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Abstract 

Background  Chronic obstructive pulmonary disease (COPD) varies significantly in symptomatic and physiologic 
presentation. Identifying disease subtypes from molecular data, collected from easily accessible blood samples, can 
help stratify patients and guide disease management and treatment.

Methods  Blood gene expression measured by RNA-sequencing in the COPDGene Study was analyzed using a net-
work perturbation analysis method. Each COPD sample was compared against a learned reference gene network to 
determine the part that is deregulated. Gene deregulation values were used to cluster the disease samples.

Results  The discovery set included 617 former smokers from COPDGene. Four distinct gene network subtypes are 
identified with significant differences in symptoms, exercise capacity and mortality. These clusters do not necessarily 
correspond with the levels of lung function impairment and are independently validated in two external cohorts: 769 
former smokers from COPDGene and 431 former smokers in the Multi-Ethnic Study of Atherosclerosis (MESA). Addi-
tionally, we identify several genes that are significantly deregulated across these subtypes, including DSP and GSTM1, 
which have been previously associated with COPD through genome-wide association study (GWAS).

Conclusions  The identified subtypes differ in mortality and in their clinical and functional characteristics, underlining 
the need for multi-dimensional assessment potentially supplemented by selected markers of gene expression. The 
subtypes were consistent across cohorts and could be used for new patient stratification and disease prognosis.
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Introduction
Chronic obstructive pulmonary disease (COPD) is a 
heterogeneous disease, including emphysema and small 
and large airways disease [1, 2]. COPD diagnosis [3] is 
based on spirometric measures reflecting reduced airflow 
obstruction, specifically a reduced ratio of forced expira-
tory volume in 1-s (FEV1) to forced vital capacity (FVC) 
less than 0.70 [4]. But this definition does not account for 
the vast heterogeneity observed in COPD cases in terms 
of the rate of progression of the disease [5], response to 
treatment [6–8], symptom burden [9], inflammatory 
response [10], and lung physiology [11]. Therefore, there 
has been tremendous interest in identifying COPD sub-
types that reflect differences in these disease aspects [12, 
13]. Well-characterized subtypes with readily assess-
able biomarkers would allow for the selection of high-
risk COPD populations for therapeutic intervention and 
patient stratification leading to more highly-powered 
clinical trials. Molecular subtyping could also help to 
identify rare genetic variants and individuals at elevated 
risk for development of the disease [14].

Disease subtyping has been relatively successful in 
asthma [15], but efforts in COPD have proven more dif-
ficult. Previous attempts to subtype COPD have been 
limited due to lack of reproducibility and constraints 
in study design. Another limitation to COPD subtyp-
ing efforts is the barrier to validating and interpreting 
subtypes that are based on clinical characteristics (e.g., 
spirometry, body mass index). Some studies have tried 
to circumvent this problem by withholding a pre-defined 
subset of clinical characteristics at the clustering step 
and then using those to assess the resulting clusters [16]; 
however, this raises the question of whether the holdout 
set is representative of the population. While it is possible 
to find distinct groups of subjects regarding these clini-
cal variables, these classifications are unlikely to identify 
novel disease mechanisms.

Incorporation of genomic information can greatly 
enhance the relevance of COPD subtypes. Peripheral 
blood gene expression is an attractive candidate for 
potential biomarkers because it is easily accessible. One 
previous study identified four COPD clusters based on 
blood gene expression with a non-negative matrix factor-
ization approach [17]. These clusters of subjects promis-
ingly varied in the severity of their disease, but, because 
the study relied on microarray gene expression data, 
discovery was limited to the genes included on those 
platforms.

We recently developed a new method for evaluat-
ing gene network perturbations in single samples (single 
sample Network Perturbation Assessment, ssNPA) [18]. 
ssNPA uses probabilistic graphs [19–22] to estimate the 
gene network from a set of reference (control) samples 

and assesses perturbations in each individual disease 
sample. ssNPA outperformed existing algorithms in iden-
tifying subgroups of samples based on these gene expres-
sion perturbation features and had superior clustering 
performance compared to gene expression itself [18] and 
other methods [23, 24]. In this paper, we apply ssNPA to 
the Genetic Epidemiology of COPD Study (COPDGene) 
and the Multi-ethnic Study of Atherosclerosis (MESA) 
data in order to identify and validate new COPD pheno-
types solely from gene expression measured in peripheral 
blood samples.

Methods
COPD subtyping: discovery and validation cohorts
The COPDGene Study is a longitudinal study that aims to 
investigate the genetic basis of COPD susceptibility and 
progression. Our subtype discovery dataset consisted of 
1211 COPDGene subjects for whom whole blood RNA-
seq data were collected at the 5 year follow-up visit [25]. 
The first validation dataset included 1444 COPDGene 
participants that were sequenced later. These samples 
were not included in the training dataset and were pro-
cessed independently. The second validation dataset 
consisted of 821 unrelated MESA participants. MESA 
is an ongoing prospective cohort study that recruited 
over 6000 participants in six communities throughout 
the United States between 2000 and 2002 [26]. Periph-
eral blood mononuclear cell (PBMC) gene expression 
was measured by RNA-seq at Exam 5 between 2010 and 
2012. Detailed phenotype data (including spirometry and 
CT scan) were also collected at this exam.

Reference subject selection
The COPDGene RNA-seq samples were preprocessed 
as in the Additional file 1: Methods. The reference gene 
network was built on a group of former smokers, selected 
conservatively based on the following criteria (Fig.  1A): 
participant had (a) both Phase 1 (baseline) and Phase 2 
(5-yr) visits; (b) normal spirometry both visits; (c) less 
than 5% percent emphysema in both visits (LAA-950); (d) 
less than 5% decrease in percent predicted FEV1 between 
the two visits. This filtering resulted in 128 reference 
samples (training dataset). To increase power, all remain-
ing samples from participants who formerly smoked 
cigarettes and who did not meet the criteria for the ref-
erence group were included in the disease group, leaving 
489 samples for subtype discovery.

For the COPDGene validation dataset, the same filter-
ing criteria identified 149 control and 614 COPD former 
smoker samples. The MESA reference group was selected 
with similar criteria, except the threshold for FEV1 
decline between Exam 3/4 and Exam 5 (< 3% predicted). 
Participants with no spirometry data were included in 
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the non-reference group. This resulted in 104 reference 
and 327 case MESA samples. Table  1 summarizes the 
characteristics of these three study groups.

COPD subtyping from blood RNA‑seq data
We used ssNPA, a network-based disease subtyp-
ing method, to learn COPD subtypes in the discovery 
cohort (Fig.  1B). The details of the process are pre-
sented in Additional file  1: Methods. To investigate 
the clinically relevant differences among the clusters 
of COPD samples we identified, we compared the val-
ues of 105 clinical variables across the clusters (Addi-
tional file 2: Table S1). These included spirometry, chest 
CT scan, symptom questionnaires, and white blood 
cell differentials as well as medical history, medica-
tion, and comorbidity information. The p-values were 
calculated using Kruskal–Wallis (continuous, ordinal) 

and Chi-squared test (binary). A false discovery rate 
(FDR) threshold of q-value < 0.05 was used for multiple 
test correction. Pairwise comparisons between cluster 
means were assessed by Wilcoxon test. Survival analy-
sis was performed by the Kaplan–Meier method with 
the survfit function from the survival R package (v. 
3.1-8).

To better understand how the clusters were sepa-
rated, we considered the magnitude of the PCA loading 
for each feature. Gene features with the highest load-
ing values in the top principal components correspond 
to the genes whose deregulation relative to the controls 
contributes the most to separating the clusters.

Finally, MESA and COPDGene validation cohort 
samples were assigned to one of the four subtypes using 
the following procedure described in Additional file 1: 
Methods.

Fig. 1  Overview of the subtyping procedure. A Selection of reference (control) samples from the COPDGene discovery cohort (617 former 
smokers). B Network deregulation procedure to identify COPD subtypes. C t-SNE plot of the four COPD sample clusters identified by ssNPA. Clusters 
0 and 1 have similar clinical characteristics, as do clusters 2 and 3
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Results
COPD clusters exhibit different clinical phenotypes
ssNPA separated the 489 COPD PBMC samples (all for-
mer smokers) into four clusters (Fig. 1C, Additional file 1: 
Fig. S8). The first two clusters were of roughly equal size 
(cluster 0 and cluster 1 have 37.0% and 31.9% of the sam-
ples, respectively). Cluster 2 and cluster 3 were smaller 
(with 16.2% and 14.9% of the samples). Mean age was 
similar in all clusters. Cluster 2 had a higher propor-
tion of women and its subjects had a higher neutrophil 
and lower eosinophil percent, which are indicative of 
inflammation.

Statistical analyses identified clinical characteris-
tics that are significantly associated with these clus-
ters (Table  2). Overall, cluster 2 represented the most 
impaired subjects, with lower 6-min walk distance, 
more symptoms (measured by COPD Assessment 
Test, CAT) and dyspnea (measured by the Modified 
Medical Research Council Dyspnea Scale, MMRC), 
and the worst disease-related quality of life on the St. 
George’s Respiratory Questionnaire (SGRQ). However, 
spirometry (FEV1 percent predicted and FEV1/FVC) 
was similar in clusters 2 and 3, but worse than clus-
ter 0 and 1. Clusters 0 and 1 have the best spiromet-
ric lung function, but ~ 4 times more subjects in cluster 
0 are using inhaled corticosteroids (5.08% vs 1.3%; 
Table  2). Regardless, the percentage of corticoster-
oid usage in subjects of cluster 2 and cluster 3 is even 
higher (11.54%, 13.7%), making this feature significantly 
different between clusters. Diffusing capacity of car-
bon monoxide (DLCO) percent predicted was highest 

in cluster 0 (76.7%), but similar in the other 3 clusters 
(70.8, 69.1, 70.5% predicted, respectively). Cluster 3 
had the greatest percent emphysema (12.03%), fol-
lowed by cluster 2 (10.84%), while cluster 0 and cluster 
1 had the least emphysema (8.59%, 8.47%) (Additional 
file 2: Table S1). However, these differences are not sig-
nificant at the 5% FDR level (q-value = 0.068). Similarly, 
observed differences in Pi10 and Perc15 are not signifi-
cant (q-value = 0.072–0.076).

Survival analysis shows significant differences across 
the four clusters of COPDGene participants (Fig.  2; 
p-value < 0.001). This significance was driven by clus-
ter 2, which has the worst outcome with the steep-
est decline in survival probability. Despite a lower 
FEV1 in cluster 3, survival probabilities in this cluster 
and cluster 1 began to decline similarly after approxi-
mately 2 years following study visit 2 to an intermediate 
level. Cluster 0 maintained the highest survival prob-
ability after this time. The observed survival differences 
between clusters 0, 1, and 3 are not significant. We also 
note that clustering based on spirometry characteristics 
alone (e.g., FEV1 percent predicted) did not produce 
differences in mortality (Additional file 1: Fig. S9).

We are aware that comorbidities may drive mortality 
either directly or through medications that people take 
because of them. Although our sample subtyping was 
based on blood gene expression and any comorbidities 
or medications that may influence our subtyping had 
to exert their effect through gene expression, we tested 
to see if our subtypes differ in terms of comorbidities. 
We found that none of the comorbidities recorded in 

Table 1  Characteristics of the three study groups

NB: There were 120 participants in the MESA group for whom spirometry data was not available. These were all included in the case group, but GOLD stage could not 
be calculated

GOLD Global Initiative for Chronic Obstructive Lung Disease, MESA Multi-Ethnic Study of Atherosclerosis, PRISm Preserved Ratio Impaired Spirometry

COPDGene discovery group COPDGene validation group MESA validation group

Reference group Case group Reference group Case group Reference group Case group

Participants, n 128 489 149 614 104 327

Age, yr, mean (SD) 66.7 (8.8) 70.1 (7.7) 67.7 (8.6) 69.5 (7.6) 67.5 (8.3) 70.1 (9.3)

Sex, F, n (%) 78 (60.9) 216 (44.1) 91 (61.1) 290 (47.2) 53 (51.0) 137 (41.9)

Race, Non-Hispanic White, n (%) 111 (86.7) 457 (93.5) 138 (92.6) 562 (91.5) 45 (43.3) 177 (54.1)

Race, African American, n (%) 17 (13.3) 32 (6.5) 11 (7.4) 52 (8.5) 18 (17.3) 68 (20.8)

Race, Hispanic, n (%) 0 (0) 0 (0) 0 (0) 0 (0) 41 (39.4) 82 (25.1)

GOLD stage 0, n (%) 128 (100) 145 (29.7) 149 (100) 210 (34.2) 104 (100) 109 (33.3)

PRISm, n (%) NA 62 (12.7) NA 84 (13.7) NA 0

GOLD stage 1, n (%) NA 57 (11.7) NA 74 (12.1) NA 98 (30.0)

GOLD stage 2, n (%) NA 130 (26.6) NA 137 (22.3) NA 0

GOLD stage 3, n (%) NA 76 (15.6) NA 85 (13.9) NA 0

GOLD stage 4, n (%) NA 18 (3.7) NA 21 (3.4) NA 0

Smoking history, pack-year, mean (SD) 37.2 (21.9) 45.9 (25.6) 35.5 (21.0) 43.6 (23.4) 12.7 (14.1) 16.8 (20.2)
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COPDGene was significantly different between clusters 
(Additional file 1: Table S3.)

We further look in the variables that significantly dif-
fer between cluster 0 and cluster 1 (the two clusters with 
the highest FEV1). Both DLCO and the change in 6-min 
walk distance between the two visits are significantly 
worse in cluster 1 compared to cluster 0 (p-value = 0.011 
and 0.017, respectively). DLCO differences are interest-
ing given that percent emphysema was similar in the two 
clusters (Additional file 3: Table S2), which may indicate 
another process such as pulmonary vascular disease. A 

marker of pulmonary hyperinflation (FRC/TLC ratio) 
and a fatigue symptom also were found to be significantly 
different between these clusters (p-value = 0.005 and 
0.036, respectively). However, the correlation between 
FRC/TLC ratio and adjusted DLCO percent predicted 
in each of these two clusters was quite low (− 0.41 and 
− 0.53 for cluster-0 and cluster-1, respectively), which is 
in line with previous studies [27, 28]. One explanation is 
that DLCO captures more than just emphysema, includ-
ing pulmonary vascular disease and small airway disease 
[29].

Table 2  Clinical characteristics of COPD participants vary across clusters. The variables are sorted by descending significance

P-values were calculated with a Kruskal-Wallis test for continuous and ordinal variables and or a Chi-squared test for discrete and binary variables and asses if there 
are differences in variable distribution among clusters. Variable means (standard deviations) are also reported for each COPD cluster and all control subjects for 
comparison. Variables of interest are included with a < 5% FDR cut-off. A full table of variables tested is provided in Additional file 2: Table S1

BD bronchodilator, BODE body mass index, airflow obstruction, dyspnea, and exercise capacity, CAT​ COPD Assessment Test, DLCO diffusing capacity for carbon 
monoxide, FEV1 forced expiratory volume in 1-s, FRC functional residual capacity, FVC forced vital capacity, MMRC Modified Medical Research Council Dyspnea Scale, 
SGRQ St. George’s Respiratory Questionnaire, TLC total lung capacity

Variable q-value Cluster 0 Cluster 1 Cluster 2 Cluster 3 All reference participants

Participants, n 181 156 79 73 128

Sex, F, n (%) 80 (44.2) 63 (40.4) 42 (53.2) 31 (42.5) 78 (60.9)

Age, yr, mean (SD) 69.5 (7.8) 70.8 (7.3) 70.3 (7.9) 70.0 (8.1) 66.7 (8.8)

Cell types

 Lymphocyte percentage, mean 
(SD)

4.30E−04 28.07 (7.91) 26.97 (7.3) 23.13 (11.24) 24.84 (8.07) 30.91 (8.58)

 Neutrophil percentage, mean 
(SD)

5.09E−04 60.3 (8.42) 60.76 (7.95) 65.94 (12.95) 62.78 (8.59) 57.73 (9.56)

 Lymphocytes, K/µL, mean (SD) 4.74E−03 1.95 (0.65) 1.91 (0.61) 1.7 (0.79) 1.78 (0.6) 2.03 (0.7)

 Neutrophils, K/µL, mean (SD) 3.11E−03 4.32 (1.43) 4.4 (1.41) 5.36 (2.23) 4.7 (1.69) 3.93 (1.47)

Medications

 Oral corticosteroids, n (%) 4.30E−04 3 (1.67) 1 (0.65) 8 (10.3) 0 (0) 1 (0.78)

 Inhaled corticosteroids, n (%), 
mean (SD)

3.03E−03 9 (5.08) 2 (1.30) 9 (11.54) 10 (13.70) 3 (2.34)

Symptoms

 Distance walked, mean (SD) 2.73E−03 1384.88 (414) 1321.76 (403.63) 1142.14 (428.41) 1238.29 (407.99) 1520.71 (358.38)

 Change in distance walked, 
mean (SD)

3.03E−03 − 53.9 (276.36) − 134.48 (289.36) − 208.35 (321.96) − 172.2 (299.63) − 87.64 (323.56)

 SGRQ score: active, mean (SD) 3.11E−03 32.23 (27.42) 34.13 (29.9) 48.42 (31.68) 36.66 (25.38) 16.93 (20.25)

 SGRQ score: total, mean (SD) 1.27E−02 19.99 (18.17) 21.87 (19.37) 30.47 (22.96) 22.04 (17.54) 9.24 (12.51)

 MMRC dyspnea score, mean (SD) 1.27E−02 1.05 (1.29) 1.14 (1.28) 1.7 (1.6) 1.4 (1.29) 0.40 (0.86)

 CAT score, mean (SD) 0.017 9.65 (6.95) 10.69 (7.47) 13.43 (8.84) 9.56 (6.82) 6.61 (5.73)

Spirometry

 FRC/TLC ratio, Thirona, mean 
(SD)

1.25E−03 0.56 (0.11) 0.6 (0.11) 0.63 (0.12) 0.61 (0.12) 0.51 (0.08)

 FEV1, pre-BD, mean (SD) 0.018 1.95 (0.85) 1.88 (0.75) 1.62 (0.86) 1.77 (0.89) 2.53 (0.61)

 FEV1/FVC ratio, mean (SD) 0.020 0.64 (0.15) 0.63 (0.16) 0.59 (0.17) 0.58 (0.16) 0.78 (0.06)

 FEV1 percent predicted, mean 
(SD)

0.027 73.79 (24.65) 73.16 (24.49) 65.38 (26.96) 65.44 (27.12) 99.05 (11.33)

 FEV1/FVC ratio, pre-BD, mean 
(SD)

0.034 0.62 (0.15) 0.62 (0.15) 0.58 (0.16) 0.58 (0.16) 0.75 (0.06)

 DLCO percent predicted, 
adjusted, mean (SD)

0.042 76.69 (22.77) 70.84 (21.52) 69.09 (24.01) 70.52 (21.71) 92.08 (18.25)

 BODE, mean (SD) 4.95E−03 1.11 (1.58) 1.26 (1.6) 1.92 (2.05) 1.82 (1.85) 0.22 (0.64)
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Subtype validation in independent datasets 
from COPDGene and MESA
We validated the ssNPA-generated subtypes by scoring 
new COPD samples from the validation groups using the 
model we learned from the COPDGene training cohort. 
We chose this type of validation because it demonstrates 
the ability to correctly assign new samples to these four 
subtypes, which is an attractive feature for future clini-
cal application of these subtypes. Out of remaining 614 

COPD samples in the COPDGene validation set, 288 
were assigned to cluster 0, 193 to cluster 1, 42 to clus-
ter 2, and 91 to cluster 3 (Additional file 1: Fig. S10). We 
emphasize that this cluster assignment was based solely 
on gene expression data. Therefore, we next checked to 
see if the clinical features that differed across clusters in 
the primary analysis followed the same trends across the 
clusters of these new samples. In general, we observed 
the same trends for the significant features when we 

Fig. 2  COPDGene discovery set participant survival varies by cluster. Survival analysis was performed with the Kaplan–Meier method, and the 
log-rank p-value from the score test is reported. Time measures days elapsed since Phase 2 visit
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looked at the discovery set of samples compared to the 
validation set of samples (Fig. 3), and many pairwise rela-
tionships between the cluster means of these features 
were replicated in the validation set (Additional file 1: Fig. 
S11). In general, we see higher concordance between the 
two cohorts when it comes to symptoms (CAT, MMRC 
Dyspnea and SGRQ Total scores) as well as forced expir-
atory flow (FEF 25–75).

The validation in the MESA cohort produced a similar 
result. 150 samples were assigned to cluster 0, 64 were 
assigned to cluster 1, 41 to cluster 2, and 72 to cluster 
3 (Additional file  1: Fig. S12). Cluster 2 contained the 
most severe COPD phenotypes and contained the fewest 
MESA samples, and, conversely, cluster 0 exhibited the 
mildest disease and contains the most MESA samples. 
Again, we observed the same general trends for the clini-
cal features in the MESA validation analysis as we did in 
the COPDGene discovery analysis (Fig. 3). Fewer of the 
pairwise comparisons of the means from the cluster of 

the clinical features were replicated in MESA, likely due 
to the smaller number of participants for whom these 
phenotypes were measured (Additional file 1: Fig. S13).

ssNPA identifies a list of candidate genes deregulated 
in COPD
We further analyzed the identified COPD subtypes to 
investigate the molecular differences among them, which 
lead to different clinical phenotypes. We examined the 
gene deregulation features that had the largest PCA load-
ings to identify the genes that make the largest contribu-
tion to the clustering of the COPDGene discovery dataset 
(Additional file 1: Table S4). We focused on the top five 
loadings for each of the first six principal components 
(PCs) that were used to cluster the subjects and found 
that many of the genes came up more than once, includ-
ing DSP and GSTM1, which have been previously asso-
ciated with COPD. For many of these genes, we observe 
large differences across clusters in the distributions of 

Fig. 3  Clinical measures of disease severity and symptoms including (A) FEV1 percent predicted, (B) FEV1/FVC, (C) DLCO percent predicted (D) 
distance walked in six minutes, (E) SGRQ total score, (F) MMRC dyspnea score, and (G) BODE index, varying by cluster in the COPDGene discovery 
sample set as well as in the COPDGene and MESA validation sets. Some measures were not present in the MESA cohort. BODE body mass index, 
airflow obstruction, dyspnea, and exercise capacity, FEV1 forced expiratory volume in 1 s, FVC forced vital capacity, MMRC Modified Medical Research 
Council Dyspnea Scale, SGRQ St. George’s Respiratory Questionnaire
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deregulation magnitude (Additional file  1: Fig. S14), 
even between clusters whose subjects have similar lung 
function.

Discussion
COPD subtyping is essential for not only understanding 
the diversity of molecular mechanisms of the disease, but 
also to aid in the development of new intervention strate-
gies. Here we present a new clustering of COPD former 
smokers based on PBMC gene expression. The focus of 
this work was restricted to former smokers because we 
wanted to eliminate biases, since current smoking sta-
tus has a large impact in gene expression. This cluster-
ing was the result of a novel network deregulation-based 
approach (ssNPA), which has been shown to outperform 
many standard methods in sample clustering [18]. We 
identify four COPD subtypes, which exhibit different 
degrees of symptom presentation, exercise capacity and 
mortality. Two of the clusters (cluster 0 and cluster 1) 
have similar (milder) impairment in spirometry, but show 
differences in DLCO, disease progression and mortal-
ity. The other two clusters (cluster 2 and cluster 3) have 
similar levels of lung function impairment, which is sig-
nificantly worse than clusters 0 and 1. Compared to clus-
ter 3, subjects in cluster 2 have more symptoms, lower 
6-min walk distance, higher neutrophil count and worse 
survival despite similar reductions in FEV1 percent pre-
dicted and FEV1/FVC. Cluster 3 subjects have the most 
emphysema, although the differences are not significant.

We show that these clusters are stable by validating 
them using (1) additional COPDGene samples and (2) 
the MESA study cohort. To demonstrate the utility of our 
subtyping method for future patient classification, the 
samples from the two validation cohorts were assigned to 
one of these four clusters based on their own gene net-
work deregulation vectors (instead of re-clustering these 
cohorts). We find that the clinical differences of the new 
sets of samples remained largely the same, which not only 
validates our findings but also demonstrates the ability of 
accurately assigning new samples to these four clusters. 
Unsurprisingly, the distribution of subtypes in MESA is 
skewed to include more in cluster 0 (mildest disease phe-
notype), since MESA enrolled subjects representing the 
general population. By contrast, COPDGene is a case–
control study of COPD, so this distribution of MESA 
samples is consistent with our expectations.

Previous results in COPD subtype identification have 
proven difficult to replicate. For example, the number 
of identified subtypes generally varies from 2 to 5, and 
women and participants with mild disease are generally 
underrepresented [30]. One study applied a consistent 
clustering analysis to 10 independent cohorts and found 
only modest reproducibility across cohorts, but had more 

success with a continuous PCA-based projection of the 
individuals [31]. The authors suggest that the disease is 
best represented as a COPD continuum instead of sep-
arate and mutually exclusive subtypes. However, this 
interpretation does not account for the suspected varied 
genetic basis of COPD and, without clear cut-off points 
along the continuum, the practical utility is limited. 
Another study also applied a network-based clustering 
approach to blood microarray data and identified four 
clusters [17]. These clusters differed in spirometry and 
emphysema, but the network component in that study 
was coming from existing knowledge (STRING data-
base), which has its own biases and limitations.

Next, we investigate the underlying molecular changes 
and how they may be implicated in the mechanism of the 
disease. Several of the genes whose deregulation drive 
the clustering to subtypes have previously been noted as 
having a role in COPD. Desmoplakin (DSP, 6p24.3) was 
identified in a genome-wide association study (GWAS) of 
COPD as one of 22 genes containing a top coding vari-
ant (rs2076295) [32]. DSP is a desmosomal protein that 
plays an essential role in cell–cell linkages, especially in 
epidermis and cardiac muscle [33, 34]. DSP variants have 
also been associated with idiopathic pulmonary fibrosis 
[35], although these variants may be protective against 
COPD [32]. This GWAS was included 15,256 COPD 
cases and 47,936 controls. This locus also colocalized 
with an expression quantitative trait locus (eQTL) from 
another lung tissue dataset that included subjects with 
COPD [36]. In another study, the locus was associated 
with change two quantitative measures of emphysema, 
percentage of low-attenuation area less than -950 Houns-
field units (%LAA-950) and adjusted lung density [37]. 
Recently, the variant was shown to regulate DSP expres-
sion in airway epithelial cells, and loss of DSP expression 
led to increased expression of extracellular matrix-related 
genes and cell migration [38].

Another gene we identified, GSTM1 (gluthathione 
S-transferase μ 1, 1p13.3), belongs to a family of enzymes 
that are relevant for lung disease, likely through their 
roles in detoxifying electrophilic compounds, such 
as cigarette smoke and environmental toxins [39]. A 
homozygous GSTM1-null genotype has been associated 
with lung cancer pathogenesis [40, 41], emphysema [42, 
43], and COPD susceptibility [44, 45]. However, GSTM1 
has not been previously identified by COPD GWAS, 
although the presumed functional variation is a gene 
deletion and not a single nucleotide polymorphism that 
would be included in GWAS chips.

Even though cluster 0 and cluster 1 had similar lung 
function, we identify a number of genes whose deregu-
lation is different between these clusters. For example, 
the deregulation of CTNNA2 and SLC44A5 is higher in 
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cluster 0 compared to cluster 1, and the deregulation 
of MRGPRE was lower in cluster 0 compared to cluster 
1. Similarly, in cluster 2 and cluster 3 (also similar lung 
function), the deregulation of several genes, including 
MUC16, ZMAT4, GSTM1, MRGPRE, and ADAM29, 
differed between these two clusters. These observations 
indicate the presence of different underlying molecular 
mechanisms despite similar lung function.

The list of genes we have identified provides important 
insights into the molecular mechanism of susceptibility, 
such as the role of environmental toxin processing, and 
progression, including pathways involved in extracellu-
lar matrix organization. Several of the genes on the list 
such as Fibroblast Growth Factor 9 (FGF9) have not been 
specifically cited for an association with COPD, but they 
code for important signaling proteins and may play a role 
in lung development or airway remodeling.

As this is study is not meant to investigate the detailed 
molecular mechanisms of the four subtypes, we mention 
these genes as a proof-of-principle of our method. Future 
studies could investigate the role of the molecular mech-
anisms based on our results.

Conclusions
Using the ssNPA method on blood gene expression 
data, we identify and validate four clusters of former 
smokers with COPD, which correspond to clinically rel-
evant disease subtypes, reflecting differences in severity, 
symptoms and mortality. These differences are not fully 
reflected by lung function impairment alone. Further-
more, the focus on differential regulation at the gene level 
provides insight into the disease mechanisms that differ-
entiate COPD cases from the control group of subjects 
without COPD. We identify a set of genes whose dereg-
ulation drives the subtype separation. Several of these 
genes have previously described connections to COPD, 
although some new genes emerged as well. The network 
learning and gene selection were completely unbiased, 
using no prior knowledge of clinical characteristics, dis-
ease mechanism or biology pathways. Finally, we show 
that ssNPA is a flexible general framework for disease 
subtyping. As more omics data become available through 
COPDGene and other studies, future work could incor-
porate genetic variant, epigenetic, proteomic, or metab-
olomic variables into the network learning and feature 
calculations that would provide a multi-layered, more 
complete picture of the molecular pathology and hetero-
geneity of COPD.
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Additional file 1: Figure S1. PCA of COPDGene primary analysis RNA-seq 
data colored according to batch (A) before and (B) after batch correction. 
Batch detection with guided principal component analysis showed strong 
batch effects before batch correction (p < 0.001) that were removed after 
batch correction (p = 0.538). Figure S2. PCA of COPDGene validation 
RNA-seq dataset colored according to batch (A) before and (B) after batch 
correction. Batch detection with guided principal component analysis 
showed strong batch effects before batch correction (p = 0.001) that 
were removed after batch correction (p = 0.937). Figure S3. PCA of MESA 
validation RNA-seq dataset colored according to batch (A) before and (B) 
after batch correction. Batch detection with guided principal component 
analysis showed strong batch effects before batch correction (p = 0.003) 
that were removed after batch correction (p = 1). Figure S4. Clustering 
tree illustrates the stability of clusters over a range of values for cluster-
ing resolution (res). We chose 4 as optimal number of clusters, because 
cluster number and content (samples) remains constant for res=0.6 to 
0.9. When res>0.9 produced some subclusters of these four, but samples 
did not move across the four branches extending from these clusters. 
Figure S5. PC elbow plot of the COPDGene discovery set ssNPA features. 
We heuristically chose 6 principal components for clustering because 
they captured a large percentage of the variance in the data. Figure S6. 
Clustering tree illustrates the stability of clusters over a range of values 
for k in the kNN classification for the COPDGene validation analysis. We 
chose k=3 because the clusters were stable by this value. Figure S7. 
Clustering tree illustrates the stability of clusters over a range of values 
for k in the kNN classification for the MESA validation analysis. We chose 
k=3 because the clusters were stable by this value. Figure S8. Participant 
GOLD stage composition according to cluster. The reference group was 
composed of only GOLD 0 participants by design. Figure S9. Clustering 
based on FEV1 percent predicted does not sufficiently separate COPD 
individuals with different mortalities. Figure S10. COPDGene validation 
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samples were projected into the same PCA space as the discovery analysis 
and assigned to clusters with kNN. Density clouds show the distribution 
of samples in each cluster from the discovery analysis. Individual points 
represent validation COPDGene samples and are colored according to 
the cluster to which they were assigned. Figure S11. Heatmaps display 
the p-value bins for the inter-cohort pairwise comparisons of cluster 
means by Wilcoxon test for: physiology (A) FEV1 percent predicted, (B) 
FEV1/FVC, (C) DLCO, (D) FRC/DLC ratio, (E) distance walked in 6 minutes; 
symptoms (F) SGRQ total score, (G) MMRC dyspnea score, and (H) CAT 
score. The upper right triangle shows the pairwise comparisons between 
cluster in the COPDGene discovery set, and the lower left triangle shows 
the comparisons between clusters in the COPDGene validation set. Blue 
(red) arrows indicate concordance in the significance (non-significance) of 
the comparisons between the two cohorts. Figure S12. MESA validation 
samples were projected into the same PCA space as the discovery analysis 
and assigned to clusters with kNN. Density clouds show the distribution of 
samples in each cluster from the discovery analysis. Individual points rep-
resent validation MESA samples and are colored according to the cluster 
to which they were assigned. Figure S13. Heatmaps display the p-value 
bins for the pairwise comparisons of cluster means by Wilcoxon test for 
(A) FEV1 percent predicted, (B) FEV1/FVC, (C) FEF 25-75%, and (D) percent 
emphysema. The upper right triangle shows the pairwise comparisons 
between cluster in the COPDGene discovery set, and the lower left trian-
gle shows the comparisons between clusters in the COPDGene validation 
set. Blue (red) arrows indicate concordance in the significance (non-signif-
icance) of the comparisons between the two cohorts. Figure S14. ssNPA 
feature values show a difference in the degree of deregulation of (A) 
MUC16, (B) ZMAT4, (C), GSTM1, (D) CTNNA2, (E) MRGPRE, (F) SLC44A5, (G) 
ADARB2, and (H) ADAM29 across clusters. Wilcoxon test p-values highlight 
where there are differences in the distributions between clusters 0 and 1 
and between clusters 2 and 3. Table S3. Analysis of various COPDGene 
comorbidities did not show any significant difference between the four 
identified subtypes. All comorbidities recorded at the time blood samples 
were collected. p-val: chi-square p-value. Table S4. The genes with the top 
5 loadings for each of the first 6 PCs used for clustering the COPD samples 
in the training COPDGene dataset. Genes are sorted by decreasing contri-
bution to the clustering (sum of the absolute values of the loadings across 
the first 6 PCs). Loading value is not provided if gene did not rank among 
the top 5 loadings for a given PC. The sample clustering is driven by differ-
ences in the regulation of these genes.

Additional file 2: Table S1. Excel file containing this table is attached. 
Clinical characteristics of COPD participants vary across clusters. The 
variables are sorted by descending significance. P-values were calculated 
with a Kruskal-Wallis test for continuous and ordinal variables and or a 
Chi-squared test for discrete and binary variables and asses if there are dif-
ferences in variable distribution among clusters. Variable means (standard 
deviations) are also reported for all COPD participants overall, each COPD 
cluster, and all control subjects for comparison. 

Additional file 3: Table S2. Excel file containing this table is attached. 
Differences in clinical characteristics between clusters 0 and 1. The vari-
ables are sorted by descending significance. P-values were calculated 
with a Wilcoxon rank sum test for continuous and ordinal variables and or 
a Chi-squared test for discrete and binary variables and asses if there are 
differences in variable distribution between these clusters.
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