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Abstract

Exploring individual brain atrophy patterns is of great value in precision medicine for

Alzheimer's disease (AD) and mild cognitive impairment (MCI). However, the current

individual brain atrophy detection models are deficient. Here, we proposed a frame-

work called generative adversarial network constrained multiple loss autoencoder

(GANCMLAE) for precisely depicting individual atrophy patterns. The GANCMLAE

model was trained using normal controls (NCs) from the Alzheimer's Disease Neuro-

imaging Initiative cohort, and the Xuanwu cohort was employed to validate the

robustness of the model. The potential of the model for identifying different atrophy

patterns of MCI subtypes was also assessed. Furthermore, the clinical application

potential of the GANCMLAE model was investigated. The results showed that the

model can achieve good image reconstruction performance on the structural similar-

ity index measure (0.929 ± 0.003), peak signal-to-noise ratio (31.04 ± 0.09), and mean

squared error (0.0014 ± 0.0001) with less latent loss in the Xuanwu cohort. The indi-

vidual atrophy patterns extracted from this model are more precise in reflecting the

clinical symptoms of MCI subtypes. The individual atrophy patterns exhibit a better

discriminative power in identifying patients with AD and MCI from NCs than those of

the t-test model, with areas under the receiver operating characteristic curve of
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0.867 (95%: 0.837–0.897) and 0.752 (95%: 0.71–0.790), respectively. Similar findings

are also reported in the AD and MCI subgroups. In conclusion, the GANCMLAE

model can serve as an effective tool for individualised atrophy detection.
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1 | INTRODUCTION

The prevalence of Alzheimer's disease (AD) is projected to triple

worldwide by 2050, imposing a heavy burden on patients, caregivers,

and the social economy (C. Baur et al., 2020; Jia et al., 2018; Scheltens

et al., 2021). Structural magnetic resonance imaging (MRI) is widely

employed to reveal brain global and regional anatomical changes in

AD because of its nonradiative characteristics (Evans et al., 2018;

Lombardi et al., 2020; Xie et al., 2020). The current diagnostic criteria

for AD recommend structural MRI to assist in the early detection of

AD (McKhann et al., 2011).

Previous studies have reported that patients with AD exhibit certain

general atrophy patterns. Medial temporal cortical atrophy, such as in

the hippocampus and entorhinal cortex, is considered a common hall-

mark of AD (Devanand et al., 2007; M. Zhou et al., 2016). Using struc-

tural MRI, many studies have shown a significant grey matter

(GM) volume reduction in the hippocampus, and those who ultimately

converted to AD dementia also presented the decreased hippocampal

volume in the early stages of AD (Devanand et al., 2007; Evans

et al., 2018; Sheng et al., 2020; Whitwell et al., 2007; Xie et al., 2020).

However, AD is a heterogeneous neurodegenerative disorder, accompa-

nied by significant individual heterogeneity in brain atrophy patterns

(Badhwar et al., 2020; Noh et al., 2014; Poulakis et al., 2018). Studies

have indicated that AD has different atrophy subtypes. For instance, in

addition to the predominant medial temporal atrophy, several AD

patients exhibit parieto-occipital atrophy, mild atrophy, and diffuse corti-

cal atrophy patterns (Ten Kate et al., 2018). Moreover, these existing AD

structural biomarkers can also be observed in other conditions, such as

normal aging, frontotemporal lobe degeneration, and vascular dementia

(Bastos-Leite et al., 2007; Pleizier et al., 2012). Notably, the spatial distri-

bution of brain atrophy on structural MRI is also highly heterogeneous in

mild cognitive impairment (MCI), which is considered as a prodromal

stage of AD (Nettiksimmons et al., 2014). Recent studies have reported

different atrophy patterns between amnestic MCI (aMCI) and other MCI

subtypes (Eliassen et al., 2015; Emmert et al., 2021; Sun et al., 2019).

Emmert et al. found that the hippocampal volume is significantly lower in

aMCI than in non-aMCI (naMCI) (Emmert et al., 2021). Identifying the

clinical subtypes of MCI remains challenging. Therefore, exploring the

individual atrophy patterns of AD and MCI is crucial to achieve individua-

lised diagnosis and is an important step towards precision medicine.

Currently, the conventional structural MRI-based studies mainly

involve manual partitioning of each image into a number of priority

regions of interest or direct comparison of morphological differences

at a whole-brain level based on Student's t test of significance (Zhang

et al., 2016). These studies typically reported differences between AD

patients and NCs at a group level (Liu et al., 2018). However, group-

level atrophy pattern extraction approaches have relatively high data

perturbations and low repeatability (Liu et al., 2018; Zhang

et al., 2016). Moreover, accurately detecting AD using MRI is contin-

gent on the signal-to-noise ratio (SNR) of the scan data, which is

directly associated with instrument-related parameters (X. Zhou

et al., 2021). Owing to the limitations of conventional atrophy-pattern

extraction methods, a novel individual brain atrophy detection model

is required to partially address the current issue (Logan et al., 2021).

Deep learning models are good choices. Early work on deep learning

based on unsupervised anomaly detection approaches for brain MRI

mainly relied on the classic autoencoder (AE) to model the normative dis-

tribution and find abnormalities (Atlason et al., 2019a; Christoph Baur

et al., 2019). In particular, generative adversarial networks (GANs) are

effective at generating tasks owing to their outstanding data learning

and fitting capabilities. They can satisfactorily retain the desired informa-

tion and facilitate MRI feature reconstruction using a generator and dis-

criminator. For instance, Chong and Ho (2021) had used multiple GANs

to separately learn the shape and texture of normal three-dimensional

(3D) brain MRI images for better generation. Kazemifar et al. (2019)

achieved high dosimetry accuracy in synthetic computed tomography

images generated from MRI data for focal brain radiation therapy using a

GAN. GANs have made individual atrophy pattern extraction possible

and helped detect abnormalities based on medical images. Guan et al.

(2021) proposed an attention-guided deep domain adaptation frame-

work and applied it to automated brain disorder identification with multi-

site MRIs, which can also automatically identify discriminative regions in

whole-brain MRI images, and applied it to automated brain disorder iden-

tification with multi-site MRI. Chen and Konukoglu (2018) also applied

GANs for the detecting lesions in brain MRI images and determining the

tumour location. The GANs showed great performance. Therefore, we

hypothesised that GANs could improve the performance of the classic

AE-based framework in exploring individual atrophy patterns of patients

with AD and MCI.

In the present study, we propose an optimised GAN-based frame-

work called the GANCMLAE model, which innovatively combines the

GAN and AE, and further constrains the multiple losses to improve

the identification of AD individual atrophy. The main purposes of this

study are as follows: (1) to establish the GANCMLAE model, which is

trained from NCs based on structural MRI data; (2) to validate the

robustness of this GANCMLAE model in cross-cultural cohorts com-

prising Chinese and American subjects; and (3) to investigate the clini-

cal application potential of the model in detecting AD and MCI.
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Our main contributions can be summarised as follows:

1. We developed the novel GANCMLAE model, characterised by the com-

bination of aGANandAEand constraining themultiple losses to improve

the identification of individual brain atrophy in ADandMCI patients.

2. We proposed a two-pronged strategy for validation: first, the robust-

ness of this model was validated in two cohorts using the structural

similarity index measure (SSIM), peak SNR (PSNR), and mean squared

error (MSE) indices; second, the capability of this model in identifying

different atrophy patterns of MCI subtypes was assessed and com-

pared with that of the conventional group-level t-test method.

3. Extensive clinical experiments demonstrated that our model could

identify individual atrophy patterns of AD and MCI, outperforming

the group-level t-test model. Our framework has great potential

for enhancing the clinical diagnosis of AD and MCI.

2 | METHODS

2.1 | Model

Because two-dimensional (2D) networks are more widely used and the

computational cost is smaller, this study designs the convolutional network

based on 2D networks. Lesion detection is performed by first reconstruct-

ing and then detecting the lesion. In the first stage, the model is trained

using health data such that the vector after dimensionality reduction can

represent the feature distribution of the health data. In the second stage,

the model is used to detect abnormal images. Because the model cannot

learn abnormal features different from the health data, mapping errors will

occur after reconstruction, which is regarded as lesions in the images.

Based on this assumption, the GANCMLAE is designed.

The overall architecture of the proposed GANCMLAE model is

shown in Figure 1. The GANCMLAE model was previously trained

using NC images. In this model, individual MRI images are used as

inputs, and the residual images between the original input images and

reconstructed images are the outputs. The above residual images are

considered as the individual atrophy patterns, which are used by phy-

sicians to make clinical decisions.

Specifically, the basic framework consists of Encoder 1, Decoder,

Encoder 2 and Discriminator. Encoder 1 and Decoder, functioning as

the AE, are used for image reconstruction, whereas Discriminator and

Encoder 2 constrain the intermediate processing by different losses.

To better learn the global and local information of the images and

simultaneously avoid the degradation problem, we implemented a

multiple-loss AE in contrast to the conventional GAN models. The

details theories of these modules are shown as follows.

F IGURE 1 The overall architecture of the proposed generative adversarial network constrained multiple loss autoencoder (GANCMLAE).
Encoder1, Decoder, Encoder2, Discriminator: the based structure; L1, L2, L3: the constituent elements of the combined loss; x: the input of the
model; z: the generated latent vector of x, negative training data for the discriminator; x0: the reconstructed image; z0: the generated latent vector
of x0. The vector sampled from the normal distribution: the positive training data for the discriminator
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Encoder 1: Encoder 1 is designed to be composed of a convolu-

tional layer and four residual blocks. In the first convolution, the num-

ber of filters is set to 16. In every subsequent downsampling residual

block, the number of filters and output size are doubled so that we

can obtain feature mapping with a size of 8 � 8 � 256. Feature selec-

tion is achieved through the full connection layer, during which a

1 � 128 vector is generated. In this way, the original 16,384 features

are reduced to 128 features, and then these features are input into

the model. Additionally, a batch normalisation (BN) layer is added fol-

lowing every convolutional layer to accelerate the convergence of the

model. When a set of NC MRI scans xh �Rd�w�h, whose distribution is

P xhð Þ, is used for the model training, Encoder1¼Q zjxhð Þ maps high-

dimensional data xh to low-dimensional vector z�Rz_dim, where q zð Þ is
the latent distribution. The distribution is calculated as follows:

q zð Þ¼
ð
Q zjxhð ÞP xhð Þ ð1Þ

Decoder: Similarly, the decoder consists of two convolutional layers

and four upsampling residual blocks. The convolutional layers are used

to maintain the required size of the mapping, and the deconvolutional

layers followed by the BN layer can better reverse the encoder pro-

cessing. Finally, the filter group sizes of the convolutional layer are

128, 128, 64, 64, 32, 32, 16, 16, 8, and 1. For all convolutions and

deconvolutions, the kernel size is 3 � 3. The distribution is calculated

as follows:

P x0ð Þ ¼
ð
P xhjzð ÞP zð Þ ð2Þ

where x0 is the reconstruction of xh by themapping Decoder¼P xhjzð Þ.
Encoder 2: Encoder 2 shares the same structure and parameters

as Encoder 1. We map the reconstructed images to the output vector

z0 in the same manner to prevent information loss or change caused

by the decoder.

Discriminator: In classic AEs, there is no regularisation of the

manifold structure z. In this model, we aim to generate a latent repre-

sentation into a fixed distribution. Therefore, the discriminator

imposes the aggregation posterior distribution q(z) to match an arbi-

trary prior distribution P(z) to realise regularisation. The role of the dis-

criminative model is to determine whether a sample is from the

generative model distribution q zð Þ or the real data distribution P(z).

Then, Encoder 1 generates a new sample from the input sample and

makes the new sample satisfy the real distribution that we assumed

to be Gaussian as much as possible. For the simple structure of the

latent vector z, the discriminator in our study has three fully con-

nected layers instead of a convolutional layer: one with 256 units, one

with 128units, and one with 1 unit. Every fully connected layer is fol-

lowed by a LeakyReLU operation. After the last sigmoid activation,

the score indicates the performance of the input.

Loss function: Similar to general GAN models, the loss of the

basic GANCMLAE is limited to identifying hidden layer distributions,

but the quality and feature retention of image restoration cannot be

guaranteed. Thus, our model combines several losses for training. The

loss that reaches stabilisation is expressed as:

Lbalance ¼ min L1ð Þþμmin L2ð Þþ γmin L3ð Þ ð3Þ

L1: The model combines several losses for training. Fundamentally,

the generator simulates the real distribution by optimising parameters

to trick the discriminator, and the discriminator trains the parameters

to identify the input. The system finally reaches the state of “Nash

balance” in the process of alternative optimisation. The original target,

the GANCMLAE, is represented as

min
G

max
G

V D, Gð Þ¼Ez�P zð Þ logD zð Þ½ �þEx�P xhð Þ log 1�D Enc xð Þð Þð Þ½ �
¼Ez�P zð Þ logD zð Þ½ �þEz�q zð Þ log 1�D zð Þð Þ½ �

ð4Þ

After derivation, we found that the loss is essentially JS dispersion.

Compared to the KL dispersion applied in the variation encoder (VAE),

JS dispersion solves the problem of asymmetry. However, there are

still serious defects when the two distributions do not overlap, which

results in a gradient of zero, which is fatal in model training. Thus, the

Wasserstein distance was used for further optimisation. The loss

function was expressed as follows:

L1 ¼ Ez�q zð ÞD zð Þ�Ez�P zð ÞD zð ÞþλEz�P penaltyð Þ max 0, jjrzD xð Þjj�1ð Þ½ �
ð5Þ

where P penaltyð Þ is the intermediate distribution of the two distribu-

tions, and λ is 10 by default.

L2: In addition, to better preserve the image details during recon-

struction, we combined the adversarial loss with pixel-wise loss, in which

reconstruction losses are represented as the least absolute error:

L2 ¼j x�x0 j ð6Þ

L3: Furthermore, enhancing the consistency of the latent vector of the

original input and that of its reconstructed image was proved to be

beneficial for anomaly detection and for ease of implementation. We

recoded the reconstructed image x0 in a compilation to obtain its

latent vector z0. Then, to improve the consistency of the potential rep-

resentation, we modified the original latent vector z by adding the

regular term L3 ¼ jz�z0j2 to the total loss.

2.2 | Overall study design

In this study, the MRI data were obtained from the AD Neuroimaging

Initiative (ADNI) and the Xuanwu cohorts. After image preprocessing,

the data of NC individuals in the ADNI cohort were used to train the

GANCMLAE model. To validate the robustness and effectiveness of

the model, we used a two-pronged approach. First, the SSIM, PSNR,

and MSE indices were employed to validate the image reconstruction

robustness using NC individuals from both the ADNI and Xuanwu
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cohorts. Second, the clinical application potential of the model was

investigated to verify its capability for identifying different subtypes

of MCI and AD from NCs. Notably, the group-level t-test model was

chosen as the comparison model because it is most frequently used

for atrophy detection in previous studies (Bakkour et al., 2009;

Devanand et al., 2007; Dickerson et al., 2009; Lombardi et al., 2020;

Popuri et al., 2020; Whitwell et al., 2007). The overall flow of this

study included the following: (1) participant recruitment from the

ADNI cohort and the Xuanwu cohorts; (2) the GANCMLAE model

training using structural MRI images of NC individuals; (3) reconstruc-

tion of the input data including NC, AD, and MCI and acquisition of

residual scans; (4) validation of the GANCMLAE model; and (5) applica-

tion of the GANCMLAE model in AD and MCI. The detailed workflow

of this study is illustrated in Figure 2.

2.3 | Participants

The participants were selected from two independent cohorts: ADNI

cohort (cohort A) from the ADNI database (http://adni.loni.usc.edu/)

and Xuanwu cohort (cohort B) from the Sino Longitudinal Study on

Cognitive Decline. In cohort A, 712 NC, 292 AD, and 309 MCI sam-

ples were collected. Among them, 412 NC individuals (NC1 group)

were used for GANCMLAE model training, and 300 NC (NC2 group)

individuals were used for internal validation. Cohort B comprised

140 NC, 35 aMCI, and 35 naMCI individuals. The SSIM index was cal-

culated to validate the robustness of the trained GANCMLAE model

using 105 NC individuals (NC3 group) from cohort B as the external

validation data set. To further assess the ability of our model to detect

individual atrophy, characteristic atrophy masks associated with aMCI

and naMCI were extracted separately from the remaining 35 NC indi-

viduals (NC4 group) from cohort B as a reference. All participants in

cohort A underwent the following neuropsychological examinations:

Clinical Dementia Rating-Sum of Boxes (CDR-SB) and Mini-Mental

State Examination (MMSE). For the participants in the cohort B, the

Auditory Verbal Learning Test (AVLT) and Montreal Cognitive Assess-

ment (MoCA) were performed. MMSE was not the regular neuropsy-

chological assessment in the recruitment. The demographic

information (sex, age, education, APOE) and T1-weighted structural

MRI data for all participants were collected.

F IGURE 2 The comprehensive workflow of the generative adversarial network constrained multiple loss autoencoder (GANCMLAE) model.
(a) Two cohorts were enrolled. Cohort A was from the ADNI and cohort B were from the SILCODE project. (b) The procedures of structural
magnetic resonance imaging (MRI) processing for model training. (c) Train the model with normal controls (NCs) and then reconstruct the input
data including NC, Alzheimer's disease (AD), or mild cognitive impairment (MCI). Residual scans can be gained from the input and output.
(d) Evaluate the performance of the model from two aspects: a. structural similarity index measure (SSIM) of original NC scans and generated
ones from the cohort B are used to prove the robustness; and (e) application of the GANCMLAE model in AD and MCI
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In cohort B, MCI was defined in accordance with the criteria pro-

posed by Jak and Bondi (Bondi et al., 2014). Participants were diag-

nosed with MCI if they met any one of the following three criteria

and failed to meet the criteria for dementia: (1) having impaired scores

(defined as >1.0 SD below the age/education-corrected normative

means) on both measures in at least one cognitive domain (memory,

language, or speed/executive function); (2) having impaired scores in

each of the three cognitive domains (memory, language, or speed/

executive function); and (3) Functional Activities Questionnaire ≥9.

Individuals with memory complaints and objective memory decline

were considered as aMCI patients (Sheng et al., 2020), and those

without significant deficits in the memory domain were regarded as

naMCI patients. The diagnosis of AD dementia was based on the

Diagnostic and Statistical Manual of Mental Disorders (fifth edition)

and guidelines for dementia due to AD issued by the NIA-AA work-

group (McKhann et al., 2011).

The institutional review board of ADNI reviewed and approved

the ADNI data collection protocol. The research activities involving

the Xuanwu cohort were approved by the Medical Research Ethics

Committee and Institutional Review Board of Xuanwu Hospital in

Capital Medical University (ID: [2017]046). All participants provided

written informed consent before participating in the study.

2.4 | Image acquisition and preprocessing

2.4.1 | Image acquisition

The structural images of participants in cohort A were obtained from the

ADNI database. Detailed information regarding the acquisition protocol

is publicly available on the LONI website. The structural MRI data of par-

ticipants from cohort B were acquired using a 3.0 T MRI scanner

(Magnetom Sonata; Siemens Healthineers AG, Erlangen, Germany) or an

integrated simultaneous 3.0 T time-of-flight PET/MR (SIGNA; GE

Healthcare, Chicago, IL). The structural MRI images (Siemens scanner)

were obtained with a magnetisation-prepared rapid gradient echo

sequence: repetition time (TR) = 1900 ms, echo time (TE) = 2.2 ms, and

number of slices = 176. The parameters for the structural images

(GE scanner) were as follows: FOV = 256 � 256 mm2,

matrix = 256 � 256, slice thickness = 1 mm, gap = 0, number of

slices = 192, TR = 6.9 ms, TE = 2.98 ms, inversion time (TI) = 450 ms,

flip angle = 12�, and voxel size = 1 � 1 � 1 mm3.

2.4.2 | Image preprocessing

The image preprocessing included the following steps: (1) The Nicom

format of the data was converted to the Neuroimaging Informatics

Technology Initiative (NifTI) format using the DCM2NII (https://

people.cas.sc.edu/rorden/mricron/dcm2nii.html) tool. (2) To adapt

and speed up the training of the deep learning model, the images were

normalised to �1 to 1, and then sliced from the axial direction into

91 single-channel images with a size of 91 � 109. We cropped and

resampled the slices to 128 � 128 using linear interpolation as model

inputs and normalised them. (3) In the evaluation and statistics stages,

the GM volume and the total intracranial volume (TIV) were used as

measurement indicators. Therefore, we used cat12 to segment the

GM image and calculate the corresponding TIV. The formula for nor-

malising the image to �1 to 1 is as follows:

x¼ x�mean xð Þ
max xð Þ�min xð Þ ð7Þ

where x represents the image, and mean(x), max(x), and min(x) repre-

sent the average, maximum, and minimum voxel values, respectively.

2.5 | Training of GANCMLAE

The GANCMLAE model is an end-to-end network. We used the two

time-scale update rule strategy to adjust the learning rate of the gen-

erator and discriminator, and it was not strictly alternate training as in

the original literature, but the discriminator was trained twice for each

training. We then set the learning rate as 2e�4 for both the generator

and discriminator. We assessed the training situation by observing the

gradient change of each loss using the visualisation tool TensorBoard.

To visually display the generated images and their corresponding

residual images, we selected two NC individuals (NC (1): age = 66.4,

MMSE = 29; NC (2): age = 63.1, MMSE = 28) and two patients with

AD (AD (1): age = 72.7, MMSE = 10; AD (2): age = 65.9, MMSE = 8)

from the ADNI cohort. The NC or AD individuals have similar clinical

information and cognitive performance.

2.6 | Validation of GANCMLAE

2.6.1 | Evaluation metrics

In our model, the MRI images of each normal group were restored

after dimension reduction. However, because the loss was based on a

combination of customised indicators, it had no practical comparison

significance. Therefore, this study introduced the SSIM, PSNR, and

MSE as the measurement indices.

The SSIM is a measure of the similarity between two images and

ranges from �1 to 1. When two images are identical, the SSIM is

1. The SSIM is defined as follows (Equation (8)):

SSIM x, yð Þ¼ 2μxμyþ c1
� �

2σxyþc2ð Þ
μ2x þμ2y þ c1
� �

σ2x þσ2y þ c2
� � ð8Þ

where μx andμy are the means of samples x and y, respectively;

σ2x andσ2y are the variances of samples x and y, respectively; σxy is the

covariance of samples x and y; and c1 and c2 are two constants deter-

mined by the range of pixel values. Given two images I and K with a

size of m�n, the calculation formulas for MSE and PSNR are given by
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Equations 9 and 10, respectively. MAXI is the maximum pixel value of

the image.

MSE¼ 1
mn

Xm�1

i¼0

Xn�1

j¼0

I i, jð Þ�K i, jð Þk k2 ð9Þ

PSNR¼10log
MAX2

I

MSE

 !
¼20log

MAXIffiffiffiffiffiffiffiffiffiffi
MSE

p
� �

ð10Þ

In this study, all values were calculated for both internal and

external validation data sets from the ADNI and Xuanwu cohorts.

Because the model and metrics are all for 2D images, the index of

each subject was obtained by averaging all slices of that individual.

2.6.2 | Performance comparison

We compared the performance of the following state-of-the-art base-

lines to verify the superiority of the GANCMLAE model for unsuper-

vised reconstruction. The hyperparameter selection of the models

was based on previous studies. The SSIM, PSNR, and MSE values

were used to evaluate the performance of the reconstruction results

for NC2.

1. AEs (Atlason et al., 2019): Owing to their ability to learn nonlinear

transformation of data from a low-dimensional manifold, AEs have

been widely used for cluster-based anomaly detection.

2. VAE (Hou et al., 2017): The VAE constrains the latent space by

leveraging the encoder and decoder networks of AEs to parame-

terise a latent distribution.

3. FAnoGAN (Schlegl et al., 2019): It connects and improves on the

GAN and introduces an efficient way of replacing the costly itera-

tive restoration method with a single forward pass through the

network

4. DC-CNN reconstruction (Schlemper et al., 2018): It is a deep cas-

cade of convolutional neural network for reconstructing MRI

images from undersampled data. Different from AE-based models

it can be used in performance comparison from another

dimension.

5. AAE (Makhzani et al., 2015): It leverages an adversarial network as

a proxy metric to minimise the discrepancy between the learned

distribution and the prior one.

In addition, we also performed ablation experiments and com-

pared our model with different loss functions including L1 + L2, L1

+ L3, and L2 + L3.

2.6.3 | Dissimilarity assessment

To assess the dissimilarity of our proposed model, we captured and

compared the individual atrophy patterns from different MCI

subtypes. We selected 35 aMCI and 35 naMCI participants from the

Xuanwu cohort. For each subtype, the corresponding individual resid-

ual map was obtained using the GANCMLAE model and the corre-

sponding 3D image was reconstructed from 2D slices. To avoid noise

and deviation, pixels with values greater than 0.03 were considered as

effective atrophy with the threshold that noise outside the MNI

region can just be removed. Based on Bertrand Thirion's procedure,

we calculated the frequency of each pixel to identify the atrophic

region and pixels with frequencies exceeding 60% were considered as

residual masks of the subtypes. Simultaneously, 35 NC individuals

(NC4 group) were used as a reference to conduct a t-test with two

subtypes. Using the GANCMLAE and t-test, respective inter-group

masks were obtained by cluster processing with a size of 50 as the

threshold. Both inter-group masks of the GANCMLAE and t-test

methods were further compared.

2.7 | Application of GANCMLAE

2.7.1 | Receiver operating characteristic analysis
and classification with classical deep learning models

To compare the discriminative power of the individual atrophy patterns

from the GANCMLAE model in identifying patients with AD and MCI

from NCs with that of the t-test model, the receiver operating character-

istic (ROC) curve and area under the ROC curve (AUC) were calculated.

According to the cut-off of Aβ42 in the cerebrospinal fluid (CSF) pro-

posed by Hu et al. (2019), AD+ (MCI+) patients were defined as

<813 pg/ml for CSF Aβ42. In the subgroup analysis, patients with AD

and MCI in the ADNI cohort were classified as amyloid-positive AD/MCI

(AD+, n = 73; MCI+, n = 45) and amyloid-negative AD/MCI (AD�,

n = 14; MCI�, n = 21). We further compared the discriminative power

of the two models in distinguishing AD+ (MCI+) patients and AD�
(MCI�) from the controls (NC2 group). In addition, we compared the dis-

criminative powers of the GANCMLAE model and the t-test models in

identifying patients with aMCI and naMCI from the controls (NC4 group)

in the Xuanwu cohort.

To further verify the validity of the residual maps, we applied

them as inputs during the deep learning classification between AD

and NC, and MCI and NC in the ADNI cohort. The performance values

with residual maps, original images and original images supervised by

t-test masks were compared. Given that most classification models

are based on 2D networks, in our study, the raw and residual struc-

tural MRI images were reduced to 224 � 224 after slicing and tiling.

These images were then piled up and converted into three-channel

images. To eliminate the contingency factor, we employed four classic

models for this task: LeNet, AlexNet, ResNet18, and ResNet34. A

10-fold cross-validation was performed before feature selection. The

data set was randomly divided into 10 parts, with nine-tenths of the

data allocated for the training set and the rest for the validation set.

The accuracy, sensitivity, specificity, AUC, F-score, and Matthews cor-

relation coefficient (MCC) were, respectively, calculated for the test

set and validation sets.

SHI ET AL. 1135



2.7.2 | Correlation between the GANCMLAE model
and cognitive function in AD and MCI

All slices were restored to a 3D format and the relative GM volume of

the original and reconstructed subjects were calculated. The relation-

ships of the individual atrophy patterns (the difference in the relative

GM volume before and after reconstruction) from the GANCMLAE

model and the general atrophy patterns from the t-test model were

separately assessed by partial correlation analysis with the global cog-

nitive function (MMSE) and severity of cognition (CDR-SB) in AD and

MCI patients, using for age, sex, and years of education as the

covariates.

In the subgroup analysis, using partial correlation analysis, the

relationships of the two models with MMSE and CDR-SB were also

evaluated using age, sex, and years of education as covariates. We

also evaluated the correlation between the two models and cognitive

performance in APOE ε4 carriers (n = 134) and APOE ε4 noncarriers

(n = 151), and further calculated the interaction effects of APOE ε4

and the models was further calculated.

2.7.3 | Survival analysis

Survival analysis was performed using the Kaplan–Meier method, and

any differences in survival were evaluated using a log-rank test. A

total of 219 MCI patients from the ADNI cohort had longitudinal data

(mean follow-up period: 32.14 months), and MCI patients were con-

verted into dementia (conversion rate: 18.72%). To assess the effec-

tiveness of the individual atrophy patterns from the GANCMLAE

model in predicting the conversion risk of MCI to dementia, we com-

pared the survival probability between the standardised GANCMLAE

residual score >0 group and the standardised GANCMLAE residual

score <0 group. Hazard ratios (HRs) indicated the risk of conversion

to dementia between the two groups. The p-value was calculated

using the log-rank test. The standardised values (z-scores) of the indi-

vidual atrophy patterns from the GANCMLAE model were calculated

using the following formula:

Z score¼ IndividualGANresidual score�M1

SD1
ð11Þ

where M1 denotes the mean GANCMLAE residual score, and SD1 is

the standard deviation of the GANCMLAE residual score.

2.8 | Statistics and analysis

The Shapiro–Wilk test was used to confirm data normality. Demo-

graphic information and neuropsychological assessments were com-

pared using the two-sample t test, Kruskal–Wallis test, or Pearson's

chi-squared test as appropriate. Losses and indicators in model train-

ing, such as SSIM, were realised by the method in the core open

source library TensorFlow and visualised using TensorBoard. The

statistical parametric mapping (SPM8, https://www.fil.ion.ucl.ac.uk/

spm/software/spm8) and DPABI (http://rfmri.org/dpabi) in MATLAB,

and GraphPad Prism v9.0 were used to plot and visualise all statistical

data in this study. The statistical significance was set at p < .05.

3 | RESULTS

3.1 | Demographic information and
neuropsychological assessments

Table 1 presents the demographic and clinical details of all partici-

pants at the baseline. There are significant differences in age and

years of education between NC1 (training data set in the ADNI

cohort) and NC3 (validation data set for SSIM in the Xuanwu cohort)

(p < .001), whereas no differences in sex and APOE ε4 carrier are

observed. For the application data set from the ADNI cohort, signifi-

cant differences in years of education, MMSE, CDR-SB, and APOE ε4

carriers are observed between the NC1 and AD groups (p < .001),

while the MCI group exhibits differences in sex, MMSE, CDR-SB, and

APOE ε4 carrier compared with the NC1 group (sex: p = .003; APOE

ε4 carrier: p = .003; MMSE and CDR-SB: p < .001). As indicated in

the validation data set for dissimilarity, aMCI patients show significant

differences in educational years, AVLT-long delayed recall, AVLT-rec-

ognition, and MoCA-B compared with NC3 individuals (education:

p = .001; AVLT-long delayed recall, AVLT-recognition and MoCA-B:

p < .001), whereas there are significant differences in educational

level, AVLT-long delayed recall and MoCA-B between the naMCI and

NC3 groups (education: p = .002; AVLT-long delayed recall and

MoCA-B: p < .001).

3.2 | Training of GANCMLAE

After experimental training, the final parameters were improved as

follows: the optimisers used by the generator and discriminator were

the Adam optimiser, the batch size was 32, and the size of the latent

vector was 128. The loss curve recorded by TensorBoard during train-

ing is illustrated in Supplementary Figure 1. The training loss could be

levelled off quickly using the multiple-loss alternation training method.

After 70,000 batches of training for our deep learning model, the loss

of the GAN in the anomaly prediction model converged to zero and

the AE tended tend to 0.5 while the performance on validation was

consistent with the training data set without overfitting.

3.3 | Individual generated images and their
corresponding residual images

In Supplementary Figure 3, the images on odd-numbered lines are

obtained from T1-weighted MRI, while the images on even-numbered

lines are their corresponding residual images. Although the

T1-weighted MRI images visually display similar degrees of atrophy
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degree between NC (1) and NC (2), or between AD (1) and AD (2),

they exhibit different individualised atrophy patterns using our

GANCMLAE model. For instance, the areas of brain atrophy in

patients with AD (1) were larger than those in patients with AD (2),

mainly in precuneus, inferior temporal gyrus, median cingulate, and

paracingulate gyri, suggesting the heterogeneity in individual level.

3.4 | Validation of GANCMLAE

3.4.1 | Robustness analysis

The SSIM values reached 0.934 ± 0.006 in the validation data set from

ADNI, and with the selected model the mean SSIM in the Xuanwu data

sets got close to 0.93. The detailed results are depicted in the Supple-

mentary Figure 1, and the SSIM values of the Xuanwu data sets are listed

in Supplementary Table 1. All models were constructed for explicit per-

formance comparison, as presented in Table 2. The GANCMLAE model

achieves the best performance on SSIM (0.934 ± 0.006) with less latent

loss than the other models in the NC2 group, indicating that our model

loses the least features and the first step in our task is reasonable. The

values of PSNR and MSE are not as good as in our test because the

PSNR and MSE are focused on the differences in the pixel level and can-

not satisfactorily reflect the subjective feeling of human eyes (Wang

et al., 2004; W. Zhou & Bovik, 2002). The DC-CNN model is not effec-

tive for anomaly detection. In addition, the ablation experiments (training

the model without L1, L2, or L3, respectively) showed that the SSIM of

the ablation experimental model is smaller than that of the GANCMLAE

model in both groups, while the PSNR of the ablation experimental

model appears to be higher because of the lack of a part of the loss func-

tion constraint.

3.4.2 | Dissimilarity assessment

The aMCI and naMCI regional atrophy masks obtained by our method

and the t-test method are displayed in Figure 3. It can be observed

that a wider range of brain regions is extracted from the GANCMLAE

model compared to the t-test model. As indicated in Supplementary

Table 2, there are 25 characteristic brain areas for the aMCI patients

based on the GANCMLAE model, whereas 15 brain areas are

extracted using the t-test method. Meanwhile, eight brain regions are

TABLE 1 Demographic information and neuropsychological assessments

ADNI cohort Xuanwu cohort

Training
data set Application data set

Validation
data set
for SSIM Validation data set for dissimilarity

NC1 AD MCI NC2 NC3 aMCI naMCI NC4

N 412 292 309 300 105 35 35 35

Age (years) 72.47 ± 6.06 72.96 ± 6.92 73.40 ± 7.36 71.79 ± 5.46 65.61
± 5.53***

66.97 ± 7.63 64.89 ± 7.51 65.46
± 4.94

Sex (F/M) 228/184 150/142 137/172&& 171/129 69/36 19/16 24/11 20/15

Education (years) 16.55 ± 2.52 15.35 ± 2.86### 16.17 ± 2.71 16.43 ± 2.38 12.29
± 3.12***

10.11
± 3.76§§

10.34 ± 3.31†† 12.00
± 2.68

MMSE 29.10 ± 1.10 21.15 ± 4.49### 26.13
± 3.85&&&

28.83 ± 1.61 / / / /

CDR-SB 0.06 ± 0.21 5.44 ± 2.27### 2.68 ± 2.36&&& 0.25 ± 1.07 / / / /

AVLT-(long) D / / / / 8.22 ± 2.56 2.46 ± 2.10§§§ 4.69 ± 2.30††† 7.74 ± 2.07

AVLT-Recognition / / / / 20.47 ± 4.61 7.53 ± 4.77§§§ 19.86 ± 3.01 22.83
± 1.13

MoCA-B / / / / 25.63 ± 3.04 18.6 ± 4.27§§§ 20.77
± 3.99†††

26.46
± 2.03

APOE ε4 124
(30.09%)

134
(45.89%)###

126 (40.78%)&& 100
(33.33%)

32 (30.48%%) 15 (42.86%) 13 (37.14%) 7 (20.00%)

Aβ42 in CSF
(Aβ+/Aβ�)

24/53 73/14 45/21 24/12 / / / /

Follow-up period
for MCI (months)

/ / 32.14 ± 29.54 / / / / /

Converter rate of
MCI

/ / 41 (18.72%) / / / / /

Abbreviations: AD, Alzheimer's disease; aMCI, amnestic MCI; APOE, apolipoprotein E; AVLT, Auditory Verbal Learning Test; Aβ, amyloid β; CDR-SB, Clinical Dementia Rating-Sum
of Boxes; CSF, cerebral spinal fluid; MCI, mild cognitive impairment; MMSE, Mini-Mental State Examination; MoCA, Montreal Cognitive Assessment; naMCI, non-aMCI; NC,
normal control.
***p < .001, comparison between NC1 and NC3.###p < .001, comparison between NC1 and AD.
&&p < .01.
&&&p < .001, comparison between NC1 and MCI.
§§p < .01.
§§§p < .01, comparison between NC3 and aMCI.
††p < .01.
†††p < .001, comparison between NC3 and naMCI.
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shown in the naMCI mask using the GANCMLAE model, while only

five regions are found based on the t-test method. Importantly, the

regions with structural abnormalities extracted from the GANCMLAE

model differ from those derived from the t-test model; however,

those of the former are more consistent with their clinical perfor-

mance, especially for aMCI patients. Using the GANCMLAE model,

the regional atrophy in aMCI patients is focused on the temporal lobe,

hippocampus, olfactory cortex, posterior cingulate cortex, and precu-

neus, whereas the primary atrophy regions are in the occipital lobe,

frontal lobe, hippocampus, and precuneus using the t-test method.

For naMCI patients, several regions, that are not associated with

memory decline, indicating more widespread mild atrophy using the

GANCMLAE model than the t-test method.

3.5 | Application of GANCMLAE

3.5.1 | ROC analysis and classification with classical
deep learning models

Using the ROC analysis approach, we first estimated the discrimina-

tive power of each of the two models in distinguishing patients with

AD from NCs in the ADNI cohort. The individual atrophy patterns

from the GANCMLAE model exhibit a relatively good discriminative

power, with an AUC of 0.867 (95%: 0.837–0.897) (Figure 4a). The

atrophy patterns from the t-test model show a potential discrimina-

tive power, with an AUC of 0.830 (95%: 0.796–0.864). In the sub-

group analysis for the AD+ and AD� groups, the GANCMLAE model

also displays better classification performance than the t-test model

(AD+: AUC = 0.841, 95%: 0.789–0.893 vs. AUC = 0.763, 95%:

0.695–0.832, Figure 4b; AD�: AUC = 0.938, 95%: 0.896–0.980

vs. AUC = 0.825, 95%: 0.741–0.909, Figure 4c).

In addition, for MCI patients, the individual atrophy patterns from

the GANCMLAE model show a better discriminative power (AUC:

0.752, 95%: 0.714–0.790) than those of t-test model (AUC: 0.729,

95%: 0.689–0.768) (Figure 4d). Moreover, similar findings are

observed in the MCI subgroups. The atrophy patterns derived from

the GANCMLAE model also have a higher discriminative power in dis-

tinguishing MCI+ and MCI� individuals from NC individuals than

those of t-test model (MCI+: AUC = 0.834, 95%: 0.772–0.895

vs. AUC = 0.819, 95%: 0.753–0.885, Figure 4e; AD�: AUC = 0.736,

95%: 0.615–0.858 vs. AUC = 0.720, 95%: 0.602–0.838, Figure 4f).

We also found that the residual model exhibits a relatively better clas-

sification power than the t-test model for discriminating patients with

aMCI and naMCI from NCs (Figure 4g,h).

Table 3 lists the classification results of the classical deep learning

models. Obviously, with the same model, the residual maps have a better

classification potential. In all test and validation data sets, the classifica-

tion results of the residual images are better than those of the other

images. For the classification models discriminating AD from NC individ-

uals, the accuracies of our residual maps are 0.984 ± 0.016 with AlexNet,

0.996 ± 0.008 with ResNet18, 0.984 ± 0.018 with ResNet34, and 0.999

± 0.004 with LeNet in the test set. In the validation set, the accuracies of

our residual maps are 0.981 ± 0.02 with AlexNet, 0.999 ± 0.005 with

ResNet18, 0.997 ± 0.005 with ResNet34, and 0.998 ± 0.006 with

LeNet. These models exhibit similar classification results in distinguishing

MCI from NCs. The accuracies of the residual maps are 0.966 ± 0.047,

0.895 ± 0.07, 0.951 ± 0.028, and 0.993 ± 0.01 with AlexNet, ResNet18,

ResNet34, and LeNet, respectively, in the test set. In the validation set,

the accuracies of the residual images are 0.954 ± 0.065 with AlexNet,

0.905 ± 0.065 with ResNet18, 0.949 ± 0.039 with ResNet34, and 0.999

± 0.005 with LeNet. It was proved that the residual maps obtained by

our GANCMLAE model possess a better discriminative power for AD

and MCI.

3.5.2 | Correlation analysis

Partial correlation analysis was performed to evaluate the correlation

between the different models and cognitive performance, using age,

TABLE 2 Performance comparison with different baseline models

Models

Train Test

SSIM PSNR MSE SSIM PSNR MSE

AE 0.897 ± 0.006 33.87 ± 0.87 0.0008 ± 0.0001 0.889 ± 0.004 34.88 ± 0.38 0.0006 ± 0.0001

VAE 0.886 ± 0.01 35.45 ± 0.13 0.0008 ± 0.0001 0.894 ± 0.003 34.57 ± 0.48 0.0009 ± 0.0001

FAnoGAN 0.804 ± 0.02 25.10 ± 0.14 0.0034 ± 0.0001 0.797 ± 0.006 24.45 ± 0.06 0.0037 ± 0.0001

DC-CNN 0.879 ± 0.002 36.99 ± 0.81 0.0004 ± 0.0001 0.884 ± 0.01 36.45 ± 0.73 0.0004 ± 0.0001

AAE 0.931 ± 0.002 30.75 ± 0.11 0.0016 ± 0.0001 0.927 ± 0.005 30.93 ± 0.12 0.0015 ± 0.0007

GANCMLAE 0.934 ± 0.006 31.66 ± 0.07 0.0015 ± 0.0006 0.929 ± 0.003 31.04 ± 0.09 0.0014 ± 0.0001

L1 + L2 0.929 ± 0.009 35.49 ± 0.62 0.0006 ± 0.0003 0.929 ± 0.009 35.27 ± 0.78 0.0007 ± 0.0004

L1 + L3 0.889 ± 0.016 33.35 ± 0.10 0.0009 ± 0.0005 0.895 ± 0.014 33.73 ± 0.96 0.0008 ± 0.0003

L2 + L3 0.911 ± 0.015 35.10 ± 0.45 0.0006 ± 0.0003 0.914 ± 0.011 35.21 ± 0.50 0.0006 ± 0.0003

Note: The methods are conducted with cross-validation and their results are given as mean ± standard deviation. The best performing models are

highlighted in bold.

Abbreviations: AE, autoencoder; GANCMLAE, generative adversarial networks constrained multiple loss autoencoder; MSE, mean squared error; PSNR,

peak signal-to-noise ratio; SSIM, structural similarity index measure; VAE, variations encoder.
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F IGURE 3 The masks of amnestic mild cognitive impairment (aMCI) and non-aMCI (naMCI) gained by the generative adversarial network
constrained multiple loss autoencoder (GANCMLAE) model and the t-test model. HIP, hippocampus; IFGoperc, inferior frontal gyrus, opercular
part; MFG, middle frontal gyrus; MOG, middle occipital gyrus; MTG, middle temporal gyrus; OLF, olfactory cortex; PCU, precuneus; PoCG,
postcentral gyrus; STG, superior temporal gyrus

F IGURE 4 The discriminative power of different models in identifying Alzheimer's disease (AD) and mild cognitive impairment (MCI) from
normal control (NC). Red, t-test model; blue, generative adversarial network constrained multiple loss autoencoder (GANCMLAE) model
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TABLE 3 Deep learning model classification results and comparison in validation and test sets

Validation

AD/NC Accuracy Sensitivity Specificity AUC F-SCORE MCC

AlexNet ori 0.916 ± 0.023 0.916 ± 0.029 0.917 ± 0.05 0.917 ± 0.024 0.921 ± 0.021 0.834 ± 0.046

combineT 0.89 ± 0.039 0.899 ± 0.055 0.878 ± 0.057 0.888 ± 0.038 0.9 ± 0.036 0.779 ± 0.077

residual 0.981 ± 0.02 0.969 ± 0.037 0.994 ± 0.016 0.982 ± 0.018 0.982 ± 0.019 0.962 ± 0.038

ResNet18 ori 0.882 ± 0.056 0.87 ± 0.113 0.895 ± 0.078 0.883 ± 0.052 0.888 ± 0.062 0.772 ± 0.099

combineT 0.919 ± 0.012 0.923 ± 0.028 0.916 ± 0.03 0.919 ± 0.011 0.914 ± 0.012 0.839 ± 0.023

residual 0.999 ± 0.005 0.999 ± 0.008 0.999 ± 0.006 0.999 ± 0.005 0.999 ± 0.005 0.998 ± 0.01

ResNet34 ori 0.898 ± 0.04 0.904 ± 0.082 0.891 ± 0.084 0.898 ± 0.039 0.907 ± 0.04 0.802 ± 0.071

combineT 0.92 ± 0.03 0.921 ± 0.044 0.918 ± 0.046 0.919 ± 0.03 0.925 ± 0.029 0.84 ± 0.059

residual 0.997 ± 0.005 0.998 ± 0.005 0.995 ± 0.009 0.997 ± 0.005 0.997 ± 0.004 0.994 ± 0.009

LeNet ori 0.936 ± 0.019 0.929 ± 0.034 0.944 ± 0.001 0.936 ± 0.017 0.94 ± 0.018 0.871 ± 0.036

combineT 0.91 ± 0.03 0.926 ± 0.05 0.89 ± 0.075 0.908 ± 0.033 0.92 ± 0.027 0.821 ± 0.058

residual 0.998 ± 0.006 0.996 ± 0.011 0.999 ± 0.001 0.998 ± 0.006 0.998 ± 0.006 0.996 ± 0.011

Test

AD/NC Accuracy Sensitivity Specificity AUC F-SCORE MCC

AlexNet ori 0.888 ± 0.008 0.864 ± 0.018 0.92 ± 0.028 0.892 ± 0.01 0.899 ± 0.007 0.776 ± 0.018

combineT 0.901 ± 0.014 0.934 ± 0.027 0.873 ± 0.029 0.903 ± 0.013 0.896 ± 0.014 0.805 ± 0.027

residual 0.984 ± 0.016 0.979 ± 0.023 0.99 ± 0.015 0.985 ± 0.016 0.985 ± 0.015 0.968 ± 0.033

ResNet18 ori 0.89 ± 0.021 0.889 ± 0.042 0.892 ± 0.055 0.89 ± 0.021 0.888 ± 0.02 0.783 ± 0.042

combineT 0.921 ± 0.014 0.893 ± 0.018 0.944 ± 0.023 0.919 ± 0.014 0.912 ± 0.015 0.841 ± 0.029

residual 0.996 ± 0.008 0.996 ± 0.012 0.996 ± 0.01 0.996 ± 0.008 0.996 ± 0.008 0.992 ± 0.015

ResNet34 ori 0.907 ± 0.021 0.925 ± 0.046 0.891 ± 0.058 0.908 ± 0.019 0.901 ± 0.02 0.818 ± 0.036

combineT 0.922 ± 0.015 0.913 ± 0.018 0.931 ± 0.023 0.922 ± 0.015 0.918 ± 0.016 0.845 ± 0.03

residual 0.984 ± 0.018 0.996 ± 0.01 0.968 ± 0.044 0.982 ± 0.021 0.986 ± 0.016 0.968 ± 0.036

LeNet ori 0.915 ± 0.011 0.978 ± 0.031 0.842 ± 0.012 0.91 ± 0.009 0.925 ± 0.011 0.834 ± 0.027

combineT 0.924 ± 0.015 0.957 ± 0.006 0.892 ± 0.032 0.924 ± 0.014 0.925 ± 0.013 0.85 ± 0.027

residual 0.999 ± 0.004 0.999 ± 0.007 0.999 ± 0.001 0.999 ± 0.003 0.999 ± 0.003 0.999 ± 0.007

Validation

MCI/NC Accuracy Sensitivity Specificity AUC F-SCORE MCC

AlexNet ori 0.779 ± 0.05 0.767 ± 0.073 0.791 ± 0.121 0.779 ± 0.052 0.781 ± 0.044 0.564 ± 0.097

combineT 0.818 ± 0.032 0.829 ± 0.071 0.805 ± 0.067 0.817 ± 0.032 0.823 ± 0.036 0.639 ± 0.062

residual 0.954 ± 0.065 0.902 ± 0.14 0.999 ± 0.004 0.951 ± 0.07 0.942 ± 0.087 0.915 ± 0.117

ResNet18 ori 0.773 ± 0.024 0.736 ± 0.069 0.811 ± 0.091 0.774 ± 0.025 0.768 ± 0.025 0.554 ± 0.048

combineT 0.79 ± 0.039 0.777 ± 0.063 0.804 ± 0.063 0.79 ± 0.039 0.791 ± 0.041 0.583 ± 0.078

residual 0.905 ± 0.065 0.975 ± 0.034 0.844 ± 0.126 0.91 ± 0.062 0.909 ± 0.058 0.826 ± 0.115

ResNet34 ori 0.783 ± 0.025 0.758 ± 0.041 0.811 ± 0.061 0.784 ± 0.025 0.782 ± 0.023 0.57 ± 0.05

combineT 0.793 ± 0.024 0.776 ± 0.051 0.81 ± 0.044 0.793 ± 0.024 0.793 ± 0.028 0.588 ± 0.048

residual 0.949 ± 0.039 0.957 ± 0.066 0.939 ± 0.076 0.948 ± 0.04 0.946 ± 0.043 0.903 ± 0.073

LeNet ori 0.784 ± 0.778 0.703 ± 0.706 0.859 ± 0.846 0.781 ± 0.776 0.758 ± 0.754 0.571 ± 0.559

combineT 0.866 ± 0.037 0.855 ± 0.051 0.878 ± 0.037 0.866 ± 0.036 0.868 ± 0.038 0.733 ± 0.072

residual 0.999 ± 0.005 0.997 ± 0.012 0.999 ± 0.001 0.998 ± 0.006 0.998 ± 0.006 0.997 ± 0.011

Test

MCI/NC Accuracy Sensitivity Specificity AUC F-SCORE MCC

AlexNet ori 0.764 ± 0.027 0.775 ± 0.067 0.754 ± 0.089 0.765 ± 0.026 0.761 ± 0.024 0.535 ± 0.049

combineT 0.766 ± 0.014 0.778 ± 0.063 0.755 ± 0.048 0.767 ± 0.015 0.762 ± 0.023 0.536 ± 0.029

residual 0.966 ± 0.047 0.929 ± 0.113 0.993 ± 0.013 0.961 ± 0.056 0.955 ± 0.066 0.933 ± 0.09
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sex, and years of education as covariates. As shown in Figure 5, a sig-

nificant positive correlation exists between the individual atrophy pat-

terns from the GANCMLAE model and MMSE (r = .262, p < .001)

(Figure 5a), while there is no correlation between the atrophy patterns

from the t-test model and MMSE (r = .066, p = .262). For the severity

of cognition, a significantly negative correlation between the CDR-SB

and the GANCMLAE model (r = �.297, p < .001) (Figure 5b) is

observed. In contrast, no significant correlation between the t-test

model and CDR-SB (r = �.085, p = .152) exists, suggesting that the

individual atrophy patterns from the GANCMLAE model can serve as

good indicators for reflecting the cognitive decline.

In the subgroup analysis, the AD+ group shows a significant nega-

tive correlation between the CDR-SB and individual atrophy patterns

from the GANCMLAE model (r = �.321, p = .007) (Figure 5d), whereas

no statistically significant correlation is observed between MMSE and

the GANCMLAE model (r = .201, p = .095) (Figure 5c). There is no sig-

nificant correlation between the cognitive performance (MMSE and

CDR-SB) and GANCMLAE model for the AD� group. Furthermore, no

significant correlation between the t-test model and MMSE and CDR-SB

in both the AD+ and AD� groups is found. However, in the MCI+ sub-

group, significant correlations between MMSE and both models exist.

Additionally, there is a significant negative correlation between CDR-SB

and the t-test model in the MCI� subgroup (Supplementary Figure 4).

For APOE ε4 carriers, significant correlations between the cogni-

tive performance (MMSE and CDR-SB) and individual atrophy pat-

terns from the GANCMLAE model are observed (MMSE: r = .350,

p < .001, Figure 5e; CDR-SB: r = �.278, p = .001, Figure 5f). For

APOE ε4 noncarriers, the GANCMLAE model is negatively associated

with CDR-SB (r = �.347, p < .001, Figure 5h), but not with MMSE

(r = .143, p = .083, Figure 5g). Using the t-test model, only the nega-

tive association of the atrophy patterns from the t-test model and

CDR-SB is observed for the APOE ε4 noncarriers (r = �.165,

p = .045). Furthermore, a significant interaction effect is found

between the APOE genotype and GANCMLAE model in the MMSE

with AD patients (F(1, 281) = 5.089, p = .025). However, no significant

interaction effect is observed between the APOE genotype and

GANCMLAE model in CDR-SB (F(1, 281) = 0.790, p = .375), or

between the APOE genotype and the t-test model in MMSE

(F(1, 281) = 0.257, p = .613) and CDR-SB (F(1, 281) = 2.212, p = .138).

3.5.3 | Predictive effect on the conversion risk of
MCI to dementia

In the survival analysis of MCI patients from the ADNI cohort, higher

residual scores (standardised residual score >0, red line) indicate a bet-

ter predictive effect for developing a clinical diagnosis of dementia

than lower residual scores (standardised residual score <0, blue line)

(HR: 2.493, 95% CI: 1.349–4.605, p = .0017, Figure 6).

4 | DISCUSSION

In the present study, we developed the novel GANCMLAE model, and

cross-validation was conducted in both the ADNI and Xuanwu

cohorts. The results showed that the GANCMLAE model had a higher

potential for detecting individual atrophy patterns for AD and MCI

than the group-level t-test model. Moreover, the associations of indi-

vidual atrophy patterns from the GANCMLAE model with the global

cognitive function and cognitive severity were observed. Finally, the

individual atrophy patterns further demonstrated the predictive effect

of conversion to dementia for MCI patients during the follow-up.

The GANCMLAE, with its outstanding learning ability and dis-

cernibility, utilises a GAN to constrain the process of data codec in

AE, leading to more accurate mapped images (Cao et al., 2021; Yu

et al., 2020). In a previous study involving anomaly detection or gener-

ation, the loss was only used as a score to distinguish the target, with-

out guaranteeing the feature recovery of the generated image. The

added loss L3 of the latent vector can satisfactorily preserve “normal”
information and make the total loss accurately indicate abnormality in

TABLE 3 (Continued)

Test

MCI/NC Accuracy Sensitivity Specificity AUC F-SCORE MCC

ResNet18 ori 0.772 ± 0.02 0.746 ± 0.06 0.795 ± 0.057 0.771 ± 0.02 0.759 ± 0.026 0.545 ± 0.041

combineT 0.768 ± 0.018 0.757 ± 0.062 0.779 ± 0.05 0.768 ± 0.019 0.759 ± 0.026 0.539 ± 0.036

residual 0.895 ± 0.07 0.95 ± 0.043 0.854 ± 0.12 0.902 ± 0.064 0.888 ± 0.069 0.802 ± 0.128

ResNet34 ori 0.773 ± 0.025 0.743 ± 0.059 0.8 ± 0.044 0.772 ± 0.025 0.759 ± 0.032 0.546 ± 0.049

combineT 0.77 ± 0.031 0.757 ± 0.044 0.782 ± 0.057 0.769 ± 0.03 0.761 ± 0.03 0.541 ± 0.062

residual 0.951 ± 0.028 0.917 ± 0.082 0.976 ± 0.031 0.947 ± 0.034 0.939 ± 0.037 0.903 ± 0.053

LeNet ori 0.797 ± 0.794 0.677 ± 0.673 0.884 ± 0.883 0.78 ± 0.778 0.737 ± 0.734 0.581 ± 0.575

combineT 0.825 ± 0.029 0.799 ± 0.03 0.849 ± 0.054 0.824 ± 0.028 0.815 ± 0.027 0.65 ± 0.058

residual 0.993 ± 0.01 0.996 ± 0.014 0.991 ± 0.016 0.993 ± 0.01 0.993 ± 0.01 0.986 ± 0.019

Abbreviations: AD, Alzheimer's disease; AUC, area under curve; combineT, original images supervised by t-test masks; MCC, Matthews correlation

coefficient; MCI: mild cognitive impairment; NC, normal control; ori, original.
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the phase of atrophy detection. The alternating training makes the

image reconstruction procedure more stable, and the total loss con-

verges faster. Importantly, the GANCMLAE model provides insight

into individual structural alterations relative to the t-test model, which

focuses on group-level differences. In our study, although the

GANCMLAE model sacrificed some pixel accuracy to maintain more

features and achieve a balanced reconstruction performance, the

comparison of four different models (LeNet, AlexNet, ResNet18, and

F IGURE 5 The associations
of different models with cognitive
performance in Alzheimer's
disease (AD)
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ResNet34 models) showed the outstanding learning ability of the

GANCMLAE in the reconstruction task, which is fundamental for the

subsequent detection of individual atrophy.

In this study, the range of regional brain atrophy extracted from

the GANCMLAE model of aMCI and naMCI seemed to be wider than

the atrophy patterns derived from the t-test model, indicating that the

deep learning algorithm may have the potential to better reflect indi-

vidual heterogeneity. Additionally, the characteristic brain atrophy

patterns based on the residual model of aMCI patients were more

consistent with the clinical symptoms. To the best of our knowledge,

aMCI, which is the amnestic subtype of MCI and constitutes a prodro-

mal stage of AD, has a high risk of progression to AD (Gauthier

et al., 2006). Using structural MRI, researchers have reported a signifi-

cant GM volume reduction in the medial temporal cortices

(e.g., hippocampus) in aMCI patients (Lim et al., 2012; Sheng

et al., 2020). Notably, hippocampal atrophy is strongly correlated with

memory loss. Moreover, it has been reported that in addition to the

medial temporal lobe, patients with AD present significant posterior

cingulate gyrus and precuneus atrophy, especially in early onset indi-

viduals (Koedam et al., 2011; Persson et al., 2017). In our previous

study, we confirmed significant regional brain atrophy in the medial

temporal lobe and posterior cortex atrophy in aMCI patients (Sheng

et al., 2020). For naMCI patients, more brain regions that are not asso-

ciated with the memory function, such as the parietal lobe, occipital

lobe, and calcarine, were also found based on the residual model than

on the t-test model, suggesting the potential of deep learning

methods for precision diagnosis.

The individual atrophy patterns from the GANCMLAE exhibited a

relatively better discriminative power in identifying the targeted pop-

ulation, including patients with AD and MCI than those of the conven-

tional methods. Moreover, the GANCMLAE model was associated

with the clinical cognitive function in AD, and the individual atrophy

patterns from GANCMLAE could serve as a topographical biomarker

for indicating MCI progression.

In the clinical applications, the individual atrophy patterns from

GANCMLAE exhibited a relatively better discriminative power in iden-

tifying the targeted population, including patients with AD and MCI,

than those of the t-test model, which verified the diagnostic potential

of our deep learning model. In addition, the GANCMLAE model was

associated with the clinical cognitive function in AD, especially in indi-

viduals with Aβ-positive AD. However, there was no significant corre-

lation between the t-test scores and cognitive performance,

suggesting that the residual index may be a better indicator for

reflecting cognitive decline in AD patients. It is noteworthy that in the

MCI subgroup analysis, the t-test model appears to be more relevant

to the patients' cognitive impairment than individual atrophy patterns

detected in the GANCMLAE model. We infer this potential mecha-

nism may be associated with the clinical heterogeneity of MCI

F IGURE 6 The predictive effect of the residual model on the conversion risk of mild cognitive impairment (MCI) to dementia
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patients. In our study, we confirmed that regional brain atrophy pat-

terns are significantly different between aMCI and naMCI. Further-

more, we investigated the ability of residual maps to predict the

conversion risk of MCI individuals to dementia. Many previous studies

have reported that regional brain atrophy may represent a predictor

of cognitive decline from MCI to dementia (Dai & He, 2014; Li

et al., 2020; Wei et al., 2016). In this study, we also confirmed that

the individual atrophy patterns from GANCMLAE can serve as a topo-

graphical biomarker for indicating the progression of MCI. In sum-

mary, the GANCMLAE model based on a deep learning algorithm may

provide a potential avenue for achieving precise individualised

prediction.

It should be noted that this study has some limitations. First, a

certain disparity remains between the generated image and the origi-

nal input in terms of resolution, and the performance of the model

needs to be further improved. This disparity may be attributed to the

collection of structural MRI data from different machines in the two

cohorts. In the future, strategies should be implemented to ensure

consistency in multi-centre, cross-machine data collection. Second,

the underlying physiological mechanisms of residual maps for AD and

MCI were not elucidated in the present study. Future studies should

investigate the correlation between residual images and human

molecular pathways, such as neurotransmitters and AD-related patho-

logical changes. Furthermore, in our study, we only used 2D images

for the reconstruction of models because the longer processing time

and higher memory requirement when utilising 3D images. In the

future, one possible extension could be the use of 3D images instead

of 2D for model reconstruction if the computing power is improved.

Finally, given that the sample size in our study is not large, the p value

is relatively large, and p < .05 may not be sufficient for many compari-

sons. Although we used a cross-validation method to validate our

findings, multiple comparisons are still issues that need to be consid-

ered. In the future, multi-centre studies with a larger sample size are

essential to provide more accurate evidence.

5 | CONCLUSION

Our study developed the GANCMLAE model for the detection of indi-

vidual atrophy patterns based on structural MRI data. Experiments on

two independent cohorts of participants showed that the residual

maps from the GANCMLAE model can serve as an effective tool for

achieving precise individualised atrophy detection and have potential

clinical applications.
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