Skip to main content
. Author manuscript; available in PMC: 2023 Jan 25.
Published in final edited form as: IEEE Trans Affect Comput. 2019 Nov 8;13(1):508–518. doi: 10.1109/taffc.2019.2952113

TABLE 6:

Multi-label Learning with Context

C 0 1 2 3 4 0 1 2 3 4

ML ML-MT
MISC
FA 0.903 0.918 0.912 0.918 0.917 0.911 0.918 0.918 0.917 0.919
GI 0.743 0.762 0.756 0.770 0.764 0.760 0.775 0.774 0.761 0.776
QUC 0.598 0.648 0.634 0.653 0.659 0.659 0.656 0.667 0.638 0.686
QUO 0.787 0.803 0.801 0.809 0.809 0.801 0.809 0.812 0.812 0.806
REC 0.504 0.549 0.560 0.558 0.594 0.564 0.592 0.576 0.572 0.570
RES 0.429 0.463 0.461 0.495 0.504 0.486 0.519 0.504 0.499 0.516
MIA 0.548 0.565 0.532 0.570 0.558 0.576 0.580 0.587 0.551 0.581
MIN 0.199 0.213 0.191 0.224 0.220 0.235 0.223 0.221 0.229 0.208
FN 0.949 0.956 0.956 0.960 0.954 0.958 0.959 0.956 0.960 0.960
POS 0.379 0.405 0.371 0.408 0.401 0.381 0.396 0.416 0.332 0.397
NEG 0.339 0.372 0.361 0.365 0.384 0.354 0.377 0.372 0.383 0.391

AVG 0.580 0.605 0.594 0.612 0.615 0.608 0.619 0.619 0.605 0.619

CTRS
AG 0.784 0.771 0.787 0.732 0.766 0.790 0.739 0.772 0.771 0.741
AT 0.714 0.733 0.749 0.691 0.739 0.731 0.712 0.739 0.742 0.707
CO 0.778 0.787 0.792 0.790 0.789 0.776 0.775 0.777 0.783 0.774
FB 0.751 0.750 0.770 0.716 0.754 0.772 0.753 0.778 0.753 0.712
GD 0.693 0.741 0.772 0.758 0.780 0.752 0.771 0.770 0.746 0.764
HW 0.743 0.705 0.731 0.637 0.737 0.654 0.643 0.723 0.735 0.703
IP 0.929 0.929 0.929 0.929 0.929 0.929 0.929 0.929 0.929 0.929
KC 0.717 0.736 0.765 0.722 0.743 0.753 0.753 0.757 0.726 0.726
PT 0.741 0.767 0.779 0.780 0.792 0.798 0.797 0.828 0.800 0.794
SC 0.695 0.726 0.746 0.695 0.743 0.744 0.737 0.752 0.702 0.718
UN 0.800 0.800 0.800 0.800 0.803 0.800 0.800 0.800 0.800 0.800

AVG 0.758 0.768 0.784 0.750 0.780 0.773 0.765 0.784 0.772 0.761