different cell numbers and
stochastic losses of mRNA molecules (mimicking the in-
complete mRNA detection in scRNA-seq protocols) (Sup-
plementary Figures S4b–c, S5b–c and S6b–c). Overall, we
provided a mechanistic model and an effective, robust and
scalable inference method for learning dynamic burst kinet-
ics and feedback forms from static snapshot data, which can
be conveniently used in the analysis of scRNA-seq data.

Next, we applied our hierarchical model and inference
approach to the scRNA-seq data of primary mouse fibrob-
lasts (16). From the original UMIs data containing 10727
genes and 224 cells, we selected 2162 highly expressed genes
using a quality control method and then merged two al-
lelic expression data into a matrix to infer burst kinetics
and feedback forms. We observed that these selected genes
were transcribed with widely different burst kinetics (68),
and in particular, those genes with the same average expres-
sion level exhibited diverse burst kinetics, implying that the
expressions of different genes were regulated possibly by dif-
ferent molecular mechanisms (Figure 2A). To check the va-
lidity of these inferred results, we performed a goodness-of-
fit test (see ‘Materials and Methods’). We found that the dis-
tributions from the dataset were consistent with those ob-
tained using the inferred parameters (Supplementary Fig-

ure S7a), and confirmed that the mRNA mean and vari-
ability in the mechanistic model matched those in the data
(Supplementary Figure S7b). All the good-fit genes can be
classified into three categories: 626 positive-feedback genes,
625 negative-feedback genes, and 840 non-feedback genes.
The inferred results for example genes: Mbnl2, Prr13, Ralb,
and Plod1 were demonstrated in Figure 2a1-a4, showing
that these genes had different feedback forms and followed
different distributions. Interestingly, our hierarchical model
can particularly recover bimodal distributions from static
data, which however were fitted as unimodal distributions
via the telegraph model without feedback (69) (e.g. the dis-
tribution of the Mbnl2 gene as shown in Figure 2a1 and
more genes as shown in Supplementary Figure S8). In ad-
dition, we compared the inferred results between our hier-
archical model and the telegraph model, finding that both
models captured almost the same gene-expression variabil-
ity (CV2, Figure 2B) while keeping high correlations be-
tween burst frequencies and burst sizes (Figure 2C, D, P-
value < 2.2 × 10–16). Notably, we found that the forms of
dynamic feedback regulations can lead to different burst ki-
netics on a genome-wide scale but cannot be inferred by pre-
vious methods (Figure 2C, D) (16,43).

Feedbacks modulate burst frequencies and sizes differently

Having inferred each gene’s burst kinetics and feedback
forms, we next investigated how feedback regulations af-
fected expression variability (CV2) and transcriptional
burst kinetics on a genome-wide scale. Interestingly, we
found the statistical phenomenon of Simpson’s paradox.
First, we observed from Figure 3A that there were no sig-
nificant differences in variability distributions between the
positive-feedback and the negative-feedback genes, but the
non-feedback genes exhibited higher expression variabil-
ity. The latter result seemed inconsistent with the previous
conclusions that positive feedback amplified variability and
negative feedback attenuated variability (70). This can be in-
terpreted by the fact that the expression level and the expres-
sion variability were negatively correlated (57,58,71) (Sup-
plementary Figure S9a). To show this point, we introduced
the average expressed variable by dividing all the selected
genes into five equal boxes based on average expression
levels and tracked the expression-variability changes when
the average gene-expression levels were increased. Then, we
found that the expression variability was indeed negatively
correlated with the average expression levels, regardless of
feedback forms (Figure 3D). Furthermore, the positive-
feedback genes showed relatively higher expression variabil-
ity than the negative-feedback genes at the same expression
levels (Figure 3D), consistent with the results obtained in
previous studies (70,72).

Next, we checked the genome-wide effects of feedback
regulations on transcriptional burst frequencies and burst
sizes. Interestingly, we found that positive and negative feed-
back differently modulated burst frequencies and sizes (Fig-
ures 3B, C, and Supplementary Figures S9c, d). Specifi-
cally, the burst frequencies of positive-feedback genes were
significantly higher than those of negative-feedback genes
on the whole genome (Figure 3B) and at the same ex-
pression level (Figure 3E). By contrast, the burst sizes
of positive-feedback genes were smaller than those of
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Figure 2. Genome-wide characteristics of transcriptional burst kinetics inferred from the scRNA-seq data of primary mouse fibroblasts. (A) Scatter plots
of burst frequencies (bf) and burst sizes (bs), where the colored points represent mean expression levels. a1–a4 Examples for comparison of the inferred
distributions between our hierarchical model (orange line) and the telegraph model (green line), where the gray histograms represent the distributions of
mRNA counts. (B–D) Scatter plots of the expression variability (CV2, B), burst frequencies (C) and burst sizes (D), which are correlated in the sense of
Pearson correlation test (see the indicated values of R and P-value). The values of these kinetic parameters are obtained via the hierarchical model and
the telegraph model, respectively. Red dots correspond to positive feedback, blue dots to non-feedback, and green dots to negative feedback. The slope of
dashed lines equals 1.

negative-feedback genes (Figure 3C, F). In addition, the ef-
fects of negative feedback and non-feedback on burst fre-
quencies were difficult to distinguish (Figure 3B, E), but
there was a significant difference in burst sizes (Figure 3C,
F). This observation suggested that burst size could be a dis-
tinguishable characteristic between negative-feedback and
non-feedback genes.

Finally, in this subsection, we point out that an un-
explored issue is how promoter architecture affects tran-
scriptional burst kinetics in the presence of feedback
regulation on a genome-wide scale. Below, we address
this issue from three aspects: promoter motifs, TSS dis-
tributions, and enhancer–promoter interactions in the
following.

TATA genes are expressed with high burst frequencies only in
the presence of positive feedback

It was reported that promoter motifs such as TATA box
and initiator regulated transcriptional bursting directly
(13,14,16,57,73). On the other hand, we showed in the previ-
ous section that different feedback regulations led to differ-
ent burst kinetics. This raised an unexplored question: how
do promoter motifs modulate transcriptional burst kinetics

in the presence of feedback regulation on the genome-wide
scale?

We first identified promoter motifs (TATA box, initia-
tor, GC-box, and CCAAT-box) of each gene from the EPD
database (54) (see ‘Materials and Methods’) (Figure 4A).
Then, we found that both the TATA box and initiator pos-
itively regulated mean transcriptional levels, in line with
the results obtained in previous studies (74) (Supplemen-
tary Figure S10a). Besides, we verified that the TATA genes
with positive feedback had higher proportions than those
genes with negative feedback or without feedback, whereas
the other promoter motifs were uncorrelated to feedback
forms (Supplementary Figure S10b). These results implied
that the TATA box was a critical promoter motif for the reg-
ulation of transcription by a positive feedback mechanism,
which might be supported by the following experimental
observation: TATA boxes were enriched in the promoters of
genes with fewer transcriptional pauses (75), and the TATA
box sequence was specifically bound by the TATA-binding
proteins that acted as general transcription factors to facil-
itate the localization of RNA polymerase II and transcrip-
tion (76,77).

To investigate the genome-wide effects of promoter mo-
tifs on burst kinetics in the presence of feedback regu-
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Figure 3. Genome-wide comparison of transcriptional burst kinetics in three cases of feedback regulation. (A–C). Three probability density functions
(PDF) of expression variability (CV2, A), burst frequencies (bf, B), and burst sizes (bs, C) for positive-feedback genes (red), non-feedback genes (blue) and
negative-feedback genes (green), where dashed lines represent the medians. (D–F) Boxplots of expression variability (D), burst frequency (E) and burst size
(F). The genes are divided into five boxes with an equal number of genes, and the gene-expression level increases from left to right, where the dashed line
connects the mean expression levels in each box. The number of good-fit genes per feedback type is shown at the bottom of the figure.

lations, we performed multivariate statistical analysis us-
ing linear regression models (Figure 4B–D, see ‘Mate-
rials and Methods’). We also observed the Simpson’s
paradox that the effect of promoter motifs on variabil-
ity and burst kinetics is different between distinguishing
feedback regulation and without distinguishing feedback
regulation.

First, we studied gene-expression variability. We charac-
terized this variability with the residual squared coefficient
of variation (rCV2) (see ‘Materials and Methods’) since this
coefficient can disentangle the correlation of the CV2 and
the average expression levels across cells (Supplementary
Figure S9b). Therefore, we focus on rCV2 instead of CV2.
By performing the linear regression of rCV2 (see ‘Materi-
als and Methods’), we found the synergy between positive
feedback and the TATA box (or initiator or CCAAT box)
can amplify the expression variability (Figure 4B). This re-
sult was actually an extension of the previous result that the
TATA box enlarged the gene-expression variability when
feedback regulations were not distinguished (Supplemen-
tary Figure S10c) (13,78). As an additional evaluation, we
used the rCV2 rank to predict the presence of the TATA-
box and showed that the area under the ROC (receiver op-
erating characteristic) curve, denoted by AUC, was larger
in the case of positive feedback than in the case of nega-
tive feedback or non-feedback (Figure 4E), indicating that

TATA boxes led to the larger gene-expression variability in
the former case.

Next, we assessed burst frequencies and sizes. Similar to
the case of expression variability, we also performed multi-
variate linear regression analyses on them. When feedbacks
were not distinguished, we showed that TATA boxes sig-
nificantly boosted burst frequencies of the genes (Supple-
mentary Figure S10d). However, when considering differ-
ent feedback forms, we observed that only TATA genes with
positive feedback increased burst frequencies (Figure 4C).
In addition, we observed that other promoter motifs had
different degrees of effect on burst frequency, depending
on feedback forms. These results were masked without dis-
tinguishing feedback forms (Supplementary Figure S10d).
For burst sizes, it was reported that the genes with TATA
box or initiator had larger burst sizes than those without
TATA box or without initiator (16). We reproduced simi-
lar results (Supplementary Figure S10e), but observed that
the TATA genes were expressed with larger burst sizes, in-
dependently of feedback regulation, and the genes with ini-
tiator had larger burst sizes only in the case of negative feed-
back (Figure 4D). GC-box and CCAAT-box on the distal
promoter had opposite effects on burst sizes in the cases of
positive and negative feedback (Figure 4D). In particular,
no difference was found for all the genes if feedback forms
were not distinguished (Supplementary Figure S10e).
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Figure 4. Genome-wide effects of promoter motifs on transcriptional burst kinetics in three cases of feedback regulation. (A) Schematic for a gene model
that considers feedback regulation and promoter motifs (such as initiator, TATA-box, CCAAT-box, and GC-box). (B–D) Dependences of variability
(rCV2, B), burst frequencies (bf, C) and burst sizes (bs, D) on promoter motifs for different feedback regulations, obtained through linear regressions. Each
symbol shows the t-value in a multivariate linear regression model, which is used to judge whether to reject the null hypothesis (i.e. the feature does not
correlate with the dependent variable). Color: significantly higher (red symbol), significantly lower (green symbol), and no apparent effect (gray symbol).
Different symbols stand for different feedbacks: square for positive feedback, circle for negative feedback, and triangele for non-feedback. (E) ROC curves
are used to distinguish the genes with TATA boxes according to the relative rCV2 rank. AUC is the area under the ROC curves. (F) Scatter plots of mean
burst frequencies and mean burst sizes among the genes without TATA (gray), with positive feedback and TATA (red), with negative feedback and TATA
(green), and without feedback but with TATA (blue). The solid lines near the scatter are error bars.

Briefly, the above results indicated that the TATA box
played a pivotal role in transcriptional bursting. It worked
as a static promoter element to up-regulate burst sizes and
simultaneously utilized a dynamic positive feedback regula-
tion mechanism to increase burst frequencies (Figure 4F).

Feedback regulations concealed the effects of TSS distribu-
tion on transcriptional burst kinetics

TSS can be divided into two classes according to its dis-
tribution: single TSS (sharp promoter) and multiple TSSs
(broad promoter), both being important for gene expression
(79,80). It was reported that the shapes of TSS distribution
correlated with the category of genes, such as housekeep-
ing genes and cell-type-specific genes, both exhibiting differ-
ent transcriptional burst patterns (81). On the other hand,
some experimental results indicated that feedback can reg-
ulate transcriptional initiation (23,82,83). A question nat-
urally arose: how do the shapes of TSS distribution affect
transcription burst kinetics in the presence of feedback reg-
ulation?

To address this question, we used the R package CAGEr
(55) to read CAGE data of FANTOM5 MEF cell (see
‘Materials and Methods’) and classified the promoters into
‘broad’ and ‘sharp’ ones (79) according to the median
(15bp) of the widths of all sampled promoters as depicted
in Figure 5A. Similarly, the influence of the TSS distribu-
tion on variability and burst kinetics was subject to Simp-
son’s paradox in the case of with and without distinguishing
feedback regulations.

We showed that the impacts of different TSS distribu-
tions on the mean expression level did not exhibit appar-
ent differences in three cases of feedback regulation and all
genes (Supplementary Figure S11a,b). This property can
avoid possible errors in evaluating the expression variabil-
ity (rCV2). Consistent with the observations in previous ex-
perimental studies (13), sharp promoters resulted in a sig-
nificantly higher expression variability than broad promot-
ers, independent of feedback forms (Supplementary Figure
S11c, d). The rCV2 declined with increasing the width (<
15bp) of ‘sharp’ promoters but was almost unchanged with
increasing the width of ‘broad’ promoters (Figure 5B). No-
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Figure 5. Genome-wide effects of TSS distributions on transcriptional burst kinetics in three cases of feedback regulation. (A) Histogram of genes, which
are divided into two groups (sharp and broad) based on the median (dashed line) of promoter widths. (B) Changing trends of variability (rCV2) as a function
of promoter width in three cases of feedback regulation: positive (red), negative (green) and non-feedbacks (blue). The left-hand side of the dashed line
stands for sharp promoters (yellow region) and the right-hand side for broad promoters (green region). (C) Boxplots of burst frequencies (left) and burst
sizes (right), where yellow squares stands for sharp promoters and green squares for broad promoters. P-values are indicated, and ns is the abbreviation of
no significance.

tably, the curve of rCV2 vs. promoter width for the positive-
feedback genes was always above that for the genes with
negative feedback or non-feedback (Figure 5B).

Next, we investigated whether different TSS distributions
affected burst frequencies and burst sizes differently. Al-
though genes with ‘sharp’ promoters led to a higher ex-
pression variability than those with ‘broad’ promoters for
arbitrary feedback forms, burst frequencies and sizes reg-
ulated by TSS distributions can exhibit significant discrep-
ancy only in the absence of feedback (Figure 5C, Supple-
mentary Figure S11e, f). Broad promoters led to higher
burst frequencies and smaller burst sizes than sharp pro-
moters (Figure 5C, red box), in agreement with the exper-
imental observation that broad promoters tended to oc-
cur in the case of low RNA polymerase II pause, whereas
sharp promoters tended to occur in the case of high RNA
polymerase II pause (84–86). These results implied that on
the genome-wide scale, feedback regulations significantly
weakened the impacts of TSS distributions on transcrip-
tional burst kinetics.

E–P interactions mainly modulate burst frequencies only in
the presence of positive feedbacks

Enhancers, DNA sequences located upstream of the pro-
moter, are important regulators of eukaryotic development
(87). Several lines of experimental evidence supported that
E–P interactions (Figure 6A) may facilitate gene transcrip-
tion (88–91) and can regulate transcriptional burst kinet-

ics (14,16,92–95). In addition, some studies showed that
enhancer and promoter activations might require positive
and negative feedback regulations, each contributing the el-
ements of the protein complement required for activation of
other genes (96). These results raise important questions:
does the genome-wide control of burst kinetics by E–P in-
teractions involves feedback regulations? If so, how do feed-
backs affect burst kinetics?

To address these questions, we first recovered the inten-
sities of E–P interactions from (16) and performed LOESS
regression. With the involvement of feedback regulations,
the modulation of variability and transcriptional burst ki-
netics by E–P interactions also presents Simpson’s para-
dox. We then showed that, for all genes, increasing the E–
P intensities led to the rise of mean gene-expression levels
(Supplementary Figure S12d) but to the decline of vari-
ability (rCV2) (Supplementary Figure S12e), indicating that
stronger enhancers raised the expressions levels but lowered
cell-to-cell variability in contrast to weaker enhancers (97).
However, when distinguishing genes by feedback types, this
pattern only appears in the case of positive feedback (Fig-
ure 6B, Supplementary Figure S12a), implying the impor-
tant role of positive feedback in E–P interactions.

Next, we focused on burst frequencies and sizes. Previous
molecular experiments and genome-wide inferences from
scRNA-seq data showed that burst frequencies and sizes in-
creased with promoting E–P interactions (93,94), and that
enhancers mainly controlled burst frequencies (14,16,92–
95,98–100). The same conclusion was obtained when we
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Figure 6. Genome-wide effects of enhancer–promoter interactions on transcriptional burst kinetics in three cases of feedback regulation. (A) Illustration
of the E–P interaction with a positive feedback loop. (B) Dependence of noise (rCV2) on E–P interaction intensity for different feedback forms, where the
dashed line represents the valley in case of positive feedback and the line segment on the right-hand side of the picture represents the maximum minus the
minimum, that is, the amplitude of affecting the variability. Color: positive (red line), negative (green line), and non-feedbacks (blue line). (C) Dependences
of normalized burst frequencies and sizes on E–P interaction intensity in the case of positive feedback.

performed analysis without distinguishing feedback types
(Supplementary Figure S12f, g). Notably, when the feed-
back types was considered, we found that as the E–P inten-
sity increased, changes in burst frequencies and sizes were
most apparent in the case of positive feedback (Supplemen-
tary Figure S12b,c). Moreover, the slope of the line for the
dependence of burst frequencies on E–P intensity was larger
than that for the dependence of burst sizes on E–P inten-
sity (Figure 6C). In addition, we observed that this regula-
tion effect of enhancers was saturated when the E–P inter-
action intensity exceeded a threshold (∼40) (Figure 6B and
Supplementary Figure S12a-c). This result indicated that
the function of the enhancer was not unlimited, in agree-
ment with the theoretical prediction in our previous study
(https://doi.org/10.1101/2022.01.24.477520).

The above genome-wide results provided direct support
for the fact that the control of burst kinetics by E–P inter-
actions was constrained by positive feedback regulations, in
accordance with previous experimental results for a small
number of genes (30,101).

DISCUSSION

As the core process of life, gene transcription occurs
stochastically, leading to variability in the mRNA and
further protein abundances. This variability is believed to
be mainly attributed to transcriptional bursting, a phe-
nomenon that occurs commonly in both prokaryotes and
eukaryotes. From the viewpoint of biophysics, the sources
of transcriptional bursting are multilevel and multiscale (1).
In this study, we have developed a statistical framework
of the model-driven and data-driven integration to infer
dynamic feedback regulations and transcriptional bursting
kinetics from static scRNA-seq data, using a mechanistic
mathematical model as the connecting thread.

The mechanistic model used in our inference framework
was interpretable. It captured the scRNA-seq measurement
process and the molecular mechanisms of transcriptional
bursting processes. We showed that not only burst frequen-
cies and sizes as well as expression variability but also feed-
back forms can be effectively and robustly inferred to ex-
plain biophysical phenomena, which were masked in the

scRNA-seq data. Meanwhile, our inference method made
the interpretable model tractable. We utilized the Gauss-
Laguerre Quadrature Rules instead of the classical MCMC
method to compute mRNA distribution with a high-order
integral that is difficult to solve, thus making our scalable in-
ference applicable on genome-wide scales. Our statistical in-
ference framework laid a solid foundation for exploring the
molecular mechanisms of stochastic gene expression based
on single-cell data.

Our inference method provided a powerful tool for ana-
lyzing the joint effects of feedback regulation and promoter
architecture and for revealing the genome-wide mechanisms
of transcriptional burst kinetics. First, we found that at
the same gene-expression levels, positive-feedback genes ex-
hibited significantly higher gene-expression variability and
higher burst frequencies as well as smaller burst sizes than
negative-feedback genes on genome-wide scales. This find-
ing indicated that different regulatory networks played dis-
tinct roles in modulating transcriptional burst kinetics (10).
Second, we revealed that the TATA box, apart from be-
ing indicatives of enlarging the expression variability and
raising burst sizes as suggested in previous studies (13,16),
can utilize a positive feedback mechanism to increase burst
frequencies. This result may explain the phenomenon that
the RNA polymerase II on the TATA box gene had bet-
ter localization and fewer transcriptional pauses (75,76).
Third, broad promoters with multiple TSSs led to higher
burst frequencies and smaller burst sizes, which were con-
cealed by the feedback regulations. Finally, we showed that
enhancer–promoter interactions modulated burst kinetics
and primarily controlled burst frequency in the presence
of positive feedback. All these results were obtained un-
der the hidden hypothesis that the intrinsic behaviors of
the different gene were statistically identical. Overall, these
genome-wide evidences indicated that transcriptional burst
kinetics was not only encoded by static promoter archi-
tectures but also constrained by dynamic gene regulatory
networks.

Our inference framework based on the model-driven and
data-driven combination was an extensible one for study-
ing the general principles of transcriptional bursting. First,
gene expression variability caused by transcriptional bursts

https://doi.org/10.1101/2022.01.24.477520
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comes not only from technical noise and feedback regula-
tion as described in our hierarchical model, but also from
many other potentially complex mechanisms, such as RNA
polymerase II recruitment and pause release (102–105),
alternative splicing (106,107), post-transcriptional regula-
tions via mRNA degradation (108) and nuclear retention
(109), chromatin movement (110), etc. (111–114), which all
may affect burst kinetics. Second, promoter architecture can
be described by a multi-state model since a transcription
process would involve many molecular steps (115,116). It
is unclear whether the multi-state architecture is more de-
scriptive than the two-state model. Determining the num-
ber of gene states and studying the effect on burst kinet-
ics is a long-term effort. Third, our hierarchical model only
considered self-regulatory feedback (117), the simplest feed-
back form. More complex regulatory forms may exist in
gene-expression systems (118). However, since they reflect
high-level structure regulation (10), more complex yet rea-
sonable mathematical models and more powerful inference
methods need to be developed for better studying tran-
scriptional burst kinetics. Fourth, most of the traditional
models of gene expression were based on the Markov hy-
pothesis (69,119). In organisms, however, the processes of
molecular synthesis may be non-Markovian, and increas-
ing time-resolved data have verified the extensive existence
of molecular memory (120,121). Therefore, it is necessary
to extend Markov models to non-Markov ones (122–124).
But this is a great challenge to numerical solutions and sta-
tistical inferences. Finally, we point out that choosing a suit-
able model involves trade-off problems since more complex
models would bring less consensus on general principles of
transcriptional bursting (4).

Finally, studying transcriptional burst kinetics may start
with a data-driven approach as done in our statistical in-
ference framework. Our predictions of burst kinetics us-
ing scRNA-seq data were based on the assumption that the
abundances of mRNA and protein were highly dependent
(65). Recently, more and more studies of sequencing meth-
ods have paid attention to measuring the profiles of multi-
type molecules in single-cell levels, such as simultaneous
quantification of intracellular mRNA and protein (125),
which can better describe cell states (126). For feedback
loop types our method predicted, we found that many genes
have been confirmed by biological experiments (Supple-
mentary Table S1). Moreover, the identification of feedback
loops can be more convincing by using multimodal data
combined with scRNA-seq such as ENCODE (127) and
some automated packages (128). In addition, time-resolved
data can provide more information compared to static data.
We believe that with the continuous progress in measure-
ment technologies, time-resolved single-cell data will be pri-
mary means to study the transcription burst kinetics in the
future (https://doi.org/10.1101/2022.06.19.496754). Mean-
while, spatial transcriptome multimodal data (129–132) and
chromatin structural data (133) provided good opportuni-
ties for in-depth studies of burst kinetics. Analysis of those
multimodal single-cell data or integrated data can help us
discover more credible biological knowledge but would also
bring challenges for developing statistical methods to infer
dynamic molecular mechanisms masked in static single-cell
data.

DATA AVAILABILITY

All the analysis results and inference code that support the
findings of this study are provided through https://github.
com/cellfate/BurstFeedback or https://zenodo.org/record/
7371318 (DOI: 10.5281/zenodo.7371318).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

Author contributions: J.Z. conceived of the study. S.L.,
Z.W. and J.Z. implemented the method, performed the anal-
ysis, and interpreted the results. Z.Z. helped with data anal-
ysis. J.Z. and T. Z. supervised the study. S.L., J.Z. and T.Z.
drafted the manuscript with input from all the authors. All
authors read and approved the final manuscript.

FUNDING

National Key R&D Program of China [2021YFA1302500];
Natural Science Foundation of P. R. China [12171494,
11931019, 11775314]; Guangdong Basic and Applied Ba-
sic Research Foundation [2022A1515011540]; Key-Area
Research and Development Program of Guangzhou, P.
R. China [2019B110233002, 202007030004]; Guangdong
Province Key Laboratory of Computational Science at
the Sun Yat-sen University [2020B1212060032]. Fund-
ing for open access charge: National Key R&D Pro-
gram of China [2021YFA1302500]; Natural Science Foun-
dation of P. R. China [12171494, 11931019, 11775314];
Guangdong Basic and Applied Basic Research Foundation
[2022A1515011540]; Key-Area Research and Development
Program of Guangzhou, P. R. China [2019B110233002,
202007030004]; Guangdong Province Key Laboratory of
Computational Science at the Sun Yat-sen University
[2020B1212060032].
Conflict of interest statement. None declared.

REFERENCES
1. Eling,N., Morgan,M.D. and Marioni,J.C. (2019) Challenges in

measuring and understanding biological noise. Nat. Rev. Genet., 20,
536–548.

2. Raj,A. and Van Oudenaarden,A. (2008) Nature, nurture, or chance:
stochastic gene expression and its consequences. Cell, 135, 216–226.

3. Rodriguez,J. and Larson,D.R. (2020) Transcription in living cells:
molecular mechanisms of bursting. Annu. Rev. Biochem., 89,
189–212.

4. Tunnacliffe,E. and Chubb,J.R. (2020) What is a transcriptional
burst?Trends. Genet., 36, 288–297.

5. Dar,R.D., Razooky,B.S., Singh,A., Trimeloni,T.V., McCollum,J.M.,
Cox,C.D., Simpson,M.L. and Weinberger,L.S. (2012)
Transcriptional burst frequency and burst size are equally
modulated across the human genome. Proc. Natl. Acad. Sci. U.S.A.,
109, 17454–17459.

6. Phillips,R., Kondev,J. and Theriot,J. (2009) In: Physical Biology of
the Cell. 2nd edn. Garland Science, NY.

7. Zenklusen,D., Larson,D.R. and Singer,R.H. (2008) Single-RNA
counting reveals alternative modes of gene expression in yeast. Nat.
Struct. Mol. Biol., 15, 1263–1271.

8. Jones,D.L., Brewster,R.C. and Phillips,R. (2014) Promoter
architecture dictates cell-to-cell variability in gene expression.
Science, 346, 1533–1536.

https://doi.org/10.1101/2022.06.19.496754
https://github.com/cellfate/BurstFeedback
https://zenodo.org/record/7371318
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkac1204#supplementary-data


Nucleic Acids Research, 2023, Vol. 51, No. 1 81

9. Pedraza,J.M. and Van Oudenaarden,A. (2005) Noise propagation in
gene networks. Science, 307, 1965–1969.

10. Chalancon,G., Ravarani,C.N., Balaji,S., Martinez-Arias,A.,
Aravind,L., Jothi,R. and Babu,M.M. (2012) Interplay between gene
expression noise and regulatory network architecture. Trends.
Genet., 28, 221–232.

11. Silander,O.K., Nikolic,N., Zaslaver,A., Bren,A., Kikoin,I., Alon,U.
and Ackermann,M. (2012) A genome-wide analysis of
promoter-mediated phenotypic noise in Escherichia coli. PLoS
Genet., 8, e1002443.

12. Sanchez,A. and Golding,I. (2013) Genetic determinants and cellular
constraints in noisy gene expression. Science, 342, 1188–1193.

13. Faure,A.J., Schmiedel,J.M. and Lehner,B. (2017) Systematic analysis
of the determinants of gene expression noise in embryonic stem
cells. Cell Syst., 5, 471–484.

14. Ochiai,H., Hayashi,T., Umeda,M., Yoshimura,M., Harada,A.,
Shimizu,Y., Nakano,K., Saitoh,N., Liu,Z., Yamamoto,T. et al.
(2020) Genome-wide kinetic properties of transcriptional bursting in
mouse embryonic stem cells. Sci. Adv., 6, eaaz6699.

15. Morgan,M.D. and Marioni,J.C. (2018) CpG island composition
differences are a source of gene expression noise indicative of
promoter responsiveness. Genome Biol., 19, 81.

16. Larsson,A.J., Johnsson,P., Hagemann-Jensen,M., Hartmanis,L.,
Faridani,O.R., Reinius,B., Segerstolpe,Å., Rivera,C.M., Ren,B. and
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