Skip to main content
. 2023 Jan 24;15:4. doi: 10.1186/s13073-023-01156-9

Table 2.

Performance evaluation of PRSs derived from different approaches in validation datasets

PRS method Parametera NSNP JSCRC GWAS of EAS population CORSA GWAS of EUR population
AUCb OR (95% CI)c Pc AUCb OR (95% CI)c Pc
GWAS-reported EUR 140 0.511/0.510 1.04 (0.95, 1.14) 0.432 0.629/0.638 1.65 (1.51, 1.81) 1.49E−28
EAS 37 0.577/0.580 1.33 (1.21, 1.46) 2.01E−09 0.513/0.506 1.02 (0.94, 1.11) 0.567
C+T 5.00E−08 (0.001) 38 0.569/0.573 1.29 (1.18, 1.42) 6.73E−08 0.579/0.583 1.33 (1.23, 1.45) 1.77E−11
5.00E−06 (0.001) 88 0.569/0.575 1.30 (1.18, 1.43) 3.30E−08 0.589/0.597 1.39 (1.28, 1.51) 4.02E−14
5.00E−04 (0.001) 784 0.591/0.597 1.44 (1.31, 1.58) 5.39E−14 0.559/0.567 1.27 (1.16, 1.38) 3.51E−08
0.05 (0.001) 7128 0.611/0.618 1.52 (1.38, 1.68) 1.52E−17 0.556/0.556 1.23 (1.13, 1.33) 1.65E−06
5.00E−08 (0.01) 39 0.570/0.573 1.29 (1.18, 1.42) 8.02E−08 0.572/0.574 1.30 (1.20, 1.42) 5.96E−10
5.00E−06 (0.01) 92 0.571/0.577 1.30 (1.18, 1.42) 4.54E−08 0.583/0.590 1.35 (1.24, 1.47) 4.36E−12
5.00E−04 (0.01) 854 0.588/0.593 1.42 (1.30, 1.57) 2.62E−13 0.558/0.564 1.25 (1.15, 1.36) 1.04E−07
0.05 (0.01) 13,989 0.587/0.592 1.37 (1.25, 1.50) 4.12E−11 0.555/0.553 1.21 (1.12, 1.32) 4.89E−06
5.00E−08 (0.1) 48 0.573/0.577 1.31 (1.20, 1.44) 1.02E−08 0.581/0.581 1.33 (1.22, 1.44) 3.99E−11
5.00E−06 (0.1) 116 0.579/0.584 1.34 (1.22, 1.47) 7.91E−10 0.592/0.597 1.39 (1.28, 1.51) 3.42E−14
5.00E−04 (0.1) 992 0.597/0.602 1.46 (1.33, 1.61) 6.02E−15 0.573/0.577 1.31 (1.20, 1.42) 3.22E−10
0.05 (0.1) 27,032 0.604/0.608 1.52 (1.38, 1.68) 7.05E−18 0.568/0.573 1.29 (1.19, 1.40) 2.61E−09
LDpred 1 883,144 0.611/0.616 1.55 (1.40, 1.70) 8.25E−19 0.560/0.567 1.27 (1.17, 1.38) 2.13E−08
0.3 883,144 0.612/0.617 1.56 (1.41, 1.71) 3.15E−19 0.560/0.567 1.28 (1.18, 1.39) 8.60E−09
0.1 883,144 0.614/0.619 1.58 (1.43, 1.74) 3.26E−20 0.567/0.574 1.31 (1.20, 1.42) 4.61E−10
0.03 883,144 0.621/0.626 1.64 (1.48, 1.80) 6.87E−23 0.586/0.595 1.39 (1.27, 1.51) 6.45E−14
0.01 883,144 0.633/0.638 1.68 (1.52, 1.85) 7.86E−25 0.602/0.608 1.47 (1.35, 1.60) 2.04E−18
0.003 883,144 0.495/0.491 0.98 (0.89, 1.07) 0.627 0.514/0.513 1.02 (0.94, 1.11) 0.663
0.001 883,144 0.508/0.509 1.04 (0.95, 1.14) 0.436 0.491/0.490 0.95 (0.88, 1.04) 0.257
3.00E−04 883,144 0.499/0.499 0.99 (0.91, 1.09) 0.885 0.493/0.491 0.98 (0.91, 1.07) 0.704
1.00E−04 883,144 0.487/0.489 0.94 (0.86, 1.03) 0.202 0.510/0.508 1.04 (0.96, 1.13) 0.343
3.00E−05 883,144 0.494/0.498 0.98 (0.89, 1.07) 0.670 0.501/0.507 1.03 (0.95, 1.12) 0.464
1.00E−05 883,144 0.480/0.482 0.95 (0.87, 1.04) 0.277 0.505/0.500 1.02 (0.94, 1.11) 0.653
Lassosum Optimal 5984 0.606/0.610 1.51 (1.37, 1.66) 4.53E−17 0.601/0.605 1.45 (1.33, 1.58) 2.12E−17
LDpred2 Auto 890,687 0.570/0.573 1.30 (1.19, 1.43) 2.36E−08 0.557/0.563 1.24 (1.14, 1.35) 3.19E−07
PRS-CSx# Auto 1,145,689 0.639/0.646 1.73 (1.56, 1.91) 7.19E−27 0.602/0.608 1.48 (1.36, 1.62) 5.18E−19

EAS East Asian population, EUR European population, PRS polygenic risk score, C+T Clumping and P value thresholding, AUC area under the receiver operating characteristics curve, 95% CI 95% confidence interval, OR odds ratio, SD standard deviation, GWAS genome-wide association study, SNP single nucleotide polymorphism, CORSA Colorectal Cancer Study of Austria

aParameter for SNP selection: population for GWAS-reported variants; P value (LD r2) for C+T method; fraction for LDpred method; optimal parameter for lassosum method, auto parameter for LDpred2, and PRS-CSx methods

bCrude AUC/covariates-adjusted AUC

cOR (95% CI) per SD, derived from logistic model with the adjustment of sex, age, and principal components

#The optimal PRS was highlighted in bold