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Abstract 

Objectives  Programmed Cell Death-1/ Programmed Death-ligand 1 (PD-1 / PD-L1) inhibitor therapies targeting 
immunocytes induce persistent tumor remission in various cancers. However, the appropriate biomarkers for the 
therapeutic efficacy of PD-L1 and PD-1 blockade remain elusive.

Materials and methods  For a comprehensive analysis of peri-treatment lymphocyte differentiation, in the current 
study, we enrolled 146 non-small cell lung cancer patients who received α-PD-1 therapies for exploring the peripheral 
blood lymphocyte differentiation pattern at baseline and post-treatment (dynamic changes) by flow cytometry.

Results  At baseline, CD4+ / CD8+ T cell ratio predicts good responses and outcomes, but activated T cell and cyto-
toxic T cell counts predict poor responses and outcomes. And for dynamic changes, after 6 weeks of immune check-
point blockade (ICB) treatment, compared with baseline level, the elevation of total T and B cell counts indicate poor 
responses, and total T and TH cell counts indicate poor prognosis while activated T cell predicts good prognosis. And 
after 12 weeks, elevated total lymphocyte, cytotoxic T cell counts, and decreased total T cell counts and CD4+ / CD8+ 
T cell ratio predict good responses / outcomes. Our clinical predicting model shows good performance in predicting 
ICB treatment responses / outcomes.

Conclusion  Patients with favorable clinical responses / outcomes have distinctive peripheral blood immunocyte dif-
ferentiation characteristics, indicating the potential of utilizing the peripheral immunocyte differentiation patterns for 
predicting ICB responses / outcomes.
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Introduction
The immune system was explored as a complex stable 
network. In healthy conditions, the immune checkpoints 
play vital roles in protecting from autoimmune diseases 
[1]. In malignant conditions, tumors may exploit periph-
eral immune tolerance (especially against cytotoxic T 
cells) for tumorigenesis by orchestrating these immune 
checkpoints [2]. As an important immune checkpoint 
axis, the Programmed Cell Death-1/ Programmed 
Death-ligand 1 (PD-1 / PD-L1) axis was first reported in 
autoimmune-induced inflammation, but now this axis 
was more famous for its role in suppressing anti-tumor 
immunity [3].

Malignant cells usually acquire immune tolerance by 
following mechanisms: 1) Suppress immunogenicity by 
down-regulating tumor-specific or related antigen, and 
/ or impairing antigen presentation capability (e.g., the 
dysfunction of major histocompatibility complex class-
I antigen presentation system) [4]. 2) Up-regulating the 
immunosuppressive ligand on the cell surface (e.g., Fas 
ligand, CD44, PD-L1, etc.) [5, 6]. 3) Remodeling micro-
environment secretome, which not only promotes 
host immune tolerance but also might enhance tumor 
stemness / proliferation (e.g., regulating granulocyte 
colony-stimulating factor, IL-10, and IL-6, etc.) [7, 8]. 4) 
Recruiting immunosuppressive cells in the microenviron-
ment (e.g., myeloid-derived suppressor cells, regulatory 
T cells, etc.) [9, 10]. These mechanisms together under-
mine the balance between pro-and anti-tumor immune 
responses and contribute to tumor immune escape.

Currently, α-PD-1 / PD-L1 aiming at switching off 
immune checkpoint is the most popular immune check-
point blockade strategy. PD-1 also known as CD279 is a 
receptor mainly expressed on the surface of T and pro-B 
cells, and two ligands could bind to this receptor, PD-L1 
and PD-L2 [11]. Originally, several lines of evidence sug-
gested that the PD-1 / PD-L1 axis negatively regulates 
immune responses, in mice models PD-1 knockout lead 
to severe autoimmune diseases [12, 13]. And recently, 
more evidence revealed its role in evading immune sur-
veillance and suppressing anti-tumor immunity, high-
lighting this axis as a target for immunotherapy.

Clinically, α-PD-1 / PD-L1 cancer immunotherapy 
continues to progress at a fast speed, and therapeutic 
strategies and pharmaceutic development are evolv-
ing rapidly to maximize patient benefit. In several solid 
tumors, especially lung cancer, α-PD-1 / PD-L1 immu-
notherapy has already been adopted in the first-line 
approaches for late-stage, adjuvant, and neoadjuvant 
cancer treatments [14–16]. But only a fraction of patients 
with solid tumors responds well to α-PD-1 / PD-L1 ther-
apy (around 20–40%, depending on cancer types) [2]. 
So, why some patients don’t respond to α-PD-1 / PD-L1 

immunotherapy is one of the major questions in the field. 
Currently, biomarkers, such as neutrophil-to-lymphocyte 
ratio, gut microbiota, tumor-infiltrating lymphocytes, 
etc., are used for predicting immunotherapy’s efficacy 
in non-small cell lung cancer (NSCLC) [17, 18], and 
PD-L1 and tumor mutation burden (TMB) remain the 
most widely used biomarkers approved by the Food and 
Drug Administration (FDA). Of note, recently concerns 
were raised about the adequacy of traditional markers / 
indicators for immune checkpoint blockade (ICB) treat-
ment, such as microenvironment PD-L1 level and TMB 
[19, 20]. Hence, discriminating potential α-PD-1 / PD-L1 
immunotherapy beneficiaries with adequate biomarkers 
still remains an urgent priority [21].

Considering α-PD-1 / PD-L1 immunotherapy targets 
immunocytes and is designed to shift the immune bal-
ance towards anti-tumor response, the attempt of moni-
toring dynamic differentiation changes of immunocytes 
for evaluating neo indicators for α-PD-1 / PD-L1 immu-
notherapy is reasonable. Of note, different from tradi-
tional tissue-based methods (for evaluating PD-L1 or 
TMB level), a milliliter level blood-based method evalu-
ating the differentiation status of immunocytes provides 
a flexible alternative. We introduced flow cytometry as an 
appropriate method in current immune-related research. 
Flow cytometry (FCM) is a laser fluorescence-based 
technique used to detect and analyze the chemical / bio-
logical and optical characteristics of cells and particles. 
In basic research / clinical practice, compared with tradi-
tional protein detection approaches (such as immunohis-
tochemistry and immunoblot), FCM featured multiplex 
and high sensitivity. In the medical laboratory, FCM had 
been wielded adopted as a powerful tool for immunol-
ogy-related measurement in hematopoietic malignancies, 
autoimmune diseases, and allograft transplants [22–24].

In the current study, we evaluated the potential of 
monitoring the differentiation of immunocytes in periph-
eral blood as predictors / indicators for α-PD-1 therapy. 
We reported several interesting lymphocytes’ differentia-
tion pattern and clinical parameters correlates with ICB 
response / outcomes.

Material and methods
Study design
Patients were enrolled from conventional treatments or 
clinical trials at the Affiliated Cancer Hospital of Nan-
jing Medical University. For inclusion criteria: patients 
were diagnosed with late-stage NSCLC, with at least 
one measurable lesion (according to Immune-related 
Response Evaluation Criteria in Solid Tumors), without a 
history of α-PD-1 / PD-L1 treatment, and with peripheral 
blood lymphocytes flow cytometry data and tumor mark-
ers (carcinoembryonic antigen, carbohydrate antigen 125, 
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carcinoembryonic antigen199, neuron-specific enolase) 
for the following 3 time points: baseline, 6 and 12 weeks 
after treatment. The following patients were excluded: (I) 
with comorbidities (e.g., heart failure, kidney and/or liver 
failure, severe diabetes mellitus); (II) with severe men-
tal disorders; (III) with a history of other malignancies; 
and (IV) special populations (e.g., pregnant and lactating 
women). 146 patients received α-PD-1 treatment regi-
mens (Pembrolizumab / Sintilimab / Toripalimab / Cam-
relizumab / Tislelizumab) from August 2018 to May 2021 
were enrolled, the last follow-up time was December 31, 
2021. All enrolled patients received α-PD-1 intravenously 
once every 3 weeks until disease progression or unac-
ceptable toxicity, combination treatment regimens are 
determined by clinicians based on the patient’s condition. 
Detailed study process and patient characteristics are 
shown in Table  1, Supplement Table  1 and Supplement 
Fig.  1A and B. This study was approved by the Institu-
tional Review Board of Jiangsu Cancer Hospital.

By referring to computed tomography, clinical 
responses were categorized according to the immune-
related response criteria as either complete response 
(CR), partial response (PR), stable disease (SD), or pro-
gressed disease (PD). And during the whole follow-up 
time, CR / PR / SD lasted > 6 months was defined as 
durable clinical benefit (DCB), while PD or SD lasted ≤ 6 
months was defined as non-durable benefit (NDB). Sur-
vival was evaluated by progression-free survival (PFS 
defined as the time from initial treatment to clinical or 
imaging progression or death) and overall survival (OS 
defined as the time from initial treatment to the last fol-
low-up or death).

Flow cytometry
Peripheral blood mononuclear cells (PBMC) were iso-
lated using Ficoll-Hypaque density gradient centrifu-
gation, and subsequently pre-incubated PBMCs with 
Fc-block and stain with antibodies to identify total lym-
phocytes / T and T cell subsets / B cells / Natural killer 
cells (NK cells). Antibody panels and gating strategies are 
presented in Supplementary Tables  2 and Supplemen-
tary Fig. 1C. Flow analysis was performed on a BD FACS 
Canto II (BD Biosciences), data were analyzed using 
FlowJo.

Statistical analyses
Patients were randomly divided into training set (n = 116) 
and validation set (n = 30) according to a ratio of 8:2. And 
patients’ baseline peripheral blood parameters were cate-
gorized by optimal cut-off values (Low / High group), and 
post-treatment data minus baseline data were defined as 
dynamic changes.

Table 1  Patients’ baseline characteristics

ECOG PS Eastern Cooperative Oncology Group Performance Status, PD-1 
Programmed cell death protein 1, CR Complete response, PR Partial response, SD 
Stable disease, PD Progressed disease
a  Median and interquartile range (IQR)
b  N (%)

Parameters Total
(N = 146)

DCB
(N = 120)

NDB
(N = 26)

P value

Age(years) a 64(56–69) 0.346

  < 64 72 (49.3) 57 (47.5) 15 (57.7)

  ≥ 64 74 (50.7) 63 (52.5) 11 (42.3)

Gender b

  Male 111 (76.0) 93 (77.5) 18 (69.2) 0.371

  Female 35 (24.0) 27 (22.5) 8 (30.8)

Histology b

  Non- Squamous 101 (69.2) 82 (68.3) 19 (73.1) 0.635

  Squamous 45 (30.8) 38 (31.7) 7 (26.9)

Stage b

  IIIB 27 (18.5) 25 (20.8) 2 (7.7) 0.118

  IV 119 (81.5) 95 (79.2) 24 (92.3)

Differentiation b

  Moderate 13 (8.9) 9 (7.5) 4 (15.4) 0.641

  Medium-Low 18 (12.3) 15 (12.5) 3 (11.5)

  Low 34 (23.3) 28 (23.3) 6 (23.1)

  NA 81 (55.5) 68 (56.7) 13 (50.0)

ECOG PS b

  0 23 (15.8) 18 (15.0) 5 (19.2) 0.185

  1 108 (74.0) 92 (76.7) 16 (61.5)

  2 15 (10.3) 10 (8.3) 5 (19.2)

Smoking history b

  Never 62 (42.5) 48 (40.0) 14 (53.8) 0.195

  Now/Ever 84 (57.5) 72 (60.0) 12 (46.2)

Distant metastases b

  No 27 (18.5) 25 (20.8) 2 (7.7) 0.118

  Yes 119 (81.5) 95 (79.2) 24 (92.3)

Driver mutations b

  No 113 (77.4) 96 (80.0) 17 (65.4) 0.106

  Yes 33 (22.6) 24 (20.0) 9 (34.6)

PD-1 inhibitor type b

  Pembrolizumab 47 (32.2) 43 (35.8) 4 (15.4) 0.320

  Toripalimab 18 (12.3) 13 (10.8) 5 (19.2)

  Camrelizumab 31 (21.2) 24 (20.0) 7 (26.9)

  Sintilimab 44 (30.1) 35 (29.2) 9 (34.6)

  Tislelizumab 6 (4.1) 5 (4.2) 1 (3.8)

Combination regimen b

  Monotherapy 25 (17.1) 19 (15.8) 6 (23.1) 0.787

  Chemotherapy 89 (61.0) 75 (62.5) 14 (53.8)

  Anti-angiogenic therapy 28 (19.2) 23 (19.2) 5 (19.2)

  Both 4 (2.7) 3 (2.5) 1 (3.8)

Drug regiment b

  1st line 62 (42.5) 53 (44.2) 9 (34.6) 0.372

  ≥ 2nd line 84 (57.5) 67 (55.8) 17 (65.4)

Radiotherapy b

  No 69 (47.3) 53 (44.2) 16 (61.5) 0.108

  Yes 77 (52.7) 67 (55.8) 10 (38.5)
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Variables were selected via integrated analysis of three 
algorithms consisting of the Least absolute shrinkage 
and selection operator (LASSO) algorithm with penalty 
parameter tuning conducted by 10-fold cross-validation, 
the Random Forest (RF) algorithm searching for lambda 
with the smallest classification error to determine the 
variable and adopting the interpretable extreme gradient 
boosting (XGBoost) algorithm. According to the feature 
importance ranking, the high-relevance features were 
found.

In addition to this, Mann-Whitney U test was per-
formed to determine differences between DCB and 
NDB patients (continuous variables). Chi-square or 
Fisher’s exact test was used to analyze the association 
between clinical response and categorical variable, 
and p-values < 0.05 variables were considered statisti-
cally significant and continued to be examined through 
multivariable logistic regression. Survival probabilities 
were assessed by Kaplan-Meier analysis paired with 
the Log-rank test or the Cox regression. Nomogram 
prediction model was constructed using multivariable 
analysis identified predictive factors. Area under the 
curve (AUC) and the C-index were used to evaluate 
the discriminative power of the model, the calibration 
curve and the decision curve analysis (DCA) were used 
to evaluate the calibration and clinical effectiveness of 
the model, respectively.

We calculated the sample size of the multivariable 
Cox regression model for patients’ overall survival 
using the previously reported method [25]. Based on 
the generally accepted rule of thumb of 10 events per 
variable and the final Cox model containing 2 vari-
ables [26], the field size was expected to be 20 events. 
We used a sample size of at least 108 patients based 
on an estimated 23% 3-year event rate and a 20% loss-
to-review rate among the participants. Besides, we 
explored the relationship between infiltrating lym-
phocytes and prognosis in NSCLC patients with The 
Cancer Genome Atlas Program database (Supple-
ment Fig.  6). All analysis and graphing were powered 
by FlowJo 10.0 / R studio 4.0.5 / SPSS 26.0 / GraphPad 
Prism 8.0.

Results
Patient characteristics and study design
This study enrolled 146 advanced NSCLC patients 
treated with α-PD-1 therapy. The median follow-up 
time, median PFS were 23.3 months (95%CI: 21.8 to 24.7 
months), 17.4 months (95%CI: 11.8 to 22.9 months), 
respectively. And the median OS was not reached yet. 
Overall, 77/146 patients (52.7%) progressed, and 33/146 
(22.6%) patients died during follow-up. According to 

clinical response, we found that 82.1% patients achieved 
durable clinical benefit, and 17.8% patients were not. 
The patients’ characteristics are shown in Table  1. The 
median age of all patients was 64 years, 76% of patients 
were male and 42.5% were never-smokers. Almost all 
patients were Eastern Cooperative Oncology Group 
performance status (ECOG PS) score 0–1. Most patients 
had distant metastasis (81.5%) and were in stage IV 
(81.5%). 22.6% of patients had driver mutations. Thera-
peutically, 42.5% of patients received α-PD-1 inhibi-
tor as the first line. More than half of patients received 
chemotherapy combination regimen (82.9%) and ever 
had radiotherapy during immunotherapy (52.7%). Their 
detailed peripheral blood parameters are shown in Sup-
plementary Tables 3 and 4.

We introduced the LASSO algorithm (Fig. 1A, B), the 
RF algorithm (Fig.  1C, D) and XGBoost algorithm for 
variables selection (Fig.  1E). The variables identified by 
lasso regression include baseline activate T cell counts, 
Δ12W total lymphocyte counts and baseline CD4+ / 
CD8+ T cell ratio. The importance ranking of the varia-
bles determined by the RF and XGBoost algorithms were 
described in Fig. 1D, E.

Baseline / dynamic peripheral lymphocytes’ differentiation 
predicts ICB treatment response
Baseline peripheral immunocytes differentiation predicts 
immunotherapeutic responses
We conducted a univariate analysis to clarify the corre-
lation between peripheral blood immunocytes differen-
tiation and ICB response (Supplementary Table  5). We 
noticed that before ICB therapy, DCB patients displayed 
lower percentage of activated T cells, lower level of CEA 
and higher percentage of CD4+ / CD8+T cells compared 
to NDB patients (p = 0.006, p = 0.009, p = 0.024, respec-
tively). By introducing multivariate logistic regression 
models (Supplementary Table 6), we found that baseline 
activated T cells and CEA were independent and effec-
tive prognostic factor (p = 0.031, OR = 0.066; p = 0.013, 
OR = 0.106, respectively).

Dynamic lymphocytes’ differentiation predicts 
immunotherapeutic responses
We investigated whether dynamic changes (6&12 weeks) 
of peripheral lymphocytes’ differentiation after ICB 
treatment could predict patients’ responses and out-
comes. We enrolled patients with all three time points 
(baseline, 6 and 12 weeks) differentiation data. After 6 
weeks of ICB treatment, we found that total T cell and 
B cell counts were able to distinguish DCB or NDB in 
patients (p = 0.024, p = 0.026, respectively, Supplemen-
tary Table 5). After 12 weeks of ICB treatment, we found 
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that the rise of total lymphocyte and cytotoxic T cells 
(CTL) counts trends to predict good response to ICB 
treatment (p = 0.000, p = 0.026, respectively, Supplemen-
tary Table 5). While the elevation of total T cell counts, 
CD4+ / CD8+ T cell ratio and CA125 were associated 
with worse responses (p = 0.010, p = 0.024, p = 0.027, 
respectively, Supplementary Table 5). As shown in Sup-
plementary Tables  6, the dynamic changes in the per-
centage of total lymphocytes and the level of CA125 

had predictive value for distinguishing DCB or NDB in 
patients (p =0.002,  OR = 13.787; p =0.027,  OR = 0.160, 
respectively).

Before treatment, no total lymphocytes difference was 
found between DCB and NDB patients (Fig.  2A), after 
the administration of α-PD-1, the total lymphocytes in 
DCB patients gradually elevated, and a significant differ-
ence were observed at the week of 12 (Fig. 2B, C). Inter-
estingly, we found that at baseline, lower activated T cell 

Fig. 1  Using machine learning methods to analyze all available data. A Distribution of LASSO coefficients for variables. B Partial likelihood bias 
of the LASSO coefficient distribution. The vertical dashed line indicates the minimum partial likelihood deviation. C and D Random Forest for 
variable selection. Features identified by the Random Forest model according to the mean decrease in Gini index and Mean Decrease Accuracy for 
prediction of ICB outcomes. E Importance matrix plot of ICB’s predictors in XGBoost model among non-small lung cell cancer patients. NK, natural 
killer; NKT, natural killer T; CEA, carcinoembryonic antigen; CA125, carbohydrate antigen 125; CA199, carbohydrate antigen 199; NSE, neuron-specific 
enolase; LASSO, least absolute shrinkage and selection operator; XGBoost, eXtreme Gradient Boosting, RF, random forest
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Fig. 2  Analysis of therapeutic efficacy based on peripheral blood parameters. A-G Differences between DCB and NDB groups at baseline and 
post ICB treatment in the training, Nonparametric Mann-Whitney test was used for comparisons (using continuous variables). H Nomogram for 
predicting ICB treatment response of NSCLC patients. I Calibration curves of the nomogram. J ROC curves in the training set. K ROC curves in the 
validation set. DCB, Durable clinical benefit; NDB, None durable benefit; CEA, carcinoembryonic antigen; CA125, carbohydrate antigen 125; NSCLC, 
Non-small cell lung cancer; AUC, Area under the curve; ROC, receiver operating characteristic curve
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counts predict good ICB responses (but not in dynamic 
changes, Fig.  2D, E, F), but after treatment, the eleva-
tion of activated T cell counts predicts good outcomes 
(Fig. 3J). Other data in Supplementary Tables 7, Supple-
mentary Fig. 2.

Nomogram model predicts immunotherapeutic responses
We constructed a nomogram to improve the predictive 
efficacy and clinical applicability (Fig.  2H). The calibra-
tion curve showed good correlation among the actual 
observations and estimates obtained (Fig.  2I). The AUC 
value and C-index of the nomogram model were both 
0.785 (Fig. 2J). The AUC value and C-index of the valida-
tion set were both 0.656(Fig. 2K).

Association between lymphocytes’ differentiation 
and patients’ outcomes
Baseline peripheral lymphocytes’ differentiation predicts 
immunotherapeutic outcomes
For disease progression (Supplementary Table 8), higher 
CD4+ / CD8+ T cell ratio and CA125 were signifi-
cantly correlated with longer free progression time (Cox 
regression, p = 0.019, HR = 0.543, 95%CI:0.326–0.906; 
p = 0.012, HR = 0.401, 95%CI:0.197–0.816, respec-
tively; Fig. 3A, B). In contrast, lower level of activated T 

cells was correlated with longer free progression time 
(p = 0.009, HR = 2.151, 95%CI:1.207–3.836; Fig.  3C). 
Better ECOG score predicts longer PFS time (1 vs. 
0: p = 0.010, HR = 3.117, 95%CI:1.313–7.403; 2 vs. 0: 
p = 0.000, HR = 9.246, 95%CI:3.091–27.655; Fig.  3D). 
For the survival of the patient (Supplementary Table 9), 
activated T cell counts predict poor overall survival 
(p = 0.026, HR = 3.240, 95%CI:1.152–9.114; Fig. 3E).

Dynamic peripheral lymphocytes’ differentiation predicts 
immunotherapeutic outcomes
For evaluating the association between peripheral lym-
phocytes differentiation and patients’ outcomes, we 
introduced parameters with p value < 0.05 in univariable 
cox regression for multivariate analysis. We found that 
patients with increased total lymphocytes and decreased 
CA125 after 12 weeks of ICB treatment had longer 
PFS (mPFS: Up vs. Down: 23.3  m vs. 11.5  m, p = 0.000, 
HR = 0.372, 95%CI:0.223–0.619; mPFS: Up vs. Down: 
11.5  m vs. 20  m p = 0.034, HR = 1.736, 95%CI:1.042–
2.892, Fig. 3F, G, Supplementary Tables 8 and 10). After 
6 weeks of treatment, total T, TH and activated T cell 
counts correlate with longer OS (p = 0.003, p = 0.018, 
p = 0.029, respectively, Fig.  3H, I, J, Supplementary 
Table  9), and Δ6W total T cells were independent 

Fig. 3  PFS and OS curves. A-J and M Kaplan–Meier curves for PFS or OS. K and L PFS and OS Hazard ratio and 95%CI show in the Forest 
plot, respectively. P Values were calculated by log-rank statistics. ECOG PS, Eastern Cooperative Oncology Group performance status; CA125, 
carbohydrate antigen 125. PFS, progression-free survival; OS, Overall survival
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Fig. 4  Nomogram model of disease progression. A PFS nomogram based on the multivariate model, including ECOG PS, Baseline Activated T cells, 
Baseline CD4+/CD8 + T cells, Baseline CA125, Δ12W Total lymphocytes andΔ12W CA125. B and C The 180- and 365- days PFS calibration curves. 
D ROC curves in the training set. E DCA of the nomogram. Model 1(DCA curves for PFS in the training set). F Kaplan-Meier curves of nomogram in 
training set. G ROC curves in the validation set. PFS, progression-free survival; ECOG PS, Eastern Cooperative Oncology Group performance status; 
DCA, decision curve analysis; ROC, receiver operating characteristic curve; AUC, area under the curve
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favorable prognostic factor for OS (mOS: Up vs. Down: 
32.7 m vs. NR, p = 0.014, HR = 3.163, 95%CI:1.267-7.900, 
Supplementary Tables 9 and 10). Figure 3K, L shown the 
Hazard radios and 95% CI of the significant factors, and 
other data shown in Supplementary Tables  11 and 12, 
Supplementary Figs. 3–5.

Nomogram model predicts immunotherapeutic outcomes
For PFS prediction model (Fig. 4A), the 180- and 365-day 
calibration curves showed a good agreement between 
the actual and predicted outcomes (Fig.  4B, C). The 
AUC of training set was 0.774, and C-index was 0.728 
(95%CI:0.696–0.760, Fig.  4D). The DCA curves for 
PFS in the training set was shown in Fig.  4E. Training 
set patients were categorized by risk score (Low / High 
risk), patients with lower risk scores had a longer PFS 
(HR = 0.113; 95% CI: 0.070–0.183; P < 0.0001; Fig.  4F). 
The AUC of validation set was 0.794, and C-index was 
0.737 (95%CI:0.654–0.820, Fig. 4G).

For OS prediction model (Fig. 5A), the 365- and 540-
day prediction curve of the model is close to the actual 
observation curve, showed the good calibration ability of 
the mode (Fig. 5B, C). The AUC of training set was 0.688, 
and C-index was 0.721 (95%CI:0.669–0.771, Fig.  5D). 
The DCA curves for OS in the training set is shown in 
Fig. 5E. Training set patients with lower risk scores had a 
longer OS (HR = 0.258; 95% CI: 0.120–0.553; P = 0.0008; 
Fig.  5F). The AUC of validation set was 0.688, and 
C-index was 0.639 (95%CI:0.0.531–0.747, Fig. 5G).

Discussion
Lymphocytes which are differentiated from lymph-
oblasts-HSC (hematopoietic stem cells) circulate in 
peripheral blood and primary / secondary lymphoid 
organs and master adaptive immune responses / surveil-
lance [27]. There are three major populations of lym-
phocytes, B, NK and T populations. And anti-tumor 
immunity is primarily conducted and regulated by sev-
eral T subpopulations. In the thymus, T cells undergo 
positive and negative selection and differentiation into 
two major distinct subsets, CD4+ TH / Regulatory T cells 
and CD8+ CTL cells [28]. Mature lymphocytes encoun-
ter antigens in secondary lymphoid organs and eventually 
differentiate into subpopulations of cells with different 
effector functions, such as activated T cells (HLA-DR+). 
And microenvironment PD-L1 (CD274) binds to PD-1 
(CD279) which is mainly expressed on the surface of T 
cells and results in T cell exhausting (expressing CD39) 
[29], α-PD-1 monoclonal antibody blocks PD-1 on T 
cell surface, avoids CTL exhausting, facilitates cytokines 
releasing (e.g., Interferons-γ, which may also influence 
cell differentiation), and remodels lymphocytes differen-
tiation / activation [30, 31].

In practice, classical biomarkers being examined 
before immunotherapy include TMB and PD-L1 [17, 
32]. Several pieces of evidence suggested the failure of 
using these markers as biomarkers for ICB responses 
[19]. With the inadequacy of classical markers, more 
researchers focused on emerging biomarkers such 
as neoantigen patterns, gut microbiota, tertiary lym-
phoid structure, etc. [33, 34]. In the current study, we 
explored the predictive value of lymphocytes differen-
tiation (baseline and dynamic changes) for ICB treat-
ment responses / outcomes.

We analyzed the training set variables using machine 
learning and found that baseline activated T cells, 
Δ12W total lymphocytes, and baseline CD4+/CD8 + T 
cells were essential predictors of ICB prognosis. Subse-
quently, we constructed a clinical prediction model and 
validated it with a validation set, aiming at a compre-
hensive assessment of the variables.

Systemic immune dysregulation and cytotoxic agents 
induced hematopoietic damage together leading to 
lower peripheral lymphocytes in cancer patients [35], 
and people assume that low peripheral lymphocyte 
counts positively correlate with fewer tumor-infiltrating 
immunocytes and predict poor responses / outcomes 
[36]. Wang et al. reported that total lymphocyte count 
was higher in the ICB benefit group [37]. Different from 
previous reports indicating lymphocyte counts pre-
dict ICB responses / outcomes [38, 39], we didn’t find 
any statistical difference in total lymphocyte counts 
between DCB and NDB patients or survival / progres-
sion benefit between high and low lymphocyte counts 
at baseline (Fig. 2A, Supplementary Tables 11 and 12). 
For dynamic changes, previous studies reported the 
importance of increased lymphocytes after ICB treat-
ment, we also found that increased lymphocyte counts 
after ICB treatment predicts good responses / out-
comes at a week of 12 (Figs. 2C and 3F, Supplementary 
Tables 6 and 8) [37, 40]. In summary, we have showed 
the essential of monitoring lymphocyte counts during 
ICB treatment by flow cytometry.

As key players in immune surveillance and anti-
tumor immunity, T cell activation featured with the 
expression of major histocompatibility complex class-II 
molecular (e.g., HLA-DR) requires both antigen-spe-
cific and costimulatory signals. And increased activated 
T cell (HLA-DR+) counts during ICB treatment indi-
cate the success of ICB treatment [41, 42]. In current 
research, we also found that the elevation of activated 
T cells indicates better outcomes after a short period 
of treatment (6 weeks, Fig. 3J, Supplementary Table 9). 
But interestingly, at baseline, we found that higher 
activated T cells correlate with less clinical benefit 
(Fig. 2D, Supplementary Table 6), shorter PFS (Fig. 3C, 
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Supplementary Table 8), or OS (Fig. 3E, Supplementary 
Table 9).

After that, we explored the distribution of T cells and 
their major subtypes, THs and CTLs in peripheral blood. 
We found that patients with higher levels of CTLs count 

at baseline bear a poor prognosis (Fig. 3M, Supplemen-
tary Table 8), but an elevated CTLs level after 12 weeks of 
ICB treatment indicates favorable responses (Supplemen-
tary Table 5), our data complement previous knowledge 
indicating the importance of tumor-infiltrating CTLs 

Fig. 5  Nomogram model of overall survival. A OS nomogram based on the multivariate model, including Baseline Activated T cells, Δ6W CD3 + T 
cells. B and C The 365- and 540- days OS calibration curves. D ROC curves in the training set. E DCA of the nomogram. Model 2(DCA curves for OS 
in the training set). F Kaplan-Meier curves of nomogram in training set. G ROC curves in the validation set. OS, overall survival; DCA, decision curve 
analysis; ROC, receiver operating characteristic curve; AUC, area under the curve
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level [43]. But interestingly, an increased total T cell 
counts was associated with poor responses / outcomes 
from a week of 6 (Fig. 3H, Supplementary Tables 5 and 9). 
This counterintuitive phenomenon might be explained by 
CD4+ / CD8+ T cell ratio, after 12 weeks of ICB treat-
ment a decreased ratio was associated with favorable 
responses, considering in peripheral blood the majority 
of T cells are CD4+ THs subpopulations which indicates 
the increased total T cell counts in NDB group might be 
explained by the elevation of THs. And complement with 
previous data we also found that baseline CD4+ / CD8+ 
T cell ratio was positively associated with clinical benefits 
including responses and outcomes (Figs. 2G and 3A) [44, 
45].

Tumor markers were commonly used as auxiliary bio-
markers for cancer diagnosis. Currently, CA125 is mainly 
considered as a specific tumor marker for ovarian cancer, 
but several studies showed that CA125 was elevated in 
about 46.6% of NSCLC patients, and predicts worse out-
comes / aggressive phenotypes [46, 47]. In the current 
study, we found that patients with higher level of CA125 
at baseline have better outcomes, but an elevated CA125 
level after 12 weeks of ICB treatment indicates worse 
ICB response and outcomes (Fig.  3B, G Supplementary 
Tables 6 and 8).

We constructed clinical prediction models for ICB treat-
ment response and outcome in the training set, and vali-
dated the model with the validation set (Figs.  3, 4 and 5). 
Our model showed moderate prediction performance for 
immunotherapeutic responses and outcomes, and it can 
provide intuitive initial treatment expectation for clinicians.

Some limitations should be addressed for current 
research. Firstly, because PD-L1 immunohistochem-
istry staining is not a mandatory test for patients who 
will receive 2+-line therapy or in combination with 
platinum based first-line therapy, therefore no PD-L1 
tumor proportion score (PD-L1 TPS) expression was 
recorded and reported in current study. Secondly, 
the patients enrolled in this study were treated in dif-
ferent clinical groups from our hospital, it’s difficult 
to fully record the immune-related adverse events 
(irAE). Thirdly, the retrospect study with fewer mark-
ers for flow cytometry panel limited the exploration of 
immunophenotype, a prospective study with more flow 
cytometry makers is required for fully understanding 
the relationship between ICB outcomes / responses and 
immunophenotypes.

In the current study, we focused on analyzing the 
dynamic changes of peripheral blood lymphocytes dif-
ferentiation characteristics in patients receiving ICB 
treatment. We observed distinctive modification of 
immune status in certain groups of patients with favora-
ble responses / outcomes after immunotherapy (e.g., 

elevated activated T cell counts after ICB treatment), 
which might help to select and identify novel therapeu-
tic beneficiaries. Moreover, precise identification of more 
subpopulations using other lymphocyte markers might 
provide richer results, and further studies using larger 
cohorts of patients with control arms are warranted to 
validate these biomarkers.
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