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Abstract 

Background  Human epidermal growth factor receptor 2 (HER2) overexpressed associated with poor prognosis in 
breast cancer and HER2 has been defined as a therapeutic target for breast cancer treatment. We aimed to explore 
the molecular biological information in ultrasound radiomic features (URFs) of HER2-positive breast cancer using 
radiogenomic analysis. Moreover, a radiomics model was developed to predict the status of HER2 in breast cancer.

Methods  This retrospective study included 489 patients who were diagnosed with breast cancer. URFs were 
extracted from a radiomics analysis set using PyRadiomics. The correlations between differential URFs and HER2-
related genes were calculated using Pearson correlation analysis. Functional enrichment of the identified URFs-
correlated HER2 positive-specific genes was performed. Lastly, the radiomics model was developed based on the 
URF-module mined from auxiliary differential URFs to assess the HER2 status of breast cancer.

Results  Eight differential URFs (p < 0.05) were identified among the 86 URFs extracted by Pyradiomics. 25 genes that 
were found to be the most closely associated with URFs. Then, the relevant biological functions of each differential 
URF were obtained through functional enrichment analysis. Among them, Zone Entropy is related to immune cell 
activity, which regulate the generation of calcification in breast cancer. The radiomics model based on the Logistic 
classifier and URF-module showed good discriminative ability (AUC = 0.80, 95% CI).

Conclusion  We searched for the URFs of HER2-positive breast cancer, and explored the underlying genes and bio-
logical functions of these URFs. Furthermore, the radiomics model based on the Logistic classifier and URF-module 
relatively accurately predicted the HER2 status in breast cancer.
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Background
Human epidermal growth factor receptor 2(HER2) is a 
proto-oncogene that encodes a transmembrane tyros-
ine kinase growth factor receptor and mainly regulates 
tumor signal transduction and cell proliferation[1]. 
Approximately, 15%–20% of all breast cancers are posi-
tive for HER2. This is associated with highly aggressive 
disease and poor prognosis [2]. The prognosis of HER2-
positive breast cancer has substantially improved with 
HER2-targeted therapies [3]. A clinical trial showed 
that the HER2-blockade agent trastuzumab significantly 
improved event-free survival (EFS) in HER2-positive 
breast cancer patients [4]. Furthermore, HER2-targeted 
therapy decreases tumor burden and increases patho-
logic complete response (pCR) in HER2-positive breast 
cancer patients [5–7]. Therefore, the identification of 
HER2 status helps to select the best individualized treat-
ment strategy for breast cancer patients.

Ultrasound has become a recommended method for 
the diagnosis and follow-up of breast lesions, as it has 
the advantages of convenience, economical, universality, 
real-time dynamics and radiation-free [8, 9]. Meanwhile, 
ultrasound has a relatively high sensitivity and specific-
ity for the diagnosis of breast cancer, especially in dense 
breast cancers. A credible association between HER2 
status and ultrasound features has been identified. HER2-
positive breast cancer has been associated with posterior 
echogenic enhancement, calcifications, and vascularity 
[10, 11]. However, few studies have established a radi-
omic model based to ultrasound images to evaluate 
HER2 status [12–14].

Radiomics, the extraction and analysis of high-through-
put features from medical images, is of great importance 
for the diagnosis, treatment and prognosis in tumor [15]. 
Ultrasound radiomic features (URFs) are high-dimen-
sional quantitative features extracted by computer from 
ultrasound images. Related studies on breast ultrasound, 
URFs were mainly used to construct a radiomic model 
to classify breast lesions [16–18]. Valeria et  al. success-
fully established a radiomics model based on URFs and 
random forest algorithm to distinguish malignant lesions 
from benign with 0.82 of the AUC [19]. However, the 
relationship between URFs and HER2 status in breast 
cancer and the biological information of URFs have not 
been explored in detail.

Radiogenomics associates radiomic features with 
genetic phenotypes to reveal radiomics-related biologi-
cal functions [20, 21]. Public data resources, such as the 
Gene Expression Omnibus (GEO), Gene Ontology (GO), 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
provide cancer genomic profiling data to promote cross-
disciplinary research including radiogenomic studies [22, 
23]. Yeh et al.[24] correlated MRI radiomic features with 

genomic analyses and showed that the enhanced tex-
ture of intratumor heterogeneity is associated with the 
Janus kinase-signal transducer and activator of transcrip-
tion signaling pathway, which plays an important role in 
immune regulation [25]. Most radiogenomic studies have 
focused on MRI [26–29], rather than ultrasound imaging 
of HER2-positive breast cancer.

HER2 is a marker of prognosis and therapeutic target. 
In this study, we aimed to establish a radiomics model 
based on the Logistic classifier and URF-module to non-
invasively predict the status of HER2 in breast cancer. The 
model would help clinicians to better classify patients for 
precise therapeutic care. Meanwhile, we explored the 
potential genes and biological functions of URFs. These 
discoveries will greatly increase the biologic understand-
ing of URFs. It is expected to promote the development 
of radiogenomics and provide a novel perspective for the 
study of breast ultrasound using radiogenomics.

Materials and methods
Patients
The requirement for informed consent was waived 
because of the retrospective study design and the use of 
images and clinical information about patients derived 
from medical records. This study included patients who 
underwent preoperative ultrasound between January 
2012 and December 2022 from the Second and the Third 
Affiliated Hospital of Harbin Medical University.

The patients were included when they met the inclu-
sion criteria: a. pathologically confirmed breast cancer 
by core needle biopsy or surgical resection; b. ultrasound 
examination performed before invasive procedures; c. 
HER2 status of tumors was definite and d. evident lesions 
on ultrasound images. The exclusion criteria were listed 
as follows: a. patients who receive any treatment, such 
as neoadjuvant chemotherapy and radiotherapy, before 
ultrasound images collection; b. breast cancer of patients 
with equivocal HER2 status; c. patients with poor image 
quality; d. patients underwent invasive biopsy, which 
destroyed the image, before ultrasound images collec-
tion; e. patients with incomplete clinical data. Patient 
enrollment process of the study show in Additional file 1: 
Fig. S1.

The patient data comprised the following data sets: a. 
a region of interest (ROI) training set to develop a model 
that could automatically classify breast cancer/back-
ground; b. an ROI test set to evaluate the performance of 
the ROI classification model; and c. a radiomics analysis 
set that included breast cancer ultrasound images after 
accurate segmentation by the ROI classification model 
and radiologists to extract URFs; d. then we divided the 
patients from the radiomics analysis set into a radiom-
ics training set and a test set for training and testing the 
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model at a ratio of 7:3; e. finally, an independent valida-
tion set is added to further evaluate the performance of 
the model. The cohort selection flowchart is shown in 
Fig. 1. The flow diagram of study is shown in Fig. 2. 

In this study, 489 breast cancer patients (mean age, 
52  years ± 10 [standard deviation]; all women) were 
finally included. This study contained a total of 1859 
ultrasound images, including 874 ultrasound images 
from 219 HER2-positive breast cancer patients and 985 
ultrasound images from 270 HER2-negitive breast can-
cer patients. And five main data sets were included in 
this study for analysis: the ROI analysis set contained 49 
patients, the ROI test set contained 345 patients, the radi-
omics training set contained 224 patients, the radiomics 

test set contained 96 patients and the independent vali-
dation set contained 95 patients.

Assessment of HER2 status
All patients underwent breast cancer surgery or 
core needle biopsy to obtain tumor tissue for patho-
logical diagnosis, right away after ultrasound images 
collection. The tumor tissues were stained with hema-
toxylin–eosin (HE) and performed in formalin-fixed, 
paraffin-embedded materials. After 5–7 days, the HER2 
status of all breast cancer patients was tested using IHC 
or FISH according to the 2018 guideline recommenda-
tions of the American Society of Clinical Oncology and 
College of American Pathologists [30]. The IHC stain-
ing intensity of HER2 was scored as 0, 1 + , 2 + , or 3 + . 

Fig. 1  Flow chart of cohort selection. The left panel shows the sample selection process in the training and test sets; the middle panel represents 
the sample distribution in the model, and the right panel indicates the sample selection process in the independent validation set. ACC​ Accuracy, 
DL Deep Learning
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The IHC staining intensity scored as 3 + was defined 
as HER2-positive, whereas the IHC staining intensity 
scored as 0 or 1 + was defined as HER2-negative. The 
IHC staining intensity scored as 2 + was defined as 
equivocal and FISH was used to further confirm HER2 
status.

Ultrasound images acquisition
Ultrasound examinations were performed using 
HITACHI Vision 500 system (Hitachi Medical System, 
Tokyo, Japan) and Aixplorer ultrasound imaging system 
(SuperSonic Imagine, SSI, France), both equipped with 
a linear probe of 5–13  MHz. Radiologist with over five 
years of experience were selected for image collection 
and all radiologists were rigorous trained before collect-
ing ultrasound images. They scanned the lesions from 
multiple angles, and selected several clear ultrasound 
images to be used for subsequent analysis.

CNN‑based segmentation and URFs extraction of breast 
cancer
We used Mask-R-Convolutional Neural Network-based 
architecture for the breast cancer/background classifica-
tion of ultrasound images. We initially trained the con-
volutional layer in the Microsoft Common Objects in 
Context dataset with a learning rate of 0.001 and 1,000 
epochs of 100 batches. Then, the deep learning (DL) algo-
rithm was trained using the ROI training set and tested 
using the ROI test set.

The radiomic features in ROIs were extracted using 
the Python package, PyRadiomics (version 2.1.0; https://​
pyrad​iomics.​readt​hedocs.​io/) [31]. Eighty-six features 
were extracted from ROIs on the ultrasound images, and 
differences in features between HER2-positive and -nega-
tive samples were identified using Wilcoxon tests.

Fig. 2  Flow diagram of study. First a, positive and negative samples are immunohistochemically distinguished, and tumor regions and radiomic 
features are extracted using the deep learning model. Second b, radiomics features are combined with gene expression data, and the biological 
functions of radiomic features are inferred by enrichment analysis. Third c, auxiliary features are identified based on Simpson index, and machine 
learning models are constructed

https://pyradiomics.readthedocs.io/
https://pyradiomics.readthedocs.io/
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Identification of specific gene sets associated 
with HER2‑positive status
Three mRNA expression profiles [GSE45827, GSE129559 
(median age, 55  years; range, 32–82), GSE162228] for 
HER2-positive breast cancer were downloaded from the 
GEO database based on the following inclusion criteria: 
(a) the organism was Homo sapiens; (b) HER2 status was 
explicit; (c) the patients were not previously treated. We 
ensured that the experiments were robust by using three 
datasets from different research institutions, sequencing 
platforms, and sequencing methods (high-throughput or 
array). Since features and genes are different dimensions 
of data, we applied the formula maximum value normali-
zation as follows:

where, Valuei is the feature or gene expression value of 
sample i, and max (Valuej) is the maximum value of the 
feature or gene j.

We identified positive-specific gene sets in 75 pertur-
bation studies, each of which contained the same num-
ber of randomly selected samples from the URF sets and 
gene sets of HER2-positive samples. Pearson correlation 
coefficients (PCC) between the URFs and gene expres-
sion in the HER2-positive and HER2-negative samples 
were calculated to determine the positively- and nega-
tively-related gene sets, respectively, corresponding to 
each URF. The negative URF-related genes were excluded 
from the positive URF-related gene sets to obtain posi-
tive-specific gene sets.

Function and similarity of URFs in HER2‑positive breast 
cancer
Functional enrichment of each URF in GO terms 
(p < 0.05) and KEGG pathways (p < 0.05) was analyzed 
using the R package  “clusterProfiler” (Version 4.2.2; 
http://​www.​bioco​nduct​or.​org/​packa​ges/​relea​se/​bioc/​
html/​clust​erPro​filer.​html) [32]. We obtained enriched 
GO terms and KEGG pathways in each URFs. Although 
some URFs might not be differential, they share similar 
functions as the differential URFs. We identified such 
URFs by calculating the Simpson index for each differen-
tial URFs. The formula is as follows:

where Fn is the number of functions shared by features i 
and j, Fi is the number of functions in feature i, and Fj is 
the number of functions in feature j.

If the Simpson index of a pair URF was > 0.6, the URF 
was defined as an auxiliary URF, and the URF-module 
consisting of auxiliary and differential URFs was defined.

Value_standardizationij = Valuei/max(Valuej)

sim = Fn/min(Fi, Fj)

Validation of URFs functionality in an independent dataset
We downloaded mRNA expression profiles of breast 
cancer from GEO (GSE81538) as the validation set and 
normalized the maximum value. We performed 25 per-
turbation studies on the validation set, and positive-spe-
cific gene sets were identified in at least two perturbation 
studies. The functions associated with each URF in these 
positive-specific gene sets were validated using func-
tional enrichment analysis.

Development of machine learning models
We trained seven machine learning models (support 
vector machine, random forest, decision tree, logistic 
regression, Naive Bayes, artificial neural network, and 
K-nearest neighbor) based on eight differential URFs. We 
used 320 samples from the radiomics analysis set, 70% of 
it being the training set and 30% as the test set, and per-
turbed each model 10,000 times. The performance of the 
models was evaluated using receiver operator character-
istics (ROC) curves.

To evaluate whether the URF-module could improve 
the performance of the classifiers, we retrained the seven 
models based on the URF-module and plotted ROC 
curves.

Evaluating the performance of machine learning models 
in the independent validation set
The CNN model we developed above was applied to seg-
ment 465 images from 95 patients in the independent 
validation set, and the segmentation results were identi-
fied by experts. Qualified ROIs are extracted by applying 
the Pyradiomics package for URFs, and the mean value 
was taken for multiple images of a patient. Finally, the 
performance of the differential URFs and URF-module 
in the independent validation set were verified in seven 
classifiers and ROC curves were plotted for evaluation.

Results
Patient characteristics
The clinical characteristics of patients are summarized in 
Tables 1 and 2. To determine whether there were differ-
ences of clinical characteristics between HER2-negative 
and HER2-positive samples, we analyzed seven clinical 
characteristics (age, T, N and M status, lymph node sta-
tus, TNM stage and menopausal status) in the test and 
validation set samples using the Wilcoxon nonparamet-
ric test. The results showed that there were no signifi-
cant differences among the seven clinical characteristics, 
including menopause. These indicated that clinical char-
acteristics did not effect the differential identification of 
radiomic features (p > 0.05).

http://www.bioconductor.org/packages/release/bioc/html/clusterProfiler.html
http://www.bioconductor.org/packages/release/bioc/html/clusterProfiler.html
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Ultrasound images segmentation and HER2 status‑related 
URFs extraction
The segmentation model initially identified the tumor 
region of the breast cancer samples (Fig. 3a), then, 989 of 
the 1,002 ultrasound images from 321 patients (radiom-
ics analysis set) were accurately segmented with 98.7% 
accuracy (98.2% and 99.2% for the positive and negative 
sets, respectively). We then extracted 86 radiomics fea-
tures (Fig. 3b) for the tumor region, which included First 
Order Statistics (18 features), Gray Level Co-occurrence 
Matrix (GLCM; 22 features), Gray Level Dependence 
Matrix (GLDM; 14 features), Gray Level Run Length 
Matrix (GLRLM; 16 features), and Gray Level Size Zone 
Matrix (GLSZM; 16 features).

We analyzed eight differential URFs (Size Zone Non 
Uniformity Normalized, Zone Entropy, Short Run High 
Gray Level Emphasis, Size Zone Non Uniformity, Small 
Area Emphasis, Short Run Emphasis, Run Length Non 
Uniformity Normalized, Small Area High Gray Level 
Emphasis) based on the fold-change values (fold change 
values > 1 and p < 0.05, respectively) between the positive 

and negative samples (Fig.  3c, d). These differential fea-
tures contained GLSZM and GLRLM categories, indicat-
ing different patterns of features in these samples.

To examine whether radiomic features differed among 
different tumor locations and menopausal status, we 
tested the URFs of the train & test and validation set 
patients based on ANOVA (Additional file  1: Figs. S2 
and S3). The results showed no significant differences in 
radiomic features among different tumor location and 
menopausal status (p > 0.05), further indicating that these 
clinical characteristics did not affect the differential iden-
tification of radiomic features.

Correlation analysis revealed positive‑specific gene sets
The three breast cancer mRNA expression profiles of 
the test set included data from 324 patients (Fig.  4a). 
The distribution of positive and negative samples did 
not significantly differ (p > 0.05; chi-square test), indi-
cating that it does not lead to biased results; however, 

Table 1  Significance of clinical characteristics in train & test 
cohort

Clinical characteristics HER2-Positive 
breast cancer

HER2-Negative 
breast cancer

p

No. of patients 179 215

Age 51.8 ± 9.9 52.7 ± 10.7 0.258

Lymph nodes 0.200

 Positive 90 122

 Negative 89 92

T 0.598

 T1 75 86

 T2 103 125

 T3 1 4

N 0.102

 N0 108 99

 N1 51 115

 N2 14 1

 N3 6 0

M 0.102

 M0 177 207

 M1 2 8

TNM stage 0.795

 I 53 57

 II 103 144

 II 21 5

 IV 2 9

Menopausal.status 0.112

 Menopausal 83 117

 Premenopausal 96 98

Table 2  Significance of clinical characteristics in validation 
cohort

Clinical characteristics HER2-Positive 
breast cancer

HER2-Negative 
breast cancer

p

No. of patients 40 55

Age 50.5 ± 8.1 51.9 ± 9.6 0.394

Lymph nodes 0.132

 Positive 4 12

 Negative 36 43

T 0.066

 T1 8 21

 T2 30 32

 T3 1 2

 T4 1 0

N 0.052

 N0 15 32

 N1 12 11

 N2 10 11

 N3 3 1

M NA

 M0 40 55

 M1 0 0

TNM stage 0.083

 I 6 15

 II 20 28

 III 14 12

 IV 0 0

Menopausal.status 0.134

 Menopausal 17 34

 Premenopausal 23 21
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the mRNA expression profiles between the two groups 
differed (Fig.  4b–d). We calculated correlations 
between differential URFs and genes in each dataset 
using random perturbation and Pearson correlation 
analysis (p < 0.05, |R|> 0.3). A gene was considered 

positive-specific only when it significantly associated 
with positive samples at least six times. We identified 
a minimum of 1,364 and a maximum of 1,871 positive 
genes in the eight differential URFs (Fig.  4e). Among 
the 25 genes with the most associations, we deter-
mined that a minimum of 8 and a maximum of 33 

Fig. 3  Ultrasound images segmentation and HER2 status-related URFs extraction. a Workflow of DL model. First (step 1), training a deep learning 
segmentation model. Second (step 2), automatically identify tumor regions and extract radiomic features by the model. b Heatmap shows all 
radiomic features between positive and negative samples. Darker shades represent higher levels of features. (*stands for significantly differential 
feature) c Heatmap shows differential radiomic features between positive and negative samples. Violin plots d of significantly differential features in 
negative and positive samples. e Ultrasound and immunohistochemical images of patients with negative and positive HER2 status. Green and red, 
HER2-negative and positive images, respectively
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were significantly associated (p < 0.05). Notably, some 
URFs were associated with significantly more num-
ber of genes. For example, the glszm_Size Zone Non 
Uniformity(SZNU) feature was associated with 1,871 
genes in 75 perturbations and ANKHD1 was signifi-
cantly associated with all the differential URFs.

URFs revealed distinct biological functions and similarities
The results of the functional enrichment analysis of the 
positive-specific gene set (p < 0.05) showed that although 
the significance of differential URFs in the KEGG path-
way was lower than that of the molecular function 
related GO terms, that of the ratio of genes was the 

Fig. 4  Correlation analysis reveals positive-specific gene sets. Bar chart (a), sizes of positive and negative samples in each breast cancer dataset. 
Heatmaps (b–d), gene expression between positive and negative samples in GSE45827, GSE162228, GSE129559. e Correlation coefficients between 
most closely correlated genes and differential features. Higher values and greater significance are shown as more intense red-filled and larger 
circles, respectively



Page 9 of 15Cui et al. Journal of Translational Medicine           (2023) 21:44 	

Fig. 5  URFs reveals distinct biological functions and similarities. a Heatmap of all enriched KEGG pathways and GO terms of differential features. 
Peaks show distribution of log (p) (left) and gene ratios (right). More intense color represents greater enrichment of features in functions. Bar plots b 
show KEGG pathways and GO terms enriched for specific positive gene sets in each differential feature ranked by -log10(P). c Simpson index matrix 
shows similarity between features of each pair and two examples of feature pairs. Network d of the URF-module regulatory relationships
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highest (Fig. 5a). We then analyzed the functions of the 
differential URFs, and the results indicated that the Size 
Zone Non Uniformity Normalized (SZNUN) feature 
was mainly associated with nuclear division and inter-
cellular communication, Zone Entropy (ZE) participated 
in immune cell activity and oxidative stress, Short Run 
High Gray Level Emphasis (SRHGLE) might contribute 
to cellular hypoxia, Size Zone Non Uniformity  (SZNU) 
affected the catabolism of various compounds, small area 
emphasis(SAE) was associated with cellular hypoxia and 
protein metabolism, short run emphasis(SRE) regulated 
the cell cycle and affected neutrophil activity, Run Length 
Non Uniformity Normalized (RLNUN) was associated 
with the cell cycle and intercellular communication, and 
Small Area High Gray Level Emphasis (SAHGLE) was 
associated with endosomal localization and structure 
(Fig. 5b). We found a minimum of one and a maximum of 
six auxiliary features for each differential URF (Simpson 
index > 0. 6). Although most of the URFs were specific, 
some shared similar functions (Fig. 5c). We constructed 
a regulatory network for the URF-module (Fig. 5d), and 
the results confirmed known relationships and revealed 
novel relationships among these URFs.

Feature functionality was verified in an independent 
dataset
The mRNA expression data, GSE81538, included 314 
negative and 87 positive samples. To verify the functions 
of differential URFs, we identified a minimum of 62 and 
a maximum of 248 positive-specific genes among the 
eight differential URFs using Pearson correlation analy-
sis and perturbation studies (p < 0.05, |R|> 0.3) (Fig.  6a). 
Among the 25 genes with the highest number of associa-
tions, we determined a minimum of 3 and a maximum 
of 4 significant associations. The results of analyzing the 
functional enrichment of the positive-specific gene sets 
(p.adjust < 0.05) showed that the most significant genes 
and the highest ratio of genes in KEGG pathways associ-
ated with the differential URFs and the second most sig-
nificant genes in the GO terms were related to biological 
processes (Fig. 6b).

The functions of five differential URFs (fold change 
values > 1 and p < 0.05, respectively) were validated, and 
the results revealed that SZNU was associated with car-
bon metabolism in cancer, SZNUN was associated with 
cell-substrate junction, SAE is associated with chemical 
carcinogenesis - reactive oxygen species, SAHGLE was 
associated with the composition of the endomembrane, 
and ZE was involved in peroxidase and oxidoreductase 
activity (Fig. 6c).

URF‑module contributed to classification of HER2‑positive 
breast cancer in multiple classifiers
To evaluate the ability of URFs to identify HER2 sta-
tus, we first trained seven machine learning classifiers, 
including support vector machine, logistic, Bayes, Deci-
sion-Tree, random-forest, artificial neural network, and 
the K Nearest Neighbor algorithm based on the eight dif-
ferential URFs (Fig. 7a–g). We then plotted ROC curves 
to facilitate and analyze comparisons among the dif-
ferent classifiers by measuring areas under ROC curves 
(AUC). An AUC of 1.0 indicated that the tested classifier 
was suitable for our data, whereas 0.5 indicated that the 
classifier had no classification capability for our data. The 
range of AUC of the tested classifiers was 0.62–0.715, 
suggesting that the logistic classifier achieved rela-
tive accurately classifying HER2-positive breast cancer 
patients.

We further evaluated the performance of the classifiers 
based on the URF-module. It can be found that the over-
all performance of the URF-module based model were 
better than those of URFs based model (Additional file 1: 
Table  S1). In particular, the specificity of URF-module 
based model was 80.8% using logistic classifier in test set, 
implying a low rate of false positive. These results indi-
cated that the URF-module were meaningful for iden-
tifying patients who are HER2-positive breast cancer 
and that the classification accuracy and specificity were 
improved (Fig. 7h).

URF‑module in independent validation sets contribute 
to the classification of HER2‑positive breast cancer
To validate the ability of URFs to identify HER2-positive 
breast cancers, we evaluated the features extracted from 
the independent validation set based on the seven opti-
mal classifiers. For each classifier, the AUC values ranged 
from 0.516 to 0.585. We also validated the performance 
of the URF-module based classifier with AUC values 
between 0.538 and 0.655(Fig.  8). Similar to test set, the 
overall performance of the URF-module based model 
were better than those of URFs based model (Additional 
file  1: Table  S1). In particular, the specificity of URF-
module based model was 83.3% using logistic classifier in 
independent validation set, also mean that a low rate of 
false positive. These results indicated that the URF-mod-
ule can improve the classifier’s ability to classify HER2-
positive breast cancer patients.

Discussion
The prognosis for patients with HER2-positive breast 
cancer considerably improved after the advent of HER2-
targeted therapies [33]. Therefore, it is important to 
assess HER2 status for targeted therapy selection. We 
developed a radiomics model with URF-module based on 
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Fig. 6  Feature functionality is verified in an independent dataset. a Correlation coefficients of most closely correlated genes and 
differential-features. b Heatmap shows all enriched KEGG pathways, GO terms of differential features. Peaks plot show distribution of -log(p) (left) 
and generation (right). c Summary of hierarchical model to systematically understand feature-mRNA-function network of HER2 positive breast 
cancer
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two-dimensional ultrasound images that could evaluate 
HER2 status. In addition, we deeply mine URFs of HER2-
positive breast cancer to obtain the molecular biological 
information inherent in URFs of HER2-positive breast 
cancer.

Eight differential URFs assigned to two types of texture 
features (GLSZM, GLRLM), were significantly associated 
with HER2-positive breast cancer. One of the differential 
URFs was ZE, which we used to measure uncertainty in 
the distribution of zone sizes and gray levels. A higher ZE 
value indicated more heterogeneous voxel intensity in the 
ultrasound images. ZE alone showed an upward trend, 
whereas the rest of the URFs showed a downward trend. 
The intrinsic definitions of the other URFs implied that 
these texture features were associated with not only the 
uniformity of size zone volumes or run lengths, but also 
to the relationship between short runs or small areas and 

high gray level values. These findings showed that the 
eight differential URFs of HER2-positive breast cancer 
were characterized by high heterogeneity and low gray 
levels. This implied that HER2-positive breast cancer 
often exhibit characteristic calcifications and hypoechoic 
regions in ultrasound images. These results agreed with 
those of previous studies [10, 34, 35]. In future work, pre-
dicting the status of HER2 in some cancer such as ovar-
ian cancer maybe could be evaluated by this algorithm.

ZE was an important URF showing an upward trend 
in ultrasound images of HER2-positive breast cancer. 
In addition, calcification is prevalent in HER2-positive 
breast cancer [36, 37]. Functional enrichment analysis 
revealed that ZE associated with immune cell activity, 
and others confirmed that epithelial cells with a mes-
enchymal phenotype can assume an osteoblast-like 
phenotype and undergo complex forms of calcification 

Fig. 7  URF-module contributes to classification of HER2-positive breast cancer in multiple classifiers. a–g Receiver operator characteristics (ROC) 
curves for seven classifiers. Top and bottom, based on difference URFs and URF-module, respectively. h Box plot represents area under the ROC 
curves for the classifiers based on differential URFs and URF-module
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after BMP-2 induction. This suggested that altered 
immune cell activity leads to an increase in BMP-2, 
eventually resulting in the occurrence of calcification in 
breast cancer [38, 39]. Moreover, functional enrichment 
analysis also associated ZE with oxidative stress, which 
might trigger vascular calcification. Further investiga-
tion is needed to determine whether oxidative stress 
can also trigger calcification in breast cancer [40].

We developed seven classifiers to evaluate the abil-
ity of URFs, out of which support vector machine, deci-
sion tree, and random forest can solve high-dimensional 
problems, whereas support vector machine can improve 
generalization; however, a general solution for nonlinear 
problems is not available. The decision tree has a short 
run time, but correlations among features are easily 
ignored. Random forest is more resistant to overfitting, 
but might not produce good results for small-scale data. 
Bayes requires few parameters, but the error rate is high 

because prior probabilities need to be calculated. The K 
Nearest Neighbor algorithm is more suitable for auto-
matic classification with a relatively large sample size, but 
the interpretability of the results is low. Lastly, artificial 
neural network provides high classification accuracy and 
robustness against noisy nerves. However, neural net-
works require numerous parameters and the results are 
difficult to interpret, which affects credibility and accept-
ability. Logistic regression resists noisy interference and 
prevents overfitting using regularization, but it is lim-
ited by the hypothesis of linearity between features and 
targets. We found that the logistic classifier produced 
the largest AUC, indicating a linear association between 
radiomics features and HER2 status.

We created URF-module to improve the performance 
of the model. Firstly, considering ten positive Events 
per Variable (tenfold EPV) regression analysis is widely 
accepted and the maximum number of variables in the 

Fig. 8  URF-module in independent validation set contributes to the classification of HER2-positive breast cancer. a–g ROC curves for seven 
classifiers in validation set, top based on difference features, bottom based on URF-module
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147 positive samples in this study was 14, we chose 8 
URFs for the establishment of the model. However, the 
results showed that the model was underfitted. Then, 
we considered the value of event of independent varia-
ble (EIV); other studies have reported that Type I error 
can be better controlled by the PLE-based contour 
method and maximum likelihood-based Wald method 
when the EIV is > 20. Therefore, we added auxiliary 
features to construct a URF-module, and the AUC for 
classification was significantly increased.

This study had a few limitations. Firstly, the ret-
rospective selection of patients might have led to a 
selection bias. Therefore, future prospective studies 
are needed to verify our results. Secondly, our patient 
cohort was relatively small. More patients should be 
included in further studies to improve the performance 
of our model. Finally, we used only two-dimensional 
ultrasound images. We plan to focus on extracting 
more image information from multimodal ultrasound 
images to further understand the link between ultra-
sound phenotypes and the molecular mechanisms of 
breast cancer. In addition, biological experiments and 
double-blind datasets should be performed to validate 
the computational algorithm in future work.

Conclusion
In conclusion, we constructed a radiomics model based 
on the Logistic classifier and URF-module to identify 
the HER2 status in breast cancer. We also explored the 
underlying gene expression and biological information 
of URFs through   radiogenomic analysis. Significantly, 
ZE associated with calcification in ultrasound images 
of HER2-positive breast cancer and can reflect immune 
cell activity, which also can regulate the formation of 
calcification in breast cancer.
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