TABLE 2.
Models | Train | Test | ||||
---|---|---|---|---|---|---|
SSIM | PSNR | MSE | SSIM | PSNR | MSE | |
AE | 0.897 ± 0.006 | 33.87 ± 0.87 | 0.0008 ± 0.0001 | 0.889 ± 0.004 | 34.88 ± 0.38 | 0.0006 ± 0.0001 |
VAE | 0.886 ± 0.01 | 35.45 ± 0.13 | 0.0008 ± 0.0001 | 0.894 ± 0.003 | 34.57 ± 0.48 | 0.0009 ± 0.0001 |
FAnoGAN | 0.804 ± 0.02 | 25.10 ± 0.14 | 0.0034 ± 0.0001 | 0.797 ± 0.006 | 24.45 ± 0.06 | 0.0037 ± 0.0001 |
DC‐CNN | 0.879 ± 0.002 | 36.99 ± 0.81 | 0.0004 ± 0.0001 | 0.884 ± 0.01 | 36.45 ± 0.73 | 0.0004 ± 0.0001 |
AAE | 0.931 ± 0.002 | 30.75 ± 0.11 | 0.0016 ± 0.0001 | 0.927 ± 0.005 | 30.93 ± 0.12 | 0.0015 ± 0.0007 |
GANCMLAE | 0.934 ± 0.006 | 31.66 ± 0.07 | 0.0015 ± 0.0006 | 0.929 ± 0.003 | 31.04 ± 0.09 | 0.0014 ± 0.0001 |
L1 + L2 | 0.929 ± 0.009 | 35.49 ± 0.62 | 0.0006 ± 0.0003 | 0.929 ± 0.009 | 35.27 ± 0.78 | 0.0007 ± 0.0004 |
L1 + L3 | 0.889 ± 0.016 | 33.35 ± 0.10 | 0.0009 ± 0.0005 | 0.895 ± 0.014 | 33.73 ± 0.96 | 0.0008 ± 0.0003 |
L2 + L3 | 0.911 ± 0.015 | 35.10 ± 0.45 | 0.0006 ± 0.0003 | 0.914 ± 0.011 | 35.21 ± 0.50 | 0.0006 ± 0.0003 |
Note: The methods are conducted with cross‐validation and their results are given as mean ± standard deviation. The best performing models are highlighted in bold.
Abbreviations: AE, autoencoder; GANCMLAE, generative adversarial networks constrained multiple loss autoencoder; MSE, mean squared error; PSNR, peak signal‐to‐noise ratio; SSIM, structural similarity index measure; VAE, variations encoder.