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Abstract

We propose a methodology for estimating human behaviors in psychotherapy sessions using 

mutli-label and multi-task learning paradigms. We discuss the problem of behavioral coding 

in which data of human interactions is the annotated with labels to describe relevant human 

behaviors of interest. We describe two related, yet distinct, corpora consisting of therapist 

client interactions in psychotherapy sessions. We experimentally compare the proposed learning 

approaches for estimating behaviors of interest in these datasets. Specifically, we compare single 

and multiple label learning approaches, single and multiple task learning approaches, and evaluate 

the performance of these approaches when incorporating turn context. We demonstrate the 

prediction performance gains which can be achieved by using the proposed paradigms and discuss 

the insights these models provide into these complex interactions.

1 INTRODUCTION

UNDERSTANDING and describing human behavior is an immensely multifaceted task. In 

conversation, participants’ behaviors unfold and evolve over time, occurring in both 

brief and extended time scales. Additionally, these behaviors are often co-occurring 
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and intrinsically related to one another. The complexity of these interactions presents 

an opportunity to investigate machine learning paradigms which may better reflect 

the intricacies of these types of data than traditional machine learning procedures. 

Specifically, we explore multi-label and multi-task learning approaches for predicting 

behaviors in psychotherapy. The multi-label system is trained to predict co-occurring 

behaviors, at the turn or session level, of the therapists and clients during psychotherapy 

sessions. Subsequently, we propose a multi-task system to learn behaviors across multiple 

psychotherapy domains. Finally, we evaluate these methodologies when context across 

multiple turns in the interactions is incorporated.

In psychotherapy, the therapist seeks to work with the client to create change in cognitions, 

emotions, or behaviors that are causing distress or impairment. There are a variety of 

behaviors employed in this process that vary according to the type of therapy, the aims of the 

therapy, the client’s characteristics, and the training and skill of the therapist. Researchers 

have suggested that for a variety of symptoms the type of therapy may not significantly 

affect outcomes [1]. Thus, it can be assumed that there are some underlying mechanisms at 

work that are common across psychotherapy approaches. In fact, research suggests that there 

are a number of common factors across evidence based psychotherapies, such as alliance 

and empathy [2]. This has lead to the efforts to develop an evidence-based psychotherapy 

that is effective across many common mental health disorders [3].

In this work, we use two distinct, yet related, psychotherapy approaches to serve as example 

domains in which we evaluate automatic behavioral coding (ABC) systems employing 

multi-label and multi-task learning frameworks. Motivational Interviewing (MI) is a client 

centered approach to therapy that aims to promote behavior change in clients by exploring 

and resolving ambivalence. Cognitive Behavior Therapy (CBT), in contrast to motivational 

interviewing, is focused on developing coping strategies aimed at decreasing symptoms. 

Both therapies are goal-oriented, evidence based practices which are concerned with 

client behavior change. So, despite differences in approach, there is significant overlap in 

philosophical orientation and employed techniques in the domains.

1.1 Behavioral Coding in Psychotherapy

In psychotherapy research, behavioral coding is the process of identifying and codifying 

the behaviors which are most relevant to the aims of therapy [4]. The objective of this 

procedure is to define clear and broadly applicable behavioral ‘codes’ which represent target 

behavioral constructs that are of interest to a particular study or line of inquiry. Behavioral 

observation and coding is common practice in many subfields of psychology including 

diagnosing autism [5], family and marital observational studies [6], [7], and several forms of 

psychotherapy [8], [9]. Because manual behavioral coding is costly and time-intensive, there 

is an opportunity for the development of methodologies aimed at automating aspects of this 

process.

1.2 Machine Learning for Behavioral Coding

There have been numerous works aimed at using human interaction data to help automate 

and inform the behavioral observation and coding process in domains such as marital 
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therapy [10], motivational interviewing [11], [12], and autism diagnosis [13]. Additionally, 

there have been many features explored in these works including acoustic and prosodic 

speech features [10], [14], [15], lexical and semantic features [16], [17], automatically 

derived lexical features [18], and visual features [19].

While the majority of systems proposed have been traditional fully supervised learning 

approaches, prior to this work, we proposed Multiple Instance Learning (MIL) for 

behavioral coding in couples therapy [20]. MIL is a semi-supervised learning paradigm, 

in which several samples share a single label, thus an MIL system attempts to learn a many-

to-one mapping between samples and labels. In the case of behavioral coding, this mapping 

is between the multiple turns (samples) to session level behavioral codes (labels). In the 

present work, the proposed approaches can be thought of as a type of multiple instance 

learning. However, the samples in this work are treated as sequences rather than independent 

observations and therefore better reflect the temporal nature of human interactions.

Using a sequential model (a Conditional Random Field) to predict sequences of utterance 

level behavioral codes in psychotherapy was first proposed in [21]. This work also proposed 

using dialog acts as a proxy for utterance level behavioral codes and demonstrated that using 

dialog acts for predicting session level behaviors achieved competitive performance to using 

carefully defined and annotated utterance level behaviors. The first application of neural 

networks to behavioral coding was proposed in [22]. The authors propose a recursive neural 

network for deriving an utterance representation and use a Maximum Entropy Markov 

Model (MEMM) to perform detection of client change talk and sustain talk at the individual 

utterance level. Recurrent neural networks (RNNs) were first proposed for behavioral coding 

in [23] and [24]. In [23], the authors compare Long short term memory (LSTMs) and Gated 

Recurrent Units (GRUs), two varieties of RNNs, for predicting utterance level behavioral 

codes from word embeddings. In [24], LSTMs are used for encoding turn context from 

turn embeddings for predicting utterance level behaviors which is subsequently used as 

the lower layers of a deeper system that predicts sessions level empathy in psychotherapy 

interactions. Recently, in [?], the authors proposed using multimodal word-level based 

LSTMs trained with prosodic and lexical features for predicting utterance level codes in 

motivational interviewing sessions. In [25], the authors compare several lexical and semantic 

feature representations for predicting session level behaviors in cognitive behavioral therapy 

sessions.

1.3 Multi-label Learning

Multi-label learning is a machine learning paradigm in which each sample is associated 

with several, possibly related, labels [26]. Such a framework allows for a model to learn 

more general features because they must be relevant to multiple targets. Also, this approach 

allows a model to account for relationships between labels which can be especially useful 

for predicting less frequent labels. Multi-label learning has been explored for a wide variety 

of applications including functional genomics, text categorization, and scene classification 

[26], [27] and for a variety of classifiers including K-nearest neighbors [28], support vector 

machines [29], and deep neural networks [30].
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In behavioral coding, each code attempts to capture a distinct behavior of interest. However 

many of these behaviors are fundamentally related; for example open questioning and 

reflective listening are considered the skills of a well trained motivational interviewer, 

whereas confrontations are not. In this sense behavioral coding is a problem with multiple 

interrelated outputs which motivates investigating a multi-label learning approach.

1.4 Multi-task Learning

Multi-task learning is a machine learning paradigm in which a single model is optimized 

for more than one task [31]. Such a model can share part or all of its architecture save for 

the outputs which are dedicated to specific tasks. These tasks are often related, allowing 

the model to key in on features of general importance. This approach also allows for a 

model to experience more data even though the labels of each sample may not be available 

for all tasks. This framework has shown success in a variety of domains including text 

categorization [32], head pose estimation [33], emotion recognition [34], and distance 

speech recognition [35]. Recently, Liu et al., have proposed an adversarial training approach 

for multi-task networks using a network consisting of shared and private layers where the an 

adversarial loss is used to force the shared layers to learn task invariant features [36].

Data from many behavioral coding domains are of a sensitive and private nature. For this 

reason it is often difficult to obtain such data. Thus paradigms like multi-task learning which 

can learn shared representations across related domains allow for inclusion of data from 

corpora, even if these corpora do not share identical types of interaction and behavioral 

coding schemes.

1.5 Multi-resolution Learning

Multi-resolution learning attempts to take advantage of hierarchies existing in data or 

labels. For example, in the case of document classification, each document is comprised of 

multiple sentences. In this case, the representation can be formulated with layers that learn a 

mapping from word to sentence followed by layers responsible for learning a mapping from 

sentence to document label [37], [38]. In addition to document classification, other notable 

application of hierarchical learning include sequence generation [39], image classification 

[40], and sentiment analysis [41].

With respect to human behavioral coding, there are many resolutions at which these 

interactions can be evaluated, including sessions which are comprised of speaker turns 

which are in turn comprised of speaker verbal and non-verbal expressions as well as the 

behaviors which are expressed and at times coded at the utterance and session levels. 

Therefore it is important to incorporate contextual information, whether across words or 

turns, to learn representations which reflect the nature of these interactions.

2 METHODOLOGY

In this work, we employ deep learning architectures as a means of comparing single/multi-

label and single/multi-task learning paradigms. In table 1, we present an reference for the 

notation used throughout the paper.
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In this work, we assume the ith session, i ∈ {1, 2, …, N}, to be comprised of a series of 

turns, j ∈ {1, 2, …, Mi}, which are comprised of word sequences, Wij. A turn is defined as 

all words which are spoken in a speaker homogenous region, the speaker having a particular 

role, rij, as either the therapist or client in our expository domain. Each word sequence 

is represented by a series of word embedding vectors, wij = {wij1, wij2, …, wijKij}. The 

word sequences are input to the word encoder, consisting of a bidirectional long short term 

memory (BiLSTM) network [42]. The resulting hidden states of the BiLSTM are averaged, 

giving a vector representation of the jth turn, xij. A visualization of the word encoder is given 

in figure 1a.

2.1 Multi-label Learning for Behavioral Coding

Behavioral observation and coding can be applied at a variety of temporal granularities, 

including at the utterance, turn, and session levels. The behavioral codes, or labels, 

annotated in a particular segment are often co-occurring and related. Thus, viewing these 

individual labels as a set of relevant labels, allows for casting the behavioral coding problem 

as a multi-label learning problem. In this multi-label learning scenario, a sample, e.g., wij, 

has an associate set of labels, Yij, where Yij(l) = 1 if the lth label is true for that sample 

and Yij(l) = 0, otherwise. For session level labels, the posterior of estimated labels from the 

predictor is averaged across turns in each session:

Zi = 1
Mi j = 1

Mi
Zij, (1)

for the session level prediction.

2.1.1 Multi-label Learning with Deep Neural Networks—Deep neural networks 

provide a flexible architecture for multi-input and multi-output learning paradigms. A multi-

output network can be interpreted as a multi-label network when the network weights are 

fully shared by the multi-label outputs.

For the multi-label loss we use binary cross entropy loss, summed across the multi-label 

outputs. This loss does not explicitly take into account correlations between the labels but 

rather relies on the shared network weights to encode this information. The multi-label 

binary cross entropy loss is given by:

E = −
i = 1

N

j = 1

Mi

l = 1

L
Y ij(l) ⋅ log Y ij(l)

+ 1 − Y ij(l) ⋅ log 1 − Y ij(l) .
(2)

2.1.2 Multi-label Sample Weights—Class imbalance is a common problem in 

machine learning that can drastically impact model training and generalization. A common 

approach is to weigh the loss function so losses incurred by samples of less frequent classes 

are weighted more heavily, so as to increase the impact of those samples in the model. In 
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multi-label problems class imbalance is no longer clearly defined as labels are no longer 

individual but parts of a multi-label set. One option would be to weigh the loss function 

according to the power set of the multi-label set, 2Y. However, because the power set grows 

exponentially with the number of labels the label co-occurrence distribution becomes sparse 

which can lead to overfitting. In [43], the authors propose an algorithm that seeks to jointly 

learn binary class learning for each label and multi-class learners for first order pairs of 

labels to create a predictive multi-label model. While, this approach has shown promise 

for addressing class imbalance in multi-label datasets, it does require learning additional 

parameters which is undesirable in deep learning settings where the number of parameters to 

be learned is typically already high. Instead, we propose a heuristic approach that weighs the 

loss function according to the average frequency of the labels appearing in a given label set. 

Each label contributes a weight according to the inverse frequency of that individual label, 

i.e.,

sij l =

ij1 − Y ij l
ijY ij l , if Y ij l = 1.

1, if Y ij l = 0.
(3)

The mean of these weights is taken as the multi-label sample weight:

sij = 1
L l = 1

L
sij(l) . (4)

Thus when a given loss is computed for that sample it is weighted according to:

E =
i = 1

N

j = 1

Mi
sijLoss Y ij, Y ij . (5)

2.2 Multi-task Learning of Behavioral Codes

We show an overview of the proposed single-task and multi-task learning systems in figure 

2. Our multi-task system follows an adversarial approach proposed by [36]. This system 

consists of word and turn level encoders, shown in Figures 1a and 1b, for each individual 

task as well as shared encoders to jointly encode information from both tasks. The output 

of these encoders is then concatenated and fed to a predictor, shown in Figure 1c for each 

task as well as a shared predictor, shown in Figure 1e, that attempts to discriminate between 

the tasks. The gradient from the task discriminator is reversed to the shared encoder in order 

to make the shared encoder task invariant. Additionally, orthogonality constraints are placed 

on the encoder outputs between the task specific and shared encoders in order to ensure that 

they are not encoding redundant representations. The total multi-task loss is computed as:
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Etotal  =
m

Em + λEtask  + γEdiff , (6)

where Em is the loss of the mth task, Etask is the loss of the task discriminator, Ediff is 

the loss of the orthogonality constraint, and λ and γ are hyper-parameters for weighting 

the respective losses. The task discriminator attempts to predict which domain a particular 

sample belongs to. It is a single feed-forward layer with a sigmoid activation, i.e.,

T ij = σ UTGij
shared  + bT . (7)

The task discriminator loss is the binary cross entropy between the reference task label, Tij, 

and the prediction from the task discriminator T ij, i.e.,

Etask  = −
i = 1

N

j = 1

Mi

l = 1

L
T ij(l) ⋅ log T ij(l)

+ 1 − T ij(l) ⋅ log 1 − T ij(l) .
(8)

The gradient from the task discriminator is reversed to the shared encoder making it 

increasingly difficult to predict the task as training proceeds thus resulting in a task invariant 

representation in the shared encoder. The orthogonality constraint loss is given by:

Ediff =
m

Gshared  TGm 2
, (9)

where Gshared is the output of the shared encoder, Gm is the result of the mth task encoder, 

and ⋅ 2 is the squared Frobenius norm.

2.3 Learning with Turn Context

Because the context of a turn, i.e., the surrounding turns, can provide important 

discriminative information for predicting the label of a particular turn, the word encoder 

is followed by a turn encoder. The turn encoder is provided both the vector, Hij, the result of 

the word encoder, as well as the role of the speaker of the turn, rij (i.e., an indicator variable 

of whether the speaker is the therapist or client). The speaker role undergoes a single linear 

transformation layer whose output is of equal size to the number of labels L. These two 

variable are then concatenated into a vector representation of the turn, i.e.,

Xij = Hij; UXrij + bX . (10)

The current turn representation, Xij, is then concatenated with the C preceding and following 

turns, Xij
C = Xij − C, Xij − C + 1, …, Xij, …, Xij + C − 1, Xij + C  and input a BiLSTM which 

will encode the turn context representations. The hidden states of the BiLSTM are averaged 
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resulting in a turn context vector representation, Gij. A visualization of the turn encoder is 

given in figure 1b.

3 DATA

3.1 Motivational Interviewing Corpus

The Motivational Interviewing Corpus consists of over 1,700 psychotherapy sessions 

conducted as part of six independent clinical trials. All of the six trials focused of 

motivational interviewing for addressing various forms of addiction, including alcohol 

(ARC, ESPSB, ESB21, CTT), marijuana (iCHAMP), and poly-drug abuse (HMCBI) [44], 

[45]. The CTT and HMCBI consist of both real and standardized patients. Standardized 

patients are actors portraying patients with relevant addiction issues for the purpose 

of therapist training. A subset of the sessions (N=345) were manually transcribed and 

subsequently segmented at the utterance level. The utterances then received behavioral 

codes according to the Motivational Interviewing Skill Code (MISC) manual. Of the 345, 

eight were discarded due to errors or inconsistencies in transcription or behavioral coding, 

resulting in 337 sessions being considered for the present work.

The MISC manual defines 28 utterance-level behaviors defined in the manual: 19 therapist 

and 9 client. We follow the procedure of Xiao et al. [23] and group the most infrequent 

of these codes into composite groups resulting in 11 target labels: 8 therapist and 3 client. 

The non-grouped therapist codes are facilitate (FA), giving information (GI), close and open 

questions (QUC/QUO), simple and complex reflections (RES/REC). The remainder of the 

codes are grouped into MI adherent (MIA), i.e., behaviors that adhere to the spirit of the 

MI treatment, and MI non-adherent (MIN), those which are inconsistent with MI. Client 

codes are follow/neutral (FN), which covers the majority of the client utterances. This code 

indicates that the client made a statement that was neutral towards changing the targeted 

behavior of the therapy. The remainder of the client codes are grouped into positive ‘change 

talk’ (POS) or negative ‘sustain talk’ (NEG) behaviors. Change talk is a statement that 

reflects a client’s reasoning, commitments, or steps towards behavior change. Sustain talk 

reflects the opposite. We show the individual and grouped utterance-level MISC codes and 

their occurrences in the MI dataset in table 2.

3.2 Cognitive Behavioral Therapy Corpus

The Cognitive Behavioral Therapy Corpus consists of over 5,000 audio recordings of 

therapists conducting cognitive behavioral therapy sessions [9]. More than 2,000 of these 

sessions have received manual behavioral coding according to the Cognitive Therapy Rating 

System (CTRS) manual [46]. The CTRS defines 11 session-level behavioral codes, which 

are each scored on a 7 point likert scale (0 ‘poor’ to 6 ‘excellent’). We pose this as a binary 

prediction task by assigning codes greater or equal to 3 as ‘high’ and those less than 3 as 

‘low’. These are given in table 3 with the ratio of ‘high’ to ‘low’ labels for each behavioral 

code.

All the defined codes reflect therapist behaviors in the session, there are no codes which 

reflect client behaviors. They can be associated into a few broad categories including 
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management and structure of the session (AG, FB, PT, HW), the aspects of the therapist-

client relationship (IP, CO, UN), and conceptualization of the clients’ presented concerns 

and approaches for addressing them (GD, KC, SC, AT) [25].

Of the behaviorally coded sessions 100 were chosen for manual transcription. The sessions 

chosen for transcription were the sessions which received the 50 highest and 50 lowest total 

ratings (sum across 11 behavioral code ratings). Eight of these sessions are not considered 

due to formatting/transcription quality issues, leaving 92 sessions included 70 therapists to 

be considered in this work. An initial effort for evaluating the efficacy of using speech and 

language processing and machine learning to automatically predict these codes has been 

recently submitted [25].

In table 4 we show counts for the number of sessions, turns, and words in the training and 

testing splits for each dataset.

4 RESULTS AND DISCUSSION

4.1 Experiments

All models are implemented in Keras [47] with Theano as the backend [48]. An early 

stopping procedure is used in which training is terminated if loss on the validation set does 

not improve after consecutive epochs. The validation set is 10% of the data from the training 

set which is chosen randomly. All models are optimized using the adam algorithm with a 

learning rate of 10−3 [49]. As a metric of comparison we use f1-score (macro average across 

labels). The reported results are the mean f1-score of the network being trained from 10 

different random initializations.

Word embeddings vectors (300 dimensional) are pre-trained on the training data using 

word2vec [50]. All hidden layers are of the same dimension as the word vectors (initialized 

with Glorot uniform). The data is separated into batches of 32 samples and shuffled 

randomly between epochs.

As described in section 2.2 we use an adversarial approach, with the hyper-parameters λ = 

0.05 and γ = 0.01 as recommended in [36] for multi-task learning. The unshared encoding 

layers are initialized with the weights from the multi-label systems trained in the previous 

experiments. The learning rate of the optimizer is reduced to 10−4 to allow for fine tuning of 

these layers.

4.1.1 Multi-label Learning—In this section we compare single-label (SL) and multi-

label (ML) approaches with and without sample weighting (sw) for predicting behavioral 

codes in our exemplary domains. In table 5, we show prediction results (f1-score) for the 

MISC and CTRS behavioral code prediction tasks. As a point of reference, we include the 

f1-score for each behavioral code if that behavior is considered present in every turn referred 

to as ‘baseline’ in the table. Due to the imbalance in the labels in both datasets, sample 

weights improve performance for both single-label and multi-label prediction.

For MISC code prediction, the multi-label approaches outperform single-label approaches 

both with and without sample weighting. The highest per-code results are for multi-label 
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without sample weights for the codes FA, GI, QUC, QUO, REC, RES, and FN. The 

occurrence of these codes is more balanced thus they do not benefit from the sample 

weighting scheme. However, the more unbalanced codes (MIA, MIN, POS, and NEG) are 

predicted best by the multi-label system with sample weights, due to the infrequency in 

which they occur in the data. On average, the ML-sw approach resulted in the highest 

performance for the MISC prediction task.

With respect to the CTRS behavioral code prediction task, the multi-label system with 

sample weighting yielded the highest (or tied) f1-score performance for all CTRS codes. In 

this case, however, the mutli-label system without sample weighting did not outperform the 

single-label approach using sample weights.

4.1.2 Multi-task Learning—In this section we evaluate the performance of a multi-task 

model that aims to learn both MISC and CTRS behavioral codes. We show the results for the 

multi-task model in table 5. The average performance of both tasks is improved compared to 

their single-task counterparts.

In the MISC task, prediction of MIN (MI non-adherent) had the largest relative improvement 

(18.1%) with respect to the best result from the single-task approaches. MI non-adherent 

behaviors include confrontation, direction, warning, advising and raising concern without 

permission. These are considered negative therapist behaviors in motivation interviewing 

and are to be avoided by therapists practicing MI due to its non-confrontational and 

non-adversarial nature. For this reason, their occurrence is very rare in the MI corpus. 

The combined occurrences of these five behaviors combined account for only 2.3% of 

all therapist turns in the dataset. Cognitive behavior therapy has a distinctly different 

approach with respect to directive statements. This is evidenced by the behavior of assigning 

homework (HW), an essential element of CBT. Thus statements that would be considered 

non-adherent in MI counseling are much more likely to occur in CBT sessions. In fact, turns 

from the CBT dataset are predicted to be MI non-adherent at more than twice the rate than 

turns from the MI dataset (16.6% versus 7.4%). Analysis of these turns suggests some of 

these utterances contain behaviors that are considered counter to the aims of both therapies 

(i.e., low empathy statements) for example,

therapist: so i need you to tell me what to do to help you.

While, many of the utterances in the CBT data that are labeled as MI non-adherent do not 

conflict with the spirit of cognitive behavioral therapy (e.g., directive statements) such as,

therapist: see if there’s a way for you to kind of challenge the belief,

but do not adhere to the MI counseling style. In this way the multi-task system allows for 

a better representation of these behaviors even though the turns in the CBT dataset are not 

labeled for these behaviors.

With respect to the CTRS task, guided discovery (GD) had the largest relative improvements 

(8.5%) for the multi-task system with respect to the single-task system. Guided discovery 

is a behavior in which the therapist “uses exploration and questioning to help patients see 

new perspectives.” In the MI data, questions are explicitly labeled and therefore encoded by 
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the system. Because of the important relation between questioning and GD, the multi-task 

system enables a better representation for decoding this behavior, despite not having turns 

manually labeled as questions. The multi-task system predicted turns from CBT sessions 

with high guided discovery scores to be questions (open or closed) 18.3% versus 13.5% 

from sessions labeled as low guided discovery.

4.1.3 Learning with Turn Context—In table 6, we present results comparing 

prediction performance when adding context to the multi-label prediction task. Adding 

contextual information provides increased performance for almost every behavioral code. In 

the MISC task, the codes REC and RES (complex and simple reflections) had the largest 

relative improvement (17.9% and 17.5% respectively). Reflections are when a therapist 

restates information provided by the client and are either a slight rephrasing (simple) or add 

significant meaning or emphasis (complex) to the client’s statements. Thus, it is intuitive 

that prediction of these behaviors would benefit from knowing the surrounding utterances. 

One queue that indicates a simple reflection is a therapist repeating verbatim what was stated 

by the client, for example,

therapist: you’re sober how many days?

client: just like thirty five days.

therapist: thirty five days sober.

Clearly, having the context of nearby utterances enables better prediction of such 

occurrences.

In the CTRS task, the codes guided discovery (GD), strategy for change (SC), and pacing 

and timing (PT), had the most relative performance improvement with context (12.6%, 

7.3%, and 6.9% respectively). Guided discovery and strategy for change are both behaviors 

which reflect the therapists’ conceptualization of the client’s concern and their approach 

for addressing them. Therefore, these are behaviors that unfold and occur throughout the 

session not in isolation. Pacing and timing (PT) reflects the therapist’s ability to manage the 

pace of the session over the course of the session and thus turn context will provide useful 

information about the therapist’s skill in this regard.

In the CTRS task, the codes agenda (AG) and homework (HW) did not improve with added 

context. These codes typically only comprise a small portion of the session (one or two 

turns) as agenda simply establishes what will be discussed and homework refers to tasks the 

therapist will assign the client at the end of the session to perform before the next session, 

thus turn context is not helpful in these scenarios.

4.1.4 Multi-label multi-task learning with context—We show the results for the a 

system combining the multi-label and multi-task paradigms with context in table 6. The 

mutli-label, multi-task system with context achieved the highest combined performance for 

the two tasks. The average performance for the CTRS task did not improve in this setting 

versus the single-task multi-label system with context. The CTRS prediction loss typically 

converges more quickly than that of the MISC, likely due in part to the amount of available 

data as well as the level of supervision (session labels versus turn labels). The multi-label 
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multi-task system achieved higher performance than the single task system for 8 of 11 

MISC behavioral codes and 4 of 11 CTRS behavioral codes. The CTRS behavioral codes 

interpersonal effective (IP) and understanding (UN) had the most extreme label imbalance 

and thus only UN achieved performance above the baseline in the case of multi-label 

single-task with context of 4 turns.

5 CONCLUSIONS

In this work we proposed multi-label and multi-task approaches for behavioral coding of 

psychotherapy interactions. We demonstrated that by incorporating these paradigms which 

help reflect the complexities of these data better prediction of behaviors in these sessions 

is achieved. Multi-label learning benefited prediction of less frequently occurring behaviors 

by learning a model that takes advantages of a representation that incorporates modeling of 

more frequent behaviors allowing for a richer representation. Multi-task learning benefited 

prediction of codes in both corpora by taking advantage of a model that incorporates 

behaviors which are common among the datasets. Using a model that incorporates turn 

context improved prediction of most behaviors in both tasks by incorporating more relevant 

information from the session. The multi-label multi-task system with turn context achieved 

the highest combined prediction for the behavioral coding tasks. Additionally, we discussed 

the particular behaviors which yielded the highest prediction performance improvement 

using the proposed methodology.

5.1 Applications of Automatic Behavioral Coding

Providing automated methods for coding behaviors which occur in psychotherapy 

interactions has many potential applications. One of the first proposed applications is the 

task of evaluating therapist efficacy from therapy audio recordings using a speech pipeline 

system which performs audio segmentation, automatic transcription, and behavioral code 

prediction [51]. Such a framework could enable patients to choose their therapist based 

on empirically derived quality metrics rather than word of mouth and online reviews. 

Additionally, this could enable monitoring patient progress and tracking of behavioral 

changes and symptoms over time. Automatic behavioral coding has the potential to augment 

therapist understanding of their clients and the quality of the therapy they are providing 

by allowing rapid monitoring and feedback of their therapy sessions. Furthermore, lessons 

learned from ABC developments within the psychotherapy domain may provide insights 

to automatic understanding and modeling of human behaviors in other human-human and 

human-computer interaction domains.

5.2 Future Work

There are many potential avenues for extending the proposed work. One key direction is 

to investigate how these learning paradigms are affected by imperfect word, speaker, and 

turn boundary information that would be derived from a speech pipeline system [11]. Such 

an investigation is necessary to determine the feasibility of incorporating complex learning 

paradigms in a truly automatic behavioral coding system.
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While the present work did not incorporate multi-modal feature representations, it is an 

important line of inquiry. As discussed in section 1.2, there are many behavioral cues 

which are important for the behavioral coding task. One such effort [52], proposes fusing 

lexical and prosodic information in an attentional LSTM to predict behaviors in MI therapy 

sessions. The promising results of this initial step encourage further exploration of this area.

In addition to evaluating alternative feature representations, we are interested in combining 

aspects of the proposed methodology with other deep learning approaches such as 

hierarchical attention networks [38] and domain adaptation networks [53]. Hierarchical 

attention networks provide attention weighting for learning turn context, which may allow 

for a contextual system to only focus on the most relevant turns in the conversation. Domain 

adaptation networks learn representations from data of one domain and then adapt the 

representation to data of a target domain. This approach is a type of inductive transfer 

learning, where data from domains that are readily available can be used to augment 

learning for domains where data is harder to collect. This could be of special interest in 

psychotherapy and behavioral health domains where data are often of an extremely private 

and sensitive nature.
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Fig. 1: 
Diagram of encoding and prediction networks
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Fig. 2: 
Multi-task System Overview
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TABLE 1:

Notation reference.

Symbol Meaning

i session index

j turn index

k word index

N number of sessions

M i number of turns in session

K ij number of words in turn

L number of labels in multi-label set

C turn context

wij turn word sequence

w ijk word embedding vector

h ijk hidden state of word encoder

X ij turn vector representation

r ij speaker role

Xij
C set of turn context vectors

g ij hidden state of turn encoder

V ij turn context vector representation

y ij turn label

Y ij turn multi-label set

z i session label

Z i session multi-label set

s ij sample weight

T ij task relevance of the ijth sample
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TABLE 2:

MISC code grouping and counts in the dataset.

Group MISC Code Count

Counselor

FA Facilitate 14659

GI Giving information 11880

QUC Closed question 6850

QUO Open question 5602

REC Complex reflection 5825

RES Simple reflection 8508

MIA MI adherent: Affirm; Reframe; Emphasize control; Support; Filler; Advice with permission; Structure; Raise concern with 
permission

5072

MIN MI non-adherent: Confront; Direct; Advice without permission; Warn; Raise concern without permission 1164

Client

FN Follow/Neutral 37937

POS Change talk: positive Reasons; Commitments; Taking steps; Other 5681

NEG Sustain talk: negative Reasons; Commitments; Taking steps; Other 4665
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TABLE 3:

Session-level behavior codes defined by the CTRS manual

Abbr. CTRS Code Count (‘high’/’low’)

AG agenda 47/45

AT application of cognitive-behavioral techniques 44/48

CO collaboration 62/30

FB feedback 46/46

GD guided discovery 48/44

HW homework 43/49

IP interpersonal effectiveness 82/10

KC focusing on key cognitions and behaviors 48/44

PT pacing and efficient use of time 51/41

SC strategy for change 46/46

UN understanding 71/21
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TABLE 4:

Data Overview: Session, turn, and word counts in training/testing splits.

Subject Sessions Turns Words

MI

Counselor 228/109 28.7K/13.9K 579K/248K

Client 228/109 28.6K/13.6K 563K/269K

CBT

Counselor 62/30 11.3k/4.5k 180k/77.4k

Client 62/30 11.5k/4.7k 215k/109k
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TABLE 5:

Comparison of single-label, multi-label, and multi-label multi-task systems

code baseline SL SL-sw ML ML-sw ML-MT

MISC

FA 0.289 0.909 0.887 0.919 0.903 0.911

GI 0.264 0.757 0.709 0.771 0.743 0.760

QUC 0.156 0.672 0.586 0.625 0.598 0.659

QUO 0.122 0.802 0.639 0.798 0.787 0.801

REC 0.143 0.498 0.484 0.522 0.504 0.564

RES 0.185 0.476 0.516 0.491 0.429 0.486

MIA 0.118 0.556 0.442 0.517 0.548 0.576

MIN 0.018 0.001 0.112 0.066 0.199 0.235

FN 0.637 0.960 0.963 0.964 0.949 0.958

POS 0.117 0.286 0.363 0.316 0.379 0.381

NEG 0.094 0.185 0.322 0.252 0.339 0.354

AVG 0.195 0.555 0.548 0.567 0.580 0.608

CTRS

AG 0.667 0.718 0.718 0.716 0.784 0.790

AT 0.605 0.654 0.654 0.654 0.714 0.731

CO 0.776 0.327 0.776 0.776 0.778 0.776

FB 0.636 0.686 0.686 0.687 0.751 0.772

GD 0.636 0.672 0.672 0.667 0.693 0.752

HW 0.605 0.671 0.672 0.661 0.743 0.654

IP 0.929 0.000 0.929 0.929 0.929 0.929

KC 0.667 0.692 0.692 0.687 0.717 0.753

PT 0.696 0.705 0.705 0.720 0.741 0.798

SC 0.605 0.644 0.644 0.642 0.695 0.744

UN 0.800 0.071 0.800 0.800 0.800 0.800

AVG 0.688 0.531 0.723 0.722 0.758 0.773
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TABLE 6:

Multi-label Learning with Context

C 0 1 2 3 4 0 1 2 3 4

ML ML-MT

MISC

FA 0.903 0.918 0.912 0.918 0.917 0.911 0.918 0.918 0.917 0.919

GI 0.743 0.762 0.756 0.770 0.764 0.760 0.775 0.774 0.761 0.776

QUC 0.598 0.648 0.634 0.653 0.659 0.659 0.656 0.667 0.638 0.686

QUO 0.787 0.803 0.801 0.809 0.809 0.801 0.809 0.812 0.812 0.806

REC 0.504 0.549 0.560 0.558 0.594 0.564 0.592 0.576 0.572 0.570

RES 0.429 0.463 0.461 0.495 0.504 0.486 0.519 0.504 0.499 0.516

MIA 0.548 0.565 0.532 0.570 0.558 0.576 0.580 0.587 0.551 0.581

MIN 0.199 0.213 0.191 0.224 0.220 0.235 0.223 0.221 0.229 0.208

FN 0.949 0.956 0.956 0.960 0.954 0.958 0.959 0.956 0.960 0.960

POS 0.379 0.405 0.371 0.408 0.401 0.381 0.396 0.416 0.332 0.397

NEG 0.339 0.372 0.361 0.365 0.384 0.354 0.377 0.372 0.383 0.391

AVG 0.580 0.605 0.594 0.612 0.615 0.608 0.619 0.619 0.605 0.619

CTRS

AG 0.784 0.771 0.787 0.732 0.766 0.790 0.739 0.772 0.771 0.741

AT 0.714 0.733 0.749 0.691 0.739 0.731 0.712 0.739 0.742 0.707

CO 0.778 0.787 0.792 0.790 0.789 0.776 0.775 0.777 0.783 0.774

FB 0.751 0.750 0.770 0.716 0.754 0.772 0.753 0.778 0.753 0.712

GD 0.693 0.741 0.772 0.758 0.780 0.752 0.771 0.770 0.746 0.764

HW 0.743 0.705 0.731 0.637 0.737 0.654 0.643 0.723 0.735 0.703

IP 0.929 0.929 0.929 0.929 0.929 0.929 0.929 0.929 0.929 0.929

KC 0.717 0.736 0.765 0.722 0.743 0.753 0.753 0.757 0.726 0.726

PT 0.741 0.767 0.779 0.780 0.792 0.798 0.797 0.828 0.800 0.794

SC 0.695 0.726 0.746 0.695 0.743 0.744 0.737 0.752 0.702 0.718

UN 0.800 0.800 0.800 0.800 0.803 0.800 0.800 0.800 0.800 0.800

AVG 0.758 0.768 0.784 0.750 0.780 0.773 0.765 0.784 0.772 0.761
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