Skip to main content
. 2022 Nov 17;44(3):1129–1146. doi: 10.1002/hbm.26146

TABLE 2.

Performance comparison with different baseline models

Models Train Test
SSIM PSNR MSE SSIM PSNR MSE
AE 0.897 ± 0.006 33.87 ± 0.87 0.0008 ± 0.0001 0.889 ± 0.004 34.88 ± 0.38 0.0006 ± 0.0001
VAE 0.886 ± 0.01 35.45 ± 0.13 0.0008 ± 0.0001 0.894 ± 0.003 34.57 ± 0.48 0.0009 ± 0.0001
FAnoGAN 0.804 ± 0.02 25.10 ± 0.14 0.0034 ± 0.0001 0.797 ± 0.006 24.45 ± 0.06 0.0037 ± 0.0001
DC‐CNN 0.879 ± 0.002 36.99 ± 0.81 0.0004 ± 0.0001 0.884 ± 0.01 36.45 ± 0.73 0.0004 ± 0.0001
AAE 0.931 ± 0.002 30.75 ± 0.11 0.0016 ± 0.0001 0.927 ± 0.005 30.93 ± 0.12 0.0015 ± 0.0007
GANCMLAE 0.934 ± 0.006 31.66 ± 0.07 0.0015 ± 0.0006 0.929 ± 0.003 31.04 ± 0.09 0.0014 ± 0.0001
L1 + L2 0.929 ± 0.009 35.49 ± 0.62 0.0006 ± 0.0003 0.929 ± 0.009 35.27 ± 0.78 0.0007 ± 0.0004
L1 + L3 0.889 ± 0.016 33.35 ± 0.10 0.0009 ± 0.0005 0.895 ± 0.014 33.73 ± 0.96 0.0008 ± 0.0003
L2 + L3 0.911 ± 0.015 35.10 ± 0.45 0.0006 ± 0.0003 0.914 ± 0.011 35.21 ± 0.50 0.0006 ± 0.0003

Note: The methods are conducted with cross‐validation and their results are given as mean ± standard deviation. The best performing models are highlighted in bold.

Abbreviations: AE, autoencoder; GANCMLAE, generative adversarial networks constrained multiple loss autoencoder; MSE, mean squared error; PSNR, peak signal‐to‐noise ratio; SSIM, structural similarity index measure; VAE, variations encoder.