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Abstract

Successful prediction of clinical outcomes facilitates tailored diagnosis and treatment. The 

microbiome has been shown to be an important biomarker to predict host clinical outcomes. 

Further, the incorporation of microbial phylogeny, the evolutionary relationship among microbes, 

has been demonstrated to improve prediction accuracy. We propose a phylogeny-driven deep 

neural network (PhyNN) and develop an ensemble method, DeepEn-Phy, for host clinical outcome 

prediction. The method is designed to optimally extract features from phylogeny, thereby take 

full advantage of the information in phylogeny while harnessing the core principles of phylogeny 

(in contrast to taxonomy). We apply DeepEn-Phy to a real large microbiome data set to predict 

both categorical and continuous clinical outcomes. DeepEn-Phy demonstrates superior prediction 

performance to existing machine learning and deep learning approaches. Overall, DeepEn-Phy 

provides a new strategy for designing deep neural network architectures within the context of 

phylogeny-constrained microbiome data.
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I. Introduction

The human microbiome refers to the collection of microorganisms that colonize a human 

body and plays an important role in the host’s health. High-throughput sequencing (16S 

rRNA gene amplicon sequencing [1] or shotgun metagenomic sequencing [2]) enables 

profiling of the entire microbial communities. This has culminated in countless studies 
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over the past decade that have shown that microbiome composition is closely related to 

exposures and clinical outcomes, such as environmental pollutants [3], type 2 diabetes [4], 

bacterial vaginosis [5], etc. Accordingly, the microbiome represents an important quantity by 

which one can predict a host’s disease status and clinical outcomes. Accurate prediction can 

directly facilitate tailored diagnosis and personalized risk mitigation for individuals.

Existing studies [6] have shown that exploiting the microbial phylogeny improves the 

prediction accuracy. Phylogeny is a binary tree depicting the evolution paths of all microbes 

in the profiles. The leaf nodes are microbes at the aggregation level chosen during data 

processing, which could be species, genera, etc. They are the only nodes with assigned 

values – the sequenced read counts. Each split reflects the event in which a most recent 

common ancestor speciated to form two descendants. A group of microbes composed of a 

common ancestor and all its lineal descendants is called a clade. The length of the branch 

between two adjacent nodes represents the extent of genetic divergence between the recent 

ancestor and the descendant. Phylogeny is a scaffold to classify lineages and infer functional 

traits. The clustered microbes that are within the same clade and with short distances among 

them (i.e., lengths of the paths along branches) tend to have similar characteristics. We 

emphasize that taxonomy is a much more coarse organization of microbes, which is inferred 

from phylogeny and consists of only eight levels from domain, kingdom, to species. Thus, 

taxonomy is essentially discrete, whereas phylogeny is a more precise, continuous measure 

of evolutionary relationships. In this paper, we focus on lossless phylogeny, ignoring 

approaches that use taxonomy or convert phylogeny to taxonomy, as they lose considerable 

information. We note that much existing work in the field focuses primarily on taxonomy 

despite calling it phylogeny.

It is not trivial to optimally extract features from phylogeny, as information in the hierarchy 

(parent-children relationship) and distance (length of the path between two nodes along 

branches) should be jointly encoded. Machine learning (ML) methods, such as penalized 

regression, e.g., LASSO [7], and tree-based ensemble methods, e.g., random forest and 

gradient boosting, have been widely used in microbiome prediction [8]. However, they 

do not directly incorporate phylogeny, and require manual selecting or combining the 

microbial abundances across multiple leaves of the tree to be the model inputs, which is 

a challenging feature engineering task. Deep learning is a powerful alternative for the task 

as it enables automatic feature representation [9] and it is also a powerful tool to handle 

unstructured data like text, image, graph and tree. Moreover, a deep neural network can 

approximate a vast majority of complicated functions [10]. As the most basic architecture 

in deep learning, multilayer perceptron (MLP), a.k.a. fully connected feedforward neural 

network, has been used to predict host clinical outcomes with microbial abundances as the 

inputs. However, it fails to incorporate phylogeny and does not uniformly outperform ML 

approaches [11]. PopPhy-CNN [12] initiated convolutional neural network (CNN) modeling 

on phylogeny – allocating the tree into a 2D matrix and applying a CNN on the matrix. 

It demonstrated successful prediction of disease status in several case studies. However, 

it has two limitations. First, a constant distance of one between nodes is assumed, so 

some important distance information in phylogeny is overlooked. Second, internal nodes are 

assigned values as the sums of all decedents and equally treated as the leaf nodes in the 
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2D matrix. Then, different hierarchies and different clades are combined by kernels without 

distinction, which violates the phylogenetic principles.

To fully use microbial phylogeny and follow its underlying principles, we propose a 

novel phylogeny-driven neural network (PhyNN). Then, based on it, we develop a deep 

ensemble model (DeepEn-Phy) for host clinical outcome prediction. DeepEn-Phy offers 

several major advances. First, it does not lose any information because it directly utilizes 

the most detailed phylogeny based on established closed-reference phylogenetic trees [13] 

(obtained by aligning discovered sequences to a reference database of target gene sequences 

from known microbes), e.g., from QIIME2 [14] or DADA2 [15]. Second, it sequentially 

combines values from the leaf nodes up to the root along branches, which is consistent 

with phylogenetic principles. Third, it extracts phylogenetic features at multiple granularities 

and ensembles the results to further improve prediction accuracy. Finally, it can be used for 

both classification (categorical outcome, e.g., disease status) and regression (continuous 

outcome, e.g., systolic blood pressure). We apply DeepEn-Phy to a real large-scale 

microbiome-profiling study and demonstrate its superior prediction performance compared 

to well-established ML methods, MLP and PopPhy-CNN.

II. Methods

A. Microbiome data and phylogeny

Sequencing technology processes the specimens, e.g., stool or skin samples, and produces 

ACGT reads of the microbial genes. Then, bioinformatics pipelines such as QIIME2 take 

the sequencing reads and identify the microbes with reference to some established closed-

reference phylogenetic tree, such as those for 16S rRNA data [16]. It has been shown that 

a closed-reference gives high-quality microbial assignments and improves comparability 

across studies.

Ultimately, we can obtain a microbiome read counts table and the corresponding 

phylogenetic tree. Fig. 1 is an example – the Guangdong Gut Microbiome Project (GGMP 

[17]) data. Suppose we have m microbes from n samples, then the read counts table is n × 

m, and the tree has m leaf nodes. Each sample in the table (Fig. 1 left) corresponds to a tree 

with microbial read counts allocated on the leaf nodes (Fig. 1 right). If we aggregate the data 

to a lower level, e.g., species, the tree will be deeper with sparser data on the leaf nodes.

B. Phylogeny-driven neural network (PhyNN)

In this section, we present PhyNN, a composite, locally connected feedforward neural 

network constructed by scanning the phylogenetic tree from the bottom up with a series of 

MLPs. Hereinafter, we assume the phylogenetic tree associated with each sample is in a 

rectangle layout with the root at the top and the leaf nodes at the bottom.

According to phylogenetic principles, clustered microbes that have the same ancestor and 

similar distance to the root are close in lineage and presumably in characteristics [18]–[20]. 

Motivated by this fact, we extract the common underlying features for each group of 

clustered microbes on the leaf nodes by a single model such as MLP. Regarding extracted 

features of a lower-level clade as a representation of the microbes in that clade, we can 
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repeat this procedure at the higher level and keep moving up until we reach the root to 

get the final feature for outcome prediction. This procedure takes advantage of both the 

hierarchy information (the grouped microbes have the same ancestor) and the distance 

information (the grouped microbes have a similar distance to the root) contained in the 

phylogenetic tree. Also, the procedure is consistent with the evolution paths depicted in the 

phylogeny.

Specifically, inspired by CNN that slides over the image and combines pixels by kernels, 

we propose to horizontally slice the phylogenetic tree into bands, then slide multiple MLPs 

from the bottom band to the top band, while sequentially integrating the features captured by 

those MLPs to obtain the final feature for outcome prediction. Define the total height h of a 

phylogenetic tree as the distance between its lowest leaf node and root. Then, the algorithm 

of constructing PhyNN is as follows:

1. Starting from the lowest leaf node, slice the tree into K bands with bandwidth b, 

where K = h/b (the 1st band, a.k.a. the top band, may be narrower than b);

2. To combine nodes from the kth band to the (k − 1)th band, first determine the 

group of nodes that have the common lowest ancestor in the (k − 1)th band, then 

integrate their values via an MLP and cache the output to that common ancestor.

3. Repeat 2) until reaching the 1st band.

Note that during the above iterations, we connect the series of MLPs to construct the final 

PhyNN model – the inputs of an MLP in the (k – 1)th band are the outputs of its linked 

MLPs and abundances of its linked leaf nodes in the kth band.

We use a toy example with 5 microbes to explain the algorithm in detail. Fig. 2a shows the 

phylogeny, and Fig. 2b is the PhyNN constructed on it. We walk through the four steps of 

constructing this PhyNN in Fig. 3:

1. Fig. 3a (Band IV → Band III): Note that Microbe 1 has no ancestors in Band 

III, so we manually create a pseudo ancestor node for it in Band III. Then, we 

integrate Microbe 1’s abundance via an MLP, and cache the integrated feature 

to the pseudo node. Meanwhile, we integrate Microbe 4’s abundance via another 

MLP, and cache the integrated feature to its ancestor node in Band III.

2. Fig. 3b (Band III → Band II): We further integrate the feature from Microbe 1 

via an MLP, and cache the new integrated feature to its ancestor node in Band 

II. Meanwhile, we integrate Microbes 3 and 5’s abundances and the feature from 

Microbe 4 via another MLP, and cache the integrated feature to their common 

ancestor node in Band II.

3. Fig. 3c (Band II → Band I): We integrate the feature from Microbe 1, the feature 

from Microbes 3,4,5, and Microbe 2’s abundance via an MLP, and cache the 

integrated feature to the root.

4. Fig. 3d: the feature cached in the root is the final feature extracted by this 

PhyNN. One may apply different kinds of activation functions on top of it for 

different prediction tasks (classification or regression).
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The PhyNN constructed above is an end-to-end, locally connected architecture. It has two 

merits. First, it accounts for both the hierarchy and distance information in the phylogeny by 

sequentially extracting features for each group of clustered microbes via an MLP. Second, 

the MLPs are connected following the evolution paths in the phylogeny. Thus, PhyNN 

enables powerful learning that is guided by phylogenetic principles.

C. Formal description of PhyNN construction and training

To formally describe the model construction process introduced above, we need to introduce 

some notation. Let |S| denote the number of elements in a set S. Let Bk = {Nk1, . . . , Nk|Bk|} 

denote the set of nodes located in the kth band, where Nkj represents the jth node in the band 

(j = 1, . . . , |Bk|). Let V (Nkj) be the value cached in node Nkj, which could be a scalar, a 

vector or NULL (a non-leaf node has no value cached in it). Next, let A(Nkj ) denote the 

lowest ancestor node of Nkj in Bk−1, which will be NULL if Nkj does not have any ancestor 

in Bk−1. Then, let S(Nkj) be a set to collect all the nodes in Bk+1 whose lowest ancestor in Bk 

is Nkj, and we will initialize all such sets as empty sets before starting the algorithm. Finally, 

let fkj
(H) be an MLP with architecture defined by the hyperparameter H. A pseudo code for 

PhyNN model construction is shown in Algorithm 1.

Algorithm 1

Construction of PhyNN

Input: Phylogenetic tree T

   Bandwidth b

   Hyperparameter H for MLP

Divide T into K = ⌈h/b⌉ bands B1, . . ., BK

fork = Kto 2 do

 forj = 1 to |Bk| do

  ifA(Nkj) is not NULL then

   S(A(Nkj)) ← S(A(Nkj)) ∪ {Nkj}

  else

   Insert a new (pseudo) node Nk − 1, Bk − 1 + 1 to Bk−1S Nk − 1, Bk − 1 + 1 Nkj

  end if

 end for

 forj = 1 to |Bk−1| do

  vkj ← NULL vector

  forNinS(Nk−1,j) do

   ifV(N) is not NULL then

    vkj ← [vkj, V(N)] (append V(N) to vkj)

   end if

  end for

  ifvkj is not NULL vector then

   V Nk − 1, j fkj
(H) vkj
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  end if

 end for

end for

v11 ← NULL vector

forNinB1do

 ifV(N) is not NULL then

  v11 ← [v11, V(N)] (append V(N) to v11)

 end if

end for

z f11
(H) v11

Output: The PhyNN model f that accepts the abundances on all leaf nodes as input and yields z as output

In Algorithm 1, each MLP fkj
(H) is recursively defined by

x(q) = σ(W kj
(q)x(q − 1) + bkj

(q)) q = 1, …, Q, (1)

where Q is the number of layers, σ is the activation function, the p(q) ×p(q−1) matrix W kj
(q)

and the p(q) ×1 vector bkj
(q) are the weights and bias to train, x(q) is a p(q)×1 column vector, 

x(0) corresponds to the input vkj, and x(Q) corresponds to the output fkj
(H) vkj . In addition, 

the activation function of the last layer of f11
(H) is always an identity function, i.e., it is 

computed by

z = x(Q) = W 11
(Q)x(Q − 1) + b11

(Q) . (2)

The complicated PhyNN model f consisting of many such MLPs fkj
(H) will be trained 

end-to-end as a single model. In other words, all the fkj
(H) will be jointly trained together, 

rather than separately. The trained weights W kj
(q) and bias bkj

(q) of each fkj
(H) will be different, 

i.e., their weights and bias are not tied, but they have the same architecture defined by 

the same hyperparameter combination H. In other words, all of these MLPs have the same 

number of layers Q, the same output dimension p(Q), and the same hidden dimension p(q) 

in each layer, etc., though the input dimension p(0) of each MLP could be different, as it 

depends on how many descendent nodes it has in the band below it.

Our model f constructed above can be flexibly applied to different kinds of ML tasks when 

applying different functions on top of the final output of f. For regression tasks, we apply 

the identity function and train the model f by minimizing the following mean squared error 

(MSE) loss
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L = 1
n ∑

i = 1

n
yi − f T i 2

2, (3)

where Ti is the phylogenetic tree of the ith sample with microbial read counts allocated on 

the leaf nodes and yi is the clinical outcome of the ith sample. For binary classification tasks, 

we apply the sigmoid function σ and train the model f by minimizing the following binary 

cross entropy loss

L = 1
n ∑

i = 1

n
−yilog σ f T i − 1 − yi log 1 − σ f T i . (4)

For the ith sample, the predicted probability of Class 1 is given by σ(f(Ti)). For multiple 

classification tasks with C classes, we apply the softmax function and train the model f by 

minimizing the following cross entropy loss

L = 1
n ∑

i = 1

n
∑

c = 1

C
−yclog softmax f T i c , (5)

where for any C-dimensional vector v = [v1, . . . , vC], softmax(v)c is given by

softmax(v)c = evc

∑c′ = 1
C evc′

.

For the ith sample, the predicted probability of the cth class is given by softmax(f(Ti))c.

Denote all the weights and bias of f as θ. Then with the loss L(θ) defined above, our PhyNN 

model f is trained with the Adam algorithm [21]. More specifically, at the tth training step, 

Adam updates the weights and bias of f as follows:

gt ∇θL(θ) θ = θt − 1
mt β1mt − 1 + 1 − β1 gt
st β2st − 1 + 1 − β2 gt ⊗ gt

mt mt/ 1 − β1
t

s t st/ 1 − β2
t

θt θt − 1 − ηmt/ s t + ϵ ,

(6)

where ⊗ denotes the element-wise multiplication, m0 and s0 are both initialized as zero 

vectors, β1 is a momentum decay hyperparameter that is usually set as 0.9, β2 is a scaling 

decay hyperparameter that is usually set as 0.999, ɛ is a smoothing term that is usually set as 

10−8, and η is the learning rate.
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D. Deep ensemble learning (DeepEn-Phy)

In the above sections, we only introduce PhyNN with a fixed bandwidth b. The narrower the 

bandwidth is, the feature at the higher granularity is learned. However, with one bandwidth, 

we can only learn features at a particular granularity, while features at both high and low 

granularities could be useful for prediction. Therefore, we propose a deep ensemble method, 

DeepEn-Phy, to train PhyNN multiple times with a pre-specified sequence of bandwidths 

and ensemble the results to get the final prediction. Specifically, for classification, we 

average the predicted probabilities over the various bandwidths and pick the category 

with the highest average probability as the final prediction; for regression, we average the 

predicted values over the various bandwidths and use it as the final prediction.

For the sequence of bandwidths, we recommend using an evenly spaced grid in [0, h]. We 

note that a wider bandwidth may not always incur fewer MLPs than a narrower one (Fig. 4). 

In general, the complexity of PhyNN decreases as bandwidth increases, but it also depends 

on the structure of phylogeny. For example, a wide bandwidth may still accidentally cut a 

large number of branches, resulting in numerous MLPs.

E. Data and analysis

We apply DeepEn-Phy to the GGMP data downloaded from the Qiita platform. GGMP is 

a large microbiome-profiling study conducted in Guangdong Province, China. 7009 stool 

samples have been collected and processed over 14 districts under the same protocols. 

The 16S rRNA marker gene (V4 region) was sequenced, and the sequencing reads were 

processed by QIIME pipeline [22] to obtain the microbiome data. Sociodemographic and 

biomedical features of the participants have also been collected.

We re-processed the data by QIIME2 pipeline with reference to the 97% Greengenes 

closed-reference tree [16] and obtained the OTU-level abundances. We then aggregated the 

OUT-level data to the genus level, i.e., calculated the sum of OTU abundances over all OTUs 

that map to the same genus-level group. There are 1190 genera in total, and the phylogenetic 

tree has a total height of h = 1.24. We normalized the microbial read counts by centered 

log-ratio (CLR, [23], [24]) transformation, which is a usual practice for microbiome data. 

There are other transformations such as PhILR [25], while we chose CLR for illustration in 

this paper.

The original paper identified the top 30 host features that are associated with gut microbial 

variations (Fig. 1b of [17]). The host location showed the strongest association, while the 

other features have much weaker associations. We select the No.22 and No.9 identified 

features – smoking status (binary, never smoked=0, ever smoked=1) and BMI (continuous) 

as the clinical outcomes to predict from the microbial profiles. We randomly split the 7009 

samples into training (6000), validation (300), and testing (709) sets, and filtered out the 

cases with missing smoking status or BMI (Tab. I).

We use Vanilla MLP as a competing method, where all abundances on the leaf nodes 

are concatenated together as the input and fed to a single fully connected MLP, without 

considering phylogeny. Another deep learning competing method is PopPhy-CNN, where 
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phylogeny is embedded into CNN. The other four competing methods are random forest, 

gradient boosting, LASSO, and Ridge.

To make a fair comparison among the deep learning methods, we make their numbers of 

trainable parameters comparable, because it is a measure for representation capability. For 

DeepEn-Phy, since h = 1.24, we use six bandwidths b = 0.2, 0.4, 0.6, 0.8, 1.0, 1.2. Then, to 

predict smoking status, we use 1 hidden layer with 5 neurons in each MLP. The learning rate 

is 0.005, and a L1 penalization with λ = 0.001 is imposed. To predict BMI, we use 1 hidden 

layer with 2 neurons in each MLP. The learning rate is 0.005, and a L2 penalization with 

λ = 0.005 is imposed. For Vanilla MLP, to predict smoking status, we use 9 hidden layers 

with 90, 80, · · ·, 10 neurons, and the same learning rate and penalization as DeepEn-Phy. To 

predict BMI, we use 4 hidden layers with 40, 30, · · ·, 10 neurons, and the same learning rate 

and penalization as DeepEn-Phy. For PopPhy-CNN, we use the authors’ pre-fixed settings 

[12].

For smoking status, we use the area under the receiver operating characteristic curve 

(ROC-AUC) to evaluate the classification performance. We also examine the weighted 

F1-score over the two statuses (calculate F1-score for each status, and calculate their average 

weighted by the number of true instances for each status [26]). For BMI, we use MSE as the 

measure to evaluate the prediction performance. Its square root (RMSE) is also reported.

We also obtain the species level data (1606 species), and conduct analysis following the 

same procedures.

III. Results

Tab. II summarizes the performance of DeepEn-Phy in predicting the binary smoking status 

and continuous BMI in comparison with the existing methods. We omit PopPhy-CNN in 

predicting BMI as it is not designed for continuous outcomes. We see that DeepEn-Phy 

outperforms the others. When predicting smoking status, it increases the ROC-AUC of 

0.6813 from the 2nd runner (gradient boosting) to 0.7043, and boosts the F1-score of 

0.6439 from the 2nd runner (logistic LASSO) to 0.6839. The corresponding ROC curves are 

summarized in Fig. 5(left). When predicting BMI, DeepEn-Phy reduces the MSE of 12.9072 

from the 2nd runner (random forest) to 12.6812, improving RMSE from 3.5927 to 3.5611.

To demonstrate the advantage of DeepEn-Phy over a single PhyNN, we summarize the 

performance of each of the PhyNNs constructed with different bandwidths (Tab. III). It 

is shown that in predicting smoking status, none of their ROCAUCs is higher than the 

ensemble ROC-AUC. Also, in predicting BMI, none of their MSEs is lower than the 

ensemble MSE. It indicates that the six PhyNNs with different granularities complement 

each other and boost the final prediction accuracy.

It takes a relatively long time to train DeepEn-Phy because it contains multiple PhyNNs. 

However, each individual PhyNN is relatively fast to train (smoking status: 239s = 1, 433s/6, 

BMI: 125s = 747s/6), which is faster than Vanilla MLP (smoking status: 352s, BMI: 192s) 

and even random forest (smoking status: 294s, BMI: 992s).
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On the species level data (Tab. IV), we still observe the dominating performance of DeepEn-

Phy. When predicting smoking status, it increases the ROC-AUC of 0.6610 from the 2nd 

runner (gradient boosting) to 0.7016, and boosts the F1-score of 0.6615 from the 2nd runner 

(logistic Ridge) to 0.6748. The corresponding ROC curves are summarized in Fig. 5(right). 

When predicting BMI, DeepEn-Phy reduces the MSE of 12.7475 from the 2nd runner 

(random forest) to 12.5559, improving RMSE from 3.5704 to 3.5434. Also, none of the 

individual PhyNNs shows better performance than DeepEn-Phy, which again demonstrates 

the superiority of ensemble learning (Tab. V).

IV. Conclusion

The microbiome is a critical biomarker to predict host disease status and clinical outcomes. 

Although it is shown that incorporating phylogeny information will improve the prediction 

accuracy, few approaches take direct and full advantage of the phylogeny as it requires 

challenging feature engineering. Deep learning achieves automatic feature extraction and 

powerful approximation to complicated functions, so it is a promising tool for microbiome 

prediction involving phylogeny.

We propose DeepEn-Phy, an ensemble method based on a novel phylogeny-driven deep 

neural network, PhyNN, to predict a host’s categorical or continuous clinical outcomes from 

the microbial profiles. We slice the phylogenetic tree from the lowest leaf node to the root by 

a pre-specified bandwidth. Then, from the bottom up, we recursively integrate the nodes that 

share the common lowest ancestor in the upper band via an MLP. The final PhyNN model 

is constructed by connecting all the MLPs. Further, we ensemble multiple PhyNNs, each of 

which uses different bandwidths, to get the final prediction.

The real case study on the GGMP data shows that DeepEn-Phy outperforms the existing ML 

and deep learning methods in predicting smoking status (binary) and BMI (continuous) from 

the microbiome data. Investigating the performance of each of the individual PhyNNs in 

DeepEn-Phy, we confirm that the ensemble step helps to boost the final prediction accuracy. 

In the future, we will use more data sets and more interesting clinical outcomes such as 

disease status to further validate the advantages of DeepEn-Phy.

Although DeepEn-Phy is developed within the microbiome context, it is also applicable 

to other huge and complicated hierarchical or directional data. Such data can be found 

in genetics and genomics, metabolomics, demographics with housing data, etc. Therefore, 

DeepEn-Phy is a general deep learning approach that could be used in many real-life 

applications.

Another extension is that we can regard each PhyNN with a pre-specified bandwidth as 

an encoder to encode important information in its output vector. Then, we can use these 

encoding vectors in another ML or deep learning model, e.g., linear models, to calibrate the 

final prediction.

One more interesting direction is to develop an effective algorithm to identify the important 

microbes for a particular host clinical outcome. Although interpretability of deep learning 
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models is a challenging topic, we believe that the locally connected nature of PhyNN could 

help us detect the important microbes.

Overall, DeepEn-Phy sheds light on designing deep neural network architectures within 

the context of phylogeny-constrained microbiome data, or more generally the graph-based 

microbiome data. Essentially, the proposed PhyNN is similar to a one-layer Graph Neural 

Network (GNN) [27] designed for graph-level prediction. The main idea of GNN is 

to iteratively update the representation of each node in the graph by combining the 

representations of its neighbors. One of the key differences between PhyNN and GNN 

is that PhyNN takes account of the structure of the phylogenetic tree and underlying 

phylogenetic principles when deciding which neighbors it will use to combine, but GNN 

will simply use all the neighbors of a node to combine. Moreover, PhyNN updates the 

node representations sequentially from leaves to the root of the tree and uses the root 

representation as the graph representation, but GNN on such a homogeneous graph will treat 

all nodes equally, update all node representations simultaneously, and aggregate all the final 

node representations to form the graph representation. Due to its connection with GNN, we 

believe the architecture of PhyNN can be further optimized by utilizing common techniques 

used in GNN. Moreover, we believe DeepEn-Phy opens an avenue for applying a GNN-like 

model to capture the complex information and dependency in graph-based microbiome data.
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Fig. 1. 
The microbiome read counts table and the corresponding phylogenetic tree of GGMP data 

aggregated to the phylum level (a high taxonomy level, but the corresponding phylogenetic 

tree is simple such that it is easier to read here). The numbers on the leaf nodes are the 

indices of microbes in the established closed-reference tree.
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Fig. 2. 
PhyNN constructed on a toy example. a, The toy example has 5 microbes at a certain 

taxonomy level, and the distance from the lowest leaf node (Microbe 4) to the root is 1.0. 

Numbers on the branches are their lengths. b, To construct PhyNN, we divide the tree into 

4 bands from Microbe 4 to the root with bandwidth b = 0.3, and iteratively integrate nodes 

in the kth band to the (k − 1)th band along branches via MLPs. The numbers in the nodes 

represent the microbes of which the information is contained. The information could be 

the microbes’ abundances (leaf nodes) or outputs of lower level MLPs (internal or created 

pseudo nodes). The final model that connects all the MLPs along branches is PhyNN.
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Fig. 3. 
Iterations in constructing PhyNN for the toy example. Traversing the phylogenetic tree from 

the bottom up (a→b→c→d), we construct the MLPs iteratively from the kth band to the (k 
− 1)th band.
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Fig. 4. 
The number of MLPs in PhyNN depends jointly on the bandwidth and the structure of 

phylogeny. Aggregated to the genus level, the phylogenetic tree of the GGMP data has a 

total height of h = 1.24. We plot the number of MLPs vs. bandwidth and notice a hump for 

the medium bandwidths.

Ling et al. Page 16

Proceedings (IEEE Int Conf Bioinformatics Biomed). Author manuscript; available in PMC 2023 January 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
ROC curves for DeepEn-Phy and competing methods when predicting smoking status based 

on genus level (left) or species level GGMP data (right).
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TABLE I

Summaries of the outcomes of interest in training, validation, and testing sets from the GGMP data.

Smoking status Never smoked (0) Ever smoked (1) Count

Training 4,010 1,937 5,937

Validation 199 99 298

Testing 470 233 703

Overall 4,679 2,269 6,948

BMI Mean SD Count

Training 23.36 3.50 5,915

Validation 23.48 3.66 297

Testing 23.34 3.67 702

Overall 23.37 3.53 6,914
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TABLE II

Performance of predicting smoking status and BMI from the GGMP microbiome data (genus level).

Smoking Status ROC-AUC F1-Score Time (s)

DeepEn-Phy (nParameter=125,811) 0.7043 0.6839 1,433

Vanilla MLP (nParameter=133,433) 0.6520 0.6346 352

PopPhy-CNN (nParameter=151,618) 0.6163 0.5972 567

Random Forest (nTree=500) 0.6478 0.5409 294

Gradient Boosting (nTree=100) 0.6813 0.6076 11

Logistic LASSO (L1 λ=0.001) 0.6654 0.6439 12

Logistic Ridge (L2 λ=0.001) 0.6422 0.6425 12

BMI MSE RMSE Time (s)

DeepEn-Phy (nParameter=40,038) 12.6812 3.5611 747

Vanilla MLP (nParameter=50,883) 16.6410 4.0793 192

PopPhy-CNN – – –

Random Forest (nTree=500) 12.9072 3.5927 992

Gradient Boosting (nTree=100) 12.9317 3.5961 9

Linear LASSO (L1 λ=0.005) 14.8221 3.8500 10

Linear Ridge (L2 λ=0.005) 28.3400 5.3235 4
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TABLE III

Performance of the individual PhyNNs in DeepEn-Phy constructed with different bandwidths (genus level).

Smoking status nMLP nParameter ROC-AUC F1-Score

b = 0.2 412 38,138 0.6931 0.6567

b = 0.4 175 22,958 0.7012 0.6855

b = 0.6 227 26,413 0.6759 0.6254

b = 0.8 104 14,296 0.6910 0.6591

b = 1.0 7 12,053 0.7030 0.4295

b = 1.2 3 11,953 0.6835 0.6672

BMI nMLP nParameter MSE RMSE

b = 0.2 412 10,057 13.0050 3.6062

b = 0.4 175 6,987 12.8293 3.5818

b = 0.6 227 7,699 13.1785 3.6302

b = 0.8 104 5,693 13.2216 3.6361

b = 1.0 7 4,819 12.9954 3.6049

b = 1.2 3 4,783 13.5238 3.6775

Proceedings (IEEE Int Conf Bioinformatics Biomed). Author manuscript; available in PMC 2023 January 25.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ling et al. Page 21

TABLE IV

Performance of predicting smoking status and BMI from the GGMP microbiome data (species level).

Smoking Status ROC-AUC F1-Score Time (s)

DeepEn-Phy (nParameter=158,166) 0.7016 0.6748 2,213

Vanilla MLP (nParameter=171,289) 0.6471 0.6383 652

PopPhy-CNN (nParameter=238,658) 0.6122 0.5946 833

Random Forest (nTree=500) 0.6583 0.5409 408

Gradient Boosting (nTree=100) 0.6610 0.5887 14

Logistic LASSO (L1 λ=0.001) 0.6600 0.6491 19

Logistic Ridge (L2 λ=0.001) 0.6445 0.6615 17

BMI MSE RMSE Time (s)

DeepEn-Phy (nParameter=51,636) 12.5559 3.5434 1,211

Vanilla MLP (nParameter=67,939) 16.3519 4.0437 346

PopPhy-CNN – – –

Random Forest (nTree=500) 12.7475 3.5704 1,325

Gradient Boosting (nTree=100) 12.7675 3.5732 12

Linear LASSO (L1 λ=0.005) 15.1966 3.8983 38

Linear Ridge (L2 λ=0.005) 21.1825 4.6024 6
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TABLE V

Performance of the individual PhyNNs in DeepEn-Phy constructed with different bandwidths (species level).

Smoking Status nMLP nParameter ROC-AUC F1-Score

b = 0.2 472 46,148 0.6762 0.6599

b = 0.4 192 28,248 0.6827 0.6230

b = 0.6 263 32,938 0.6992 0.6739

b = 0.8 104 18,506 0.6738 0.6613

b = 1.0 7 16,213 0.6915 0.3297

b = 1.2 3 16,113 0.6892 0.5370

BMI nMLP nParameter MSE RMSE

b = 0.2 472 12,573 13.1659 3.6285

b = 0.4 192 8,925 13.0051 3.6063

b = 0.6 263 9,847 13.0441 3.6117

b = 0.8 104 7,361 12.7841 3.5755

b = 1.0 7 6,483 13.6776 3.6983

b = 1.2 3 6,447 14.1868 3.7665
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