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Abstract 

Background  The genetic architectures of colorectal cancer are distinct across different populations. To date, the 
majority of polygenic risk scores (PRSs) are derived from European (EUR) populations, which limits their accurate 
extrapolation to other populations. Here, we aimed to generate a PRS by incorporating East Asian (EAS) and EUR 
ancestry groups and validate its utility for colorectal cancer risk assessment among different populations.

Methods  A large-scale colorectal cancer genome-wide association study (GWAS), harboring 35,145 cases and 
288,934 controls from EAS and EUR populations, was used for the EAS-EUR GWAS meta-analysis and the construc-
tion of candidate EAS-EUR PRSs via different approaches. The performance of each PRS was then validated in external 
GWAS datasets of EAS (727 cases and 1452 controls) and EUR (1289 cases and 1284 controls) ancestries, respectively. 
The optimal PRS was further tested using the UK Biobank longitudinal cohort of 355,543 individuals and ultimately 
applied to stratify individual risk attached by healthy lifestyle.

Results  In the meta-analysis across EAS and EUR populations, we identified 48 independent variants beyond 
genome-wide significance (P < 5 × 10−8) at previously reported loci. Among 26 candidate EAS-EUR PRSs, the PRS-CSx 
approach-derived PRS (defined as PRSCSx) that harbored genome-wide variants achieved the optimal discriminatory 
ability in both validation datasets, as well as better performance in the EAS population compared to the PRS derived 
from known variants. Using the UK Biobank cohort, we further validated a significant dose-response effect of PRSCSx 
on incident colorectal cancer, in which the risk was 2.11- and 3.88-fold higher in individuals with intermediate and 
high PRSCSx than in the low score subgroup (Ptrend = 8.15 × 10−53). Notably, the detrimental effect of being at a high 
genetic risk could be largely attenuated by adherence to a favorable lifestyle, with a 0.53% reduction in 5-year abso-
lute risk.
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Conclusions  In summary, we systemically constructed an EAS-EUR PRS to effectively stratify colorectal cancer risk, 
which highlighted its clinical implication among diverse ancestries. Importantly, these findings also supported that a 
healthy lifestyle could reduce the genetic impact on incident colorectal cancer.

Keywords  Colorectal cancer, East Asian, European, Polygenic risk score, Lifestyle

Background
Colorectal cancer is one of the most commonly diag-
nosed cancers and the second leading cause of cancer 
death worldwide, with over 1.8 million new cases and 
0.9 million deaths in 2020 [1]. Cumulative evidence has 
demonstrated that colorectal cancer is caused by envi-
ronmental factors (e.g., lifestyle), genetic factors, and 
their interactions [2]. Although environmental risk fac-
tors contribute the most, genetic variants can separately 
explain approximately 7–16% of heritability for colorec-
tal cancer among European (EUR) and East Asian (EAS) 
populations, indicating the vital role of variants in the 
development of colorectal cancer [3, 4].

In the past decades, genome-wide association stud-
ies (GWASs) have identified over 100 single nucleotide 
polymorphisms (SNPs) associated with the risk of colo-
rectal cancer [5–7]. Although each of these risk variants 
contributes a small effect on colorectal cancer risk, the 
polygenic risk score (PRS), a method that combines the 
weak effect of these known or genome-wide variants, 
has been found to be an efficient tool for identifying 
individuals at high risk of developing colorectal cancer 
risk [8–10]. However, most PRSs were developed and 
optimized based on the GWAS data of EUR ancestry 
and had a limited discriminating ability among other 
populations (e.g., EAS) [10, 11]. Therefore, it is urgent 
to construct a trans-ancestry PRS that can improve the 
ability of colorectal cancer risk prediction in diverse 
populations.

Unhealthy lifestyles have been known to be associated 
with an increased risk of colorectal cancer, while healthy 
lifestyle habits show inverse associations [12]. In particu-
lar, accumulating evidence indicated that among individ-
uals with high genetic risk, cancer risk can be attenuated 
by adherence to a healthy lifestyle, such as colorectal can-
cer [13], as well as our previous studies in gastric cancer 
[14] and lung cancer [15].

In this study, we performed a large-scale meta-analysis 
of EAS and EUR populations, to identify common genetic 
variants associated with colorectal cancer risk across the 
two ethnic groups. Subsequently, we aimed to develop a 
novel EAS-EUR PRS that can be used to stratify colorec-
tal cancer risk in diverse populations, and further evalu-
ate the benefit of adherence to a healthy lifestyle stratified 
by different levels of genetic risk for developing colorec-
tal cancer in a longitudinal cohort (Fig. 1).

Methods
Study participants
Case‑control studies of derivation stage

EAS of the Chinese population  The subjects of four 
independent Chinese colorectal cancer GWAS (Addi-
tional file 1: Table S1 and Fig. S1) were recruited from the 
National ColoRectal Cancer Cohort (NCRCC), includ-
ing NJCRC GWAS [1316 cases and 2207 controls [16], 
being part of the Genetics and Epidemiology of Colorec-
tal Cancer Consortium (GECCO)], BJCRC GWAS (932 
cases and 966 controls) [17], SHCRC GWAS (1116 cases 
and 1054 controls), and ZJCRC GWAS (1046 cases and 
1184 controls). The detailed information is described in 
Additional file 1: Supplementary Materials.

EAS of the Japanese population  All participants of the 
Japanese GWAS were collected in the BioBank Japan 
Project (BBJ), and the population details have been pub-
lished in a previous study [18]. We obtained the GWAS 
summary statistics of colorectal cancer (7062 cases and 
195,745 controls) from the JENGER website.

EUR population (GECCO)  The GWAS datasets of 
GECCO consortia were deposited in the database of 
Genotypes and Phenotypes (dbGaP, phs001315.v1.p1; 
phs001415.v1.p1 and phs001078.v1.p1). All cases were 
confirmed by medical records, pathologic reports, can-
cer registries, or death certificates. The population details 
have been published in previous studies [5, 6]. After indi-
vidual-level quality control (Additional file 1: Supplemen-
tary Materials), a total of 21,608 cases and 20,278 con-
trols, which did not include datasets of Prostate, Lung, 
Colorectal, and Ovarian (PLCO) and Colorectal Cancer 
Study of Austria (CORSA), were retained for analysis.

EUR population (PLCO)  The PLCO cancer screening 
trial is a cohort study that aims to evaluate the accuracy 
and reliability of screening methods for prostate, lung, 
colorectal, and ovarian cancer [19], and the detailed 
information was described in our previous study [20]. 
We obtained the up-to-date GWAS summary statistics of 
colorectal cancer (2065 cases and 67,500 controls; Octo-
ber 18, 2022) in the EUR population from the PLCOjs 
website [21]. This study was approved by the ethics com-
mittees of the PLCO consortium providers (#PLCO-84).
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Case‑control studies of the validation stage

EAS of the Chinese population  The confirmed cases 
from the JSCRC study were consecutively recruited from 
hospitals in Jiangsu province, China. The cancer-free 
control subjects were selected from individuals receiving 
routine physical examination at hospitals or those par-
ticipating in community screening for non-communica-
ble diseases in Jiangsu province. A total of 727 cases and 
1452 controls were finally included in this study.

EUR population (CORSA)  The CORSA dataset 
included colorectal cancer and adenoma cases and 

colonoscopy-negative controls. Controls received a com-
plete colonoscopy and were free of colorectal cancer or 
polyps [22]. We accessed the CORSA genotype data from 
dbGaP (phs001415.v1.p1) and kept 1289 cases and 1284 
controls for subsequent analysis after the individual-level 
quality control process (Additional file  1: Supplementary 
Materials).

Longitudinal cohort of the testing stage
The UK Biobank cohort is a prospective, population-
based study, which recruited 502,528 adults aged 40–69 
years from the general population between April 2006 

Fig. 1  Summary of the study design. GWAS, genome-wide association study; EAS, East Asian population; EUR, European population; PRS, polygenic 
risk score; AUC, area under the receiver operating characteristics curve; PLCO, Prostate, Lung, Colorectal and Ovarian cancer screening trial; GECCO, 
Genetics and Epidemiology of Colorectal Cancer Consortium; CORSA, Colorectal Cancer Study of Austria; BBJ, BioBank Japan Project
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and December 2010 [23]. After individual-level quality 
control (Additional file  1: Supplementary Materials), a 
total of 355,543 participants were retained for our analy-
sis (Additional file 1: Table S2) [24]. The follow-up time 
was calculated from baseline assessment to the first diag-
nosis of colorectal cancer [International Classification of 
Diseases, 10th revision (ICD-10) codes with C18-C20], 
loss to follow-up, and death or last follow-up (Decem-
ber 14, 2016). This study was conducted using the UK 
Biobank Resource under Application #45611.

GWAS meta‑analysis of colorectal cancer   The geno-
typing, imputation, and SNP-level quality control proce-
dures of all GWAS datasets are described in Additional 
file  1: Supplementary Materials. We used a multivari-
able logistic regression model to estimate the odds ratios 
(ORs) and 95% confidence intervals (CIs) for each SNP 
with the adjustment of sex, age, and principal compo-
nents of ancestry, separately for each individual-level 
GWAS dataset.

We then performed a meta-analysis based on the sum-
mary statistics derived from EAS and EUR populations 
of derivation datasets (35,145 cases and 288,934 controls 
in total) using the inverse variance-weighted fixed-effects 
model, implemented by the METAL software [25]. After 
obtaining the summary statistics of the meta-analysis, we 
excluded SNPs if they (i) had substantial heterogeneity 
identified among studies (P value for heterogeneity test < 
0.001) and (ii) did not pass filters in both EAS and EUR 
populations, a total of 4.7 million SNPs were retained for 
further analysis, and variants at P value < 5 × 10−8 were 
considered to be genome-wide significant. In the previ-
ously reported regions, genome-wide significant SNPs 
with Pconditional < 5 × 10−8 were considered as novel vari-
ants using conditional analysis with the Genome-wide 
Complex Trait Analysis (GCTA) software conditioning 
on the known SNPs [26].

Calculation of PRS  We calculated PRS to aggregate the 
weak effect of individual SNP [8], based on the following 
formula: PRS =

n

i=1
βiSNPi , where n means the num-

ber of SNPs, SNPi and βi are the number of risk alleles 
(i.e., 0, 1, 2), and weight carried by the ith SNP. The EAS-
ancestry (Additional file  1: Table  S3) and EUR-ancestry 
PRSs [10] were constructed using GWAS-reported vari-
ants. Furthermore, the development of candidate EAS-
EUR PRSs was determined by five different approaches 
(Additional file  1: Supplementary Materials), including 
clumping and P value thresholding (i.e., C+T) approach 
(12 scores) [27], LDpred (11 scores) [28], lassosum (1 
score) [29], LDpred2 (1 score) [30], and PRS-CSx meth-
ods (1 score) [31]. The 1000 Genomes EAS and EUR 

populations (Phase 3; 769 individuals) were used as a 
reference panel. The proportions of the different ethnic 
groups in the reference panel were consistent with those 
in the meta-analysis of EAS and EUR GWASs.

Calculation of lifestyle score  We calculated healthy 
lifestyle scores based on the eight lifestyle factors [32], 
including body mass index (BMI), tobacco smoking, 
alcohol consumption, waist-to-hip ratio (WHR), physi-
cal activity, sedentary time, red and processed meat 
intake, and vegetable and fruit intake (Additional file  1: 
Table S4). Each lifestyle factor was given a score of 0 or 
1, with 1 representing the healthy behavior category, 
and the sum of the eight scores was used as the healthy 
lifestyle score. The detailed information is described in 
Additional file 1: Supplementary Materials.

Estimation of 5‑year absolute risk  We estimated indi-
vidual 5-year absolute risk for developing colorectal can-
cer by combining the relative risk (incorporating genetic 
risk and lifestyle) with the incidence rate of colorectal 
cancer and the mortality rate for all causes except for 
colorectal cancer [9], and the exact details of the calcula-
tions were described in our previous study [16].

Statistical analysis  The population structure was esti-
mated using the EIGENSOFT software [33], and the 
Manhattan plot and quantile-quantile plot based on 
the -log10 (P value) were created by using the R package 
qqman (https://​cran.r-​proje​ct.​org/​web/​packa​ges/​qqman/​
index.​html). We evaluated the discriminatory ability of 
PRSs derived from different approaches described above 
using the crude and covariates-adjusted area under the 
receiver operating characteristics curve (AUC) via the R 
package RISCA [34].

In the UK Biobank cohort, the Cox proportional hazards 
model was used to estimate the hazard ratios (HRs) and 
95% CIs after adjusting for corresponding confounding 
factors. We compared the difference in the distribution 
of PRS between two or more groups by the Wilcoxon or 
Kruskal-Wallis tests. Participants were classified into ten 
equal subgroups according to the decile distribution of 
PRS and categorized into low (bottom 10%), intermedi-
ate (10–90%), and high genetic risk (top 10%) subgroups 
for group comparisons. Similarly, participants were clas-
sified into unfavorable (0 and 1 score), intermediate (2 
and 3 score), and favorable (≥ 4 score) lifestyle subgroups 
based on lifestyle scores ranging from 0 to 8. The log-
rank test was used to evaluate the difference in cumula-
tive incidence (one minus the Kaplan-Meier estimate) 
stratified by different levels of PRS or lifestyle scores. The 
incidence proportion  and 95% CI in each group were 

https://cran.r-project.org/web/packages/qqman/index.html
https://cran.r-project.org/web/packages/qqman/index.html
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estimated by the exact Poisson test. The R package Shiny 
(https://​cran.r-​proje​ct.​org/​web/​packa​ges/​shiny/) was 
used to construct the colorectal cancer risk prediction 
web server, which was freely available and open source.

In addition, to assess the robustness of the results, we 
performed the following sensitivity analyses: (i) excluded 
incident colorectal cancer cases that had occurred during 
the first year of follow-up; (ii) evaluated the associations 
using ancestry-corrected PRS: briefly, fit a linear regres-
sion model using the first ten principal components of 
ancestry to predict PRS, and the residual from this model 
was used to create ancestry-corrected PRS; (iii) healthy 
lifestyle categories were reclassified to unfavorable (0, 1, 
and 2 score), intermediate (3 and 4 score), and favora-
ble (≥ 5 score) lifestyle groups; and (iv) excluded non-
colorectal cancer participants with other cancers that 
occurred during the time of follow-up.

All other statistical analyses were performed using the R soft-
ware (version 3.6.1, https://​cran.r-​proje​ct.​org/), and a two-
sided P value less than 0.05 was considered as significant.

Results
EAS‑EUR GWAS meta‑analysis of colorectal cancer
The combined EAS-EUR GWAS dataset of colorectal 
cancer comprised a total of 35,145 cases and 288,934 
controls, and there was no residual population strati-
fication observed via genomic control inflation factors 
(lambda = 1.002; Additional file 1: Fig. S2).

In total, we identified 48 independent SNPs [link-
age disequilibrium (LD) r2 < 0.1] that were significantly 
associated with colorectal cancer risk beyond genome-
wide significance (P < 5 × 10−8; Table 1; Additional file 1: 
Fig. S3). We found that all of these SNPs were located 
within 1 Mb of well-identified regions reported by pre-
vious GWASs, while one novel risk variant (LD r2 < 0.1 
with the previously reported SNPs) was found to be 
independently associated with colorectal cancer risk in 
conditional analyses on GWAS-reported risk variants 
[rs7623129 (3p14.1), ORconditional = 1.06, Pconditional = 1.18 
× 10−8; Additional file 1: Table S5]. Especially, functional 
annotation showed that rs7623129 overlapped with the 
enhancer histone mark and DNAse hypersensitivity site, 
indicating that it may be involved in the development of 
colorectal cancer by regulating the expression of nearby 
ADAMTS9 (Additional file 1: Table S6).

PRS calculation and validation in the independent datasets
Subsequently, we aimed to construct and validate a novel 
PRS for colorectal cancer risk stratification by incorpo-
rating EAS and EUR populations. As shown in Table  2, 

although the EUR-ancestry PRS showed great dis-
criminatory ability in the EUR population (i.e., CORSA 
dataset; AUC​crude = 0.629, AUC​adjust = 0.638), its perfor-
mance in the EAS population (i.e., JSCRC dataset; AUC​
crude = 0.511, AUC​adjust = 0.510) was limited. Similar 
results were also found in EAS-ancestry PRS, demon-
strating the limited transferability of single-ancestry PRS 
in other populations.

Among the 26 developed EAS-EUR PRSs, twenty were 
significantly associated with an increased risk of develop-
ing colorectal cancer in the JSCRC GWAS of EAS ances-
try [OR per standard deviation (SD) increase ranged from 
1.29 (P = 8.02 × 10−8) for C+T (P value and LD r2: 5 × 
10−8 and 0.01) to 1.73 (P = 7.19 × 10−27) for PRS-CSx], 
as well as in the CORSA GWAS of EUR ancestry [OR 
per SD ranged from 1.21 (P = 4.89 × 10−6) for C+T (P 
value and LD r2: 0.05 and 0.01) to 1.48 (P = 5.18 × 10−19) 
for PRS-CSx; Table 2]. Notably, the PRS-CSx approach-
based PRS that harbored genome-wide 1,145,689 SNPs 
(defined as PRSCSx) achieved the optimal discrimina-
tory ability for distinguishing cases from healthy con-
trols in both validation datasets (JSCRC dataset: AUC​
crude = 0.639, AUC​adjust = 0.646; Additional file 1: Fig. S4; 
CORSA dataset: AUC​crude = 0.602, AUC​adjust = 0.608; 
Additional file  1: Fig. S5). Especially, when compared 
with known variant-derived PRS, the PRSCSx showed bet-
ter predictive performance in the EAS population than 
both EUR-ancestry (AUC​adjust: 0.646 vs. 0.510) and EAS-
ancestry PRSs (AUC​adjust: 0.646 vs. 0.580), although it had 
a marginally weaker predictive ability in EUR population 
than EUR-ancestry PRS (AUC​adjust: 0.608 vs. 0.638).

PRS test in the UK Biobank cohort
We further evaluated the performance of the optimal 
PRSCSx for colorectal cancer risk prediction in the UK 
Biobank cohort, in which 2621 colorectal cancer cases 
among 355,543 individuals were confirmed during a 
median follow-up of 7.88 years. As expected, colorectal 
cancer cases had a higher PRSCSx value than those without 
colorectal cancer [HR = 1.42, 95% CI = 1.37 to 1.48 per SD 
increase, P = 3.53 × 10−72, Additional file 1: Table S7; PWil-

coxon < 2 × 10−16; Additional file 1: Fig. S6A]. Importantly, 
PRSCSx had a stable discriminatory ability with an AUC of 
0.595 (for crude AUC) and 0.597 (for covariates-adjusted 
AUC; Additional file 1: Fig. S6B), similar with that in the 
validation dataset of EUR ancestry. Notably, there was a 
dose-response effect of PRSCSx on developing colorectal 
cancer at both decile classification (Ptrend = 1.57 × 10−56; 
Additional file 1: Fig. S6C) and three-category classification 
(intermediate vs. low: HR = 2.11, 95% CI = 1.76 to 2.54, P 
= 1.30 × 10−15; high vs. low: HR = 3.88, 95% CI = 3.18 to 
4.74, P = 2.82 × 10−40; Ptrend = 8.15 × 10−53; Additional 
file 1: Table S7; log-rank P < 2 × 10−16; Fig. 2A). Besides, we 

https://cran.r-project.org/web/packages/shiny/
https://cran.r-project.org/
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observed similar findings underlying the sensitivity analy-
ses (Additional file 1: Table S8).

Evaluation of the benefit of adherence to a healthy lifestyle 
stratified by genetic risk
In the UK Biobank cohort, several healthy lifestyle factors 
were associated with a decreased risk of colorectal cancer; 
for example, compared to smokers, non-smokers had a 0.18-
fold reduced risk of developing colorectal cancer (OR = 0.82, 
P = 3.58 × 10−7; Additional file 1: Table S4). Furthermore, 
we noticed a significantly protective effect of combined life-
style score in a dose-response manner on colorectal cancer 
development at both continuous levels (HR = 0.90, 95% CI 

= 0.88 to 0.93 per lifestyle score increase, P = 3.39 × 10−12; 
Additional file 1: Table S9) and stratified levels (intermediate 
vs. unfavorable: HR = 0.79, 95% CI = 0.72 to 0.87, P = 2.86 
× 10−6; favorable vs. unfavorable: HR = 0.65, 95% CI = 0.58 
to 0.74, P = 2.56 × 10−12; Ptrend = 1.92 × 10−12; log-rank P 
< 2 × 10−16; Fig. 2B). Similar findings were observed in the 
sensitivity analyses (Additional file  1: Table  S10). Intrigu-
ingly, there was an inverse relationship between the PRSCSx 
and several lifestyle factors (PWilcoxon < 0.05; Additional file 1: 
Fig. S7A) or the lifestyle score (PKruskal-Wallis = 1.60 × 10−8; 
Pchi-square = 9.83 × 10−7; Additional file 1: Fig. S7B-C), but 
their effects on colorectal cancer risk were not mutually 
influenced (Additional file 1: Tables S7-10).

Table 2  Performance evaluation of PRSs derived from different approaches in validation datasets

EAS East Asian population, EUR European population, PRS polygenic risk score, C+T Clumping and P value thresholding, AUC​ area under the receiver operating 
characteristics curve, 95% CI 95% confidence interval, OR odds ratio, SD standard deviation, GWAS genome-wide association study, SNP single nucleotide 
polymorphism, CORSA Colorectal Cancer Study of Austria
a Parameter for SNP selection: population for GWAS-reported variants; P value (LD r2) for C+T method; fraction for LDpred method; optimal parameter for lassosum 
method, auto parameter for LDpred2, and PRS-CSx methods
b Crude AUC/covariates-adjusted AUC​
c OR (95% CI) per SD, derived from logistic model with the adjustment of sex, age, and principal components
# The optimal PRS was highlighted in bold

PRS method Parametera NSNP JSCRC GWAS of EAS population CORSA GWAS of EUR population

AUC​b OR (95% CI)c Pc AUC​b OR (95% CI)c Pc

GWAS-reported EUR 140 0.511/0.510 1.04 (0.95, 1.14) 0.432 0.629/0.638 1.65 (1.51, 1.81) 1.49E−28

EAS 37 0.577/0.580 1.33 (1.21, 1.46) 2.01E−09 0.513/0.506 1.02 (0.94, 1.11) 0.567

C+T 5.00E−08 (0.001) 38 0.569/0.573 1.29 (1.18, 1.42) 6.73E−08 0.579/0.583 1.33 (1.23, 1.45) 1.77E−11

5.00E−06 (0.001) 88 0.569/0.575 1.30 (1.18, 1.43) 3.30E−08 0.589/0.597 1.39 (1.28, 1.51) 4.02E−14

5.00E−04 (0.001) 784 0.591/0.597 1.44 (1.31, 1.58) 5.39E−14 0.559/0.567 1.27 (1.16, 1.38) 3.51E−08

0.05 (0.001) 7128 0.611/0.618 1.52 (1.38, 1.68) 1.52E−17 0.556/0.556 1.23 (1.13, 1.33) 1.65E−06

5.00E−08 (0.01) 39 0.570/0.573 1.29 (1.18, 1.42) 8.02E−08 0.572/0.574 1.30 (1.20, 1.42) 5.96E−10

5.00E−06 (0.01) 92 0.571/0.577 1.30 (1.18, 1.42) 4.54E−08 0.583/0.590 1.35 (1.24, 1.47) 4.36E−12

5.00E−04 (0.01) 854 0.588/0.593 1.42 (1.30, 1.57) 2.62E−13 0.558/0.564 1.25 (1.15, 1.36) 1.04E−07

0.05 (0.01) 13,989 0.587/0.592 1.37 (1.25, 1.50) 4.12E−11 0.555/0.553 1.21 (1.12, 1.32) 4.89E−06

5.00E−08 (0.1) 48 0.573/0.577 1.31 (1.20, 1.44) 1.02E−08 0.581/0.581 1.33 (1.22, 1.44) 3.99E−11

5.00E−06 (0.1) 116 0.579/0.584 1.34 (1.22, 1.47) 7.91E−10 0.592/0.597 1.39 (1.28, 1.51) 3.42E−14

5.00E−04 (0.1) 992 0.597/0.602 1.46 (1.33, 1.61) 6.02E−15 0.573/0.577 1.31 (1.20, 1.42) 3.22E−10

0.05 (0.1) 27,032 0.604/0.608 1.52 (1.38, 1.68) 7.05E−18 0.568/0.573 1.29 (1.19, 1.40) 2.61E−09

LDpred 1 883,144 0.611/0.616 1.55 (1.40, 1.70) 8.25E−19 0.560/0.567 1.27 (1.17, 1.38) 2.13E−08

0.3 883,144 0.612/0.617 1.56 (1.41, 1.71) 3.15E−19 0.560/0.567 1.28 (1.18, 1.39) 8.60E−09

0.1 883,144 0.614/0.619 1.58 (1.43, 1.74) 3.26E−20 0.567/0.574 1.31 (1.20, 1.42) 4.61E−10

0.03 883,144 0.621/0.626 1.64 (1.48, 1.80) 6.87E−23 0.586/0.595 1.39 (1.27, 1.51) 6.45E−14

0.01 883,144 0.633/0.638 1.68 (1.52, 1.85) 7.86E−25 0.602/0.608 1.47 (1.35, 1.60) 2.04E−18

0.003 883,144 0.495/0.491 0.98 (0.89, 1.07) 0.627 0.514/0.513 1.02 (0.94, 1.11) 0.663

0.001 883,144 0.508/0.509 1.04 (0.95, 1.14) 0.436 0.491/0.490 0.95 (0.88, 1.04) 0.257

3.00E−04 883,144 0.499/0.499 0.99 (0.91, 1.09) 0.885 0.493/0.491 0.98 (0.91, 1.07) 0.704

1.00E−04 883,144 0.487/0.489 0.94 (0.86, 1.03) 0.202 0.510/0.508 1.04 (0.96, 1.13) 0.343

3.00E−05 883,144 0.494/0.498 0.98 (0.89, 1.07) 0.670 0.501/0.507 1.03 (0.95, 1.12) 0.464

1.00E−05 883,144 0.480/0.482 0.95 (0.87, 1.04) 0.277 0.505/0.500 1.02 (0.94, 1.11) 0.653

Lassosum Optimal 5984 0.606/0.610 1.51 (1.37, 1.66) 4.53E−17 0.601/0.605 1.45 (1.33, 1.58) 2.12E−17

LDpred2 Auto 890,687 0.570/0.573 1.30 (1.19, 1.43) 2.36E−08 0.557/0.563 1.24 (1.14, 1.35) 3.19E−07

PRS-CSx# Auto 1,145,689 0.639/0.646 1.73 (1.56, 1.91) 7.19E−27 0.602/0.608 1.48 (1.36, 1.62) 5.18E−19
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Therefore, we further evaluated the joint effect of genetic 
and lifestyle factors on the risk for incident colorectal 
cancer. As expected, there was a notable dose-response 
manner on increasing colorectal cancer risk as PRSCSx 
increased and lifestyle score decreased (trend to unfavora-
ble lifestyle) (log-rank P < 2 × 10−16; Fig.  2C, D), but no 
multiplicative interaction between genetic risk and lifestyle 
score was observed (Pinteraction = 0.539). Interestingly, when 
stratifying individuals by PRSCSx categories, we observed 
that a healthy lifestyle could still be significantly associated 
with a reduced risk of developing colorectal cancer broadly, 
regardless of the genetic risk effect (low: Ptrend = 0.043, 
intermediate: Ptrend = 7.18 × 10−11, high: Ptrend = 0.077; 
Table 3). Similar trends were found in the sensitivity analy-
ses (Additional file 1: Table S11).

Estimation of 5‑year absolute risk
Subsequently, we estimated the 5-year absolute risk of 
developing colorectal cancer using a combination of 
genetic and lifestyle factors and observed that colorec-
tal cancer patients had a higher 5-year absolute risk than 
those without colorectal cancer (PWilcoxon < 2 × 10−16; 
Additional file 1: Fig. S8A). Especially when stratified by 
age group, a higher 5-year absolute risk was observed in 
individuals carrying a high genetic risk or an unfavorable 
lifestyle (PKruskal-Wallis < 2 × 10−16; Additional file  1: Fig. 
S8B-C). Furthermore, in the stratification by genetic risk 
(Table 3 and Fig. 3A), there was a significant risk reduc-
tion in individuals with a low PRS and a favorable life-
style (risk = 0.14%, reduction = 0.14%) compared with 
those with a low PRS but an unfavorable lifestyle (risk 
= 0.28%), and among individuals with a high PRS, the 
risk of an unfavorable lifestyle increased to 1.07%, which 
could be reduced to 0.54% among those with a favorable 
lifestyle (reduction = 0.53%).

Construction of ColoRectal Cancer Risk Prediction System 
(CRC‑RPS)
Furthermore, we stratified the risk population according 
to the median value (0.34%; as a reference threshold) and 
two times the threshold (0.68%) of 5-year absolute risk 
among individuals without colorectal cancer, which was 
defined as low (< 0.34%), intermediate (0.34 to 0.68%) 
and high risk (> 0.68%). As expected, both intermediate- 
and high-risk populations had a higher risk of developing 
colorectal cancer than the low-risk population (inter-
mediate: HR = 2.47, 95% CI = 2.21 to 2.75; high: HR = 

4.30, 95% CI = 3.87 to 4.78; Fig.  3B). To friendly apply 
our findings, we developed a colorectal cancer risk pre-
diction web server, CRC-RPS, to help users estimate their 
5-year absolute risk of developing colorectal cancer by 
combining genetic and lifestyle factors (http://​njmu-​edu.​
cn:​3838/​CRC-​RPS/). In brief, users can easily input their 
sex, age, and lifestyle information along with the geno-
types of 1.15 million SNPs to obtain an estimated 5-year 
absolute risk and the assigned risk-population group. For 
example, a user with a predicted 0.2% of 5-year absolute 
risk was grouped as low risk of developing colorectal 
cancer.

Discussion
In the present study, we comprehensively constructed 
several sets of EAS-EUR PRSs based on the large-scale 
GWAS data of colorectal cancer across EAS and EUR 
populations and subsequently found a solid PRS frame-
work (i.e., PRSCSx) derived from genome-wide SNPs, 
independent of individual lifestyle, for stratifying the risk 
populations of developing colorectal cancer evidenced 
by independent validation datasets and a longitudinal 
cohort. Importantly, even though there was diversity in 
genetic risk, adherence to a healthy lifestyle behavior 
could consistently reduce the risk of developing colorec-
tal cancer.

In recent decades, convincing evidence has emerged 
suggesting that identifying high-risk individuals can 
enable enhanced screening and the application of other 
interventions, thereby reducing the incidence of colo-
rectal cancer [35]. Therefore, researchers have paid 
more attention to the clinical use of PRS, by determining 
whether it can stratify populations into subgroups with a 
distinct risk of developing diseases for early interventions 
[8, 36]. To date, multiple PRSs have been constructed and 
confirmed to have a discriminatory ability in distinguish-
ing colorectal cancer cases from healthy controls [9, 10, 
37]. However, most PRSs were derived from individuals 
of EUR ancestry, which might limit their application in 
other ethnic populations. Cumulative evidence has dem-
onstrated that, when applying the PRS models trained 
with EUR individuals to other ethnic populations, there 
were less accurate compared to EUR populations [11, 38]. 
In particular, Thomas et  al. found that the PRS model 
of colorectal cancer derived from 120,184 subjects of 
EUR ancestry performed worse for Asians, Hispanics, 
and African Americans than for Europeans [10]. These 

Fig. 2  The cumulative risk of developing colorectal cancer according to the PRS and lifestyle score in the UK Biobank cohort. A Cumulative 
incidence of colorectal cancer in the low, intermediate, and high PRS groups. B Cumulative incidence of colorectal cancer in unfavorable, 
intermediate, and favorable lifestyle groups. C Cumulative incidence of colorectal cancer stratified by different levels of PRS and lifestyle score. D 
The associations of PRS and lifestyle score with incident colorectal cancer. The HR and 95% CI were derived from the Cox regression model with the 
adjustment of sex, age, center, and first 10 principal components. PRS, polygenic risk score; HR, hazard ratio; 95% CI, 95% confidence intervals

(See figure on next page.)

http://njmu-edu.cn:3838/CRC-RPS/
http://njmu-edu.cn:3838/CRC-RPS/
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Fig. 2  (See legend on previous page.)
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Table 3  Cumulative risk of developing colorectal cancer according to different levels of PRS and lifestyle score in the UK Biobank 
cohort

PRS polygenic risk score, HR hazard ratio, 95% CI 95% confidence intervals
a Derived from Cox regression model with the adjustment of sex, age, center, and first 10 principal components
b Mean value (reduction) of 5-year absolute risk

PRS Lifestyle Cases/all Incidence 
proportion (95% CI)

HR (95% CI)a Pa Ptrend 5-year absolute 
risk (reduction)b

Low Unfavorable 33/6650 0.50% (0.34, 0.70) 1.00 (reference) 0.28% (reference)

Intermediate 47/14,338 0.33% (0.24, 0.44) 0.76 (0.48, 1.21) 0.248 0.19% (0.09%)

Favorable 22/10,913 0.20% (0.13, 0.31) 0.55 (0.31, 0.98) 0.044 0.043 0.14% (0.14%)

Intermediate Unfavorable 567/54,746 1.04% (0.95, 1.12) 1.00 (reference) 0.61% (reference)

Intermediate 808/115,315 0.70% (0.65, 0.75) 0.78 (0.70, 0.87) 9.18E−06 0.42% (0.19%)

Favorable 422/84,334 0.50% (0.45, 0.55) 0.64 (0.56, 0.73) 9.92E−11 7.18E−11 0.31% (0.31%)

High Unfavorable 113/7030 1.61% (1.32, 1.93) 1.00 (reference) 1.07% (reference)

Intermediate 180/14,406 1.25% (1.07, 1.45) 0.87 (0.68, 1.11) 0.255 0.75% (0.32%)

Favorable 100/10,209 0.98% (0.80, 1.19) 0.77 (0.58, 1.03) 0.078 0.077 0.54% (0.53%)

Fig. 3  Estimation of 5-year absolute risk for colorectal cancer in the UK Biobank cohort. A The 5-year absolute risk of developing colorectal cancer 
defined by different levels of PRS and lifestyle score. B The associations between different levels of 5-year absolute risk and incident colorectal 
cancer. The HR and 95% CI were derived from the Cox regression model with the adjustment of center and first 10 principal components. PRS, 
polygenic risk score; HR, hazard ratio; 95% CI, 95% confidence intervals
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findings highlighted the need to reconsider the model 
performance when applying PRS to non-European ances-
try and bolstered the rationale for trans-ancestry PRS in 
diverse populations. Here, we built a novel PRSCSx across 
EAS and EUR populations and validated that this PRS 
could significantly predict the risk of developing colo-
rectal cancer in two ethnic groups; importantly, the high 
PRS group could be used in colorectal cancer screening 
for personalized prevention.

Although the performance of our PRS in the EUR 
population (e.g., CORSA dataset) is substantially lower 
than previous EUR-ancestry PRSs (e.g., Thomas et  al.’s 
genome-wide PRS) [10], our aim was to improve the 
clinical utility of PRS in multiple ethnic groups, espe-
cially for non-EUR (e.g., EAS) populations. As evidenced 
in a recent trans-ancestry PRS study, when the target 
population was EUR population, the improvement of 
multi-ancestry PRS over EUR-ancestry PRS was limited; 
however, when predicting into EAS populations, multi-
ancestry PRS clearly outperformed EUR-ancestry PRS 
[31], which was also found in our study. Therefore, the 
advantage of our PRS compared to EUR-ancestry PRSs 
should be further validated in independent EAS longitu-
dinal cohorts.

A healthy lifestyle has been known to be associated 
with a decreased risk of colorectal cancer. For instance, 
Kirkegaard et  al. found that 23% of colorectal cancer 
cases might be caused by a lack of adherence to five life-
style recommendations in a prospective Danish cohort 
study with 55,487 participants [39]. In our study, another 
important finding was that the detrimental effect of high 
genetic risk on incident colorectal cancer could be largely 
attenuated by adherence to a healthy lifestyle, which was 
consistent with previous findings [13, 32, 40]. Moreover, 
although the 5-year absolute risk associated with adher-
ence to a healthy lifestyle was greatest in the group at 
high genetic risk, our results still emphasize the notion 
that the public senses of a healthy lifestyle in the whole 
population will lead to an evident reduction in colorectal 
cancer risk.

This study has several strengths. First, to our knowl-
edge, this is the first study to develop an EAS-EUR PRS 
with a sufficient sample size, followed by the performance 
evaluation on incident colorectal cancer risk via external 
case-control studies and prospective cohort. This study 
provided further genetic information supporting the 
contribution of germline variation to ancestry dispar-
ity in the development of colorectal cancer. Second, we 
constructed a user-friendly web server to help generate 
a customized estimate of risk for developing colorectal 
cancer, for use as an early screening method. Neverthe-
less, we acknowledge several limitations. First, we need 
to validate the predictive ability of this novel PRS in an 

independent EAS longitudinal cohort with sufficient 
samples. Second, we currently focus on EAS and EUR 
populations in this study, and other populations (e.g., 
African Americans and Hispanics) need to be included 
in future work. Third, the limited model performance in 
the EUR population needs to be further improved using 
a larger sample size in the training set, as well as more 
sophisticated trans-ancestry PRS methods.

Conclusions
In conclusion, we applied an EAS-EUR combined 
approach to construct a PRS framework derived from 
genome-wide SNPs that can effectively predict colorec-
tal cancer risk, which reduced the gap in genetic risk pre-
diction between diverse populations. Importantly, these 
findings also provided further evidence that a healthy 
lifestyle can attenuate the genetic impact on incident 
colorectal cancer.
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