
RESEARCH ARTICLE

Characterisation of human milk bacterial DNA

profiles in a small cohort of Australian women

in relation to infant and maternal factors

Azhar S. SindiID
1,2, Ali S. Cheema3, Michelle L. Trevenen4, Donna T. Geddes3, Matthew

S. Payne1,5, Lisa F. StinsonID
3*

1 Division of Obstetrics and Gynaecology, School of Medicine, The University of Western Australia, Perth,

Western Australia, Australia, 2 College of Applied Medical Sciences, Umm Al-Qura University, Makkah,

Saudi Arabia, 3 School of Molecular Sciences, The University of Western Australia, Perth, Western Australia,

Australia, 4 Centre for Applied Statistics, The University of Western Australia, Perth, Western Australia,

Australia, 5 Women and Infants Research Foundation, Perth, Western Australia, Australia

* lisa.stinson@uwa.edu.au

Abstract

Human milk is composed of complex microbial and non-microbial components that shape

the infant gut microbiome. Although several maternal and infant factors have been associ-

ated with human milk microbiota, no study has investigated this in an Australian population.

Therefore, we aimed to investigate associations between human milk bacterial composition

of Australian women and maternal factors (body mass index (BMI), mode of delivery, breast

pump use, allergy, parity) and infant factors (sex, mode of feeding, pacifier use, and intro-

duction of solids). Full-length 16S rRNA gene sequencing was used to characterise milk

bacterial DNA profiles. Milk from mothers with a normal BMI had a higher relative abun-

dance of Streptococcus australis than that of underweight mothers, while milk from over-

weight mothers had a higher relative abundance of Streptococcus salivarius compared with

underweight and obese mothers. Mothers who delivered vaginally had a higher relative

abundance of Streptococcus mitis in their milk compared to those who delivered via emer-

gency caesarean section. Milk of mothers who used a breast pump had a higher relative

abundance of Staphylococcus epidermidis and Streptococcus parasanguinis. Milk of moth-

ers whose infants used a pacifier had a higher relative abundance of S. australis and Strep-

tococcus gwangjuense. Maternal BMI, mode of delivery, breast pump use, and infant

pacifier use are associated with the bacterial composition of human milk in an Australian

cohort. The data from this pilot study suggests that both mother and infant can contribute to

the human milk microbiome.

Introduction

Human milk (HM) is made up of nutritive components, immune factors, and microbial

communities [1–3]. It contributes to seeding of the infant gut [4–8] and oral cavity [9]

microbiomes. Bifidobacterium breve, B. adolescentis, B. dentium, B. infantis, B. longum, B.
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bifidum, B. angulatum, Staphylococcus epidermidis, and Veillonella parvula have been

reported among the shared bacterial species between HM and the infant gut microbiome [4,

6, 10, 11], while S. epidermidis, S. auricularis, Streptococcus parasanguinis/gordonii, S. mitis/
oralis, and S. salivarius have been reported to be shared between HM and the infant oral

microbiome [9]. Infant gut bacterial communities are important for immune development

[12, 13] and may modify the risk of developing early-life [14, 15] as well as later-life diseases

[16, 17]. Thus, HM microbial communities likely have important implications for infant

health.

The composition of the HM microbiota varies between individuals [18]. Metataxonomic

and metagenomic studies have revealed that Staphylococcus spp. and Streptococcus spp. are

consistently present and highly abundant in HM [19–25], whereas the presence and abun-

dance of other bacterial species are variable between individuals and populations [26]. Early-

life maternal and infant factors have been associated with the bacterial composition of HM.

Maternal factors such as mode of delivery [27–35], body mass index (BMI) [27, 30, 35–38],

and breast pump use [34, 39] have been reported to be associated with HM bacterial profiles.

Infant factors such as gestational age at delivery [28], sex [34, 38], and feeding method [34, 39–

42] have also been reported to be associated with HM bacterial profiles.

While previous studies have sought to identify associations between maternal and infant

factors and the HM microbiome in various populations, to date, no study has assessed these in

an Australian setting. This is important, as the HM microbiome [26, 30, 32, 35, 43, 44], and the

human microbiome [45–47] more generally, have been shown to vary between geographically

distinct populations (due to a combination of genetic, local environment, and dietary factors).

Being an isolated island nation, it is important to characterise the HM microbiota and describe

any associated maternal and infant factors. This may aid in identifing potential avenues to

alter HM microbial profiles in a manner that supports infant health.

In this pilot study, we analysed the milk microbiota of Western Australian women. We

sought to determine the influence of maternal and infant factors on HM bacterial profiles in

this population. Further, we have improved upon previous studies in this field by utilising full-

length 16S rRNA gene sequencing, allowing deeper taxonomic resolution.

Materials and methods

Study population

Twenty nine predominantly breastfeeding women (those using HM as the main source of

infant nourishment), with healthy infants aged 3–83 weeks and no nipple infection or nipple

pain were recruited for this study. All mothers provided written informed consent prior to

participation. Ethical approval was obtained from The University of Western Australia’s

Human Research Ethics Committee (RA/4/1/2369).

Maternal and infant demographic data collection

Data regarding maternal BMI, mode of delivery, maternal allergies, parity, infant sex, and paci-

fier use were collected via an online questionnaire. Mothers who self-reported having an aller-

gic skin reaction or allergy to any food, medication, or animal were classified as having an

allergy. Participants were assigned into one of the following BMI categories: underweight if

less than 18.5, normal if between 18.5–24.9, overweight if between 25.0–29.9, Obesity class I if

between 30.0–34.9, Obesity class II if between 35.0–39.9, and Obesity class III if above 40. Data

regarding infant formula and solid intake, nipple pain, and breast pump use were collected at

the time of sample collection.
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Sample collection

Milk samples were collected aseptically using a Symphony electric breast pump (Medela AG,

Baar, Switzerland) with a sterile pump kit (microwave steam sterilised). To reduce contamina-

tion from the skin, participants cleaned the nipple and areola of the expressing breast with

chlorhexidine wipes followed by rinsing with sterile saline and drying with sterile gauze. Up to

10 mL of post-milk ejection milk was collected directly into a sterile 50mL tube. Milk samples

were kept on ice and immediately transported to the laboratory where they were aliquoted and

stored at -80˚C until DNA extraction.

DNA extraction

Milk samples (1 mL) were centrifuged at 40,000 x g for 5 min at 4˚C and the supernatant and

fat were removed. DNA was extracted from the cell pellet using the MagAttract Microbial

DNA Kit (QIAGEN) on the Kingfisher Flex platform according to the manufacturer’s instruc-

tions. Two negative extraction controls were processed alongside the samples. The negative

extraction controls consisted of 1 ml of sterile DNA-free water (Integrated DNA Technologies,

Queenstown, Singapore) were placed at the centre of the 96-well extraction plate.

16S rRNA gene amplification and PacBio HiFi sequencing

PCR amplification and PacBio High-Fidelity (HiFi) sequencing was performed as previously

described [48]. Briefly, the full-length 16S rRNA gene was amplified using the PacBio uni-

tagged primers 27F (5’-gcagtcgaacatgtagctgactcaggtcacAGRGTTYGA-
TYMTGGCTCAG-3’) and 1492R (5’-tggatcacttgtgcaagcatcacatcgtagRGY-
TACCTTGTTACGACTT-3’). Asymmetric barcoding was performed using the uni-tagged

PacBio forward barcodes 1F-4F and reverse barcodes 16R-30R. Barcoded amplicons were

pooled in equimolar concentrations and gel purified using a QIAGEN Gel Extraction Kit.

Samples were sequenced using PacBio single molecule HiFi sequencing on a single SMRT cell

at the Ramaciotti Centre for Genomics (NSW, Australia).

Raw sequence analysis

Raw data were processed at the Ramaciotti Centre for Genomics using PacBio SMRTLink

analysis software v6.0 to generate demultiplexed.fastq files. Demultiplexed HiFi reads were fil-

tered, aligned, clustered, and taxonomically assigned using Mothur v.1.44.1 [49] against the

SILVA reference database (v138) [50] as previously described [48]. Rarefaction was performed

based on the smallest library size (1007 reads).

Statistical analyses

Alpha diversity was measured using richness (number of different OTUs) and Shannon diver-

sity. Differences in alpha diversity measures between maternal and infant characteristics were

assessed using Wilcoxon Rank Sum tests for categorical characteristics and Kruskal Wallis

tests for continuous characteristics. A continuity correction was included in the Wilcoxon

Rank Sum tests to account for ties in richness. Differences in beta diversity between the cate-

gorical and continuous maternal and infant characteristics were assessed through univariate

PERMANOVAs on Bray-Curtis distances. These analyses were performed using the R envi-

ronment for statistical computing [51]. To analyse whether any OTUs were differentially

abundant based on maternal or infant factors, the metastats tool [52] was used in Mothur

v.1.44.1 [49]. The relative abundance of OTUs was compared across the groups by conducting

a two-sample t-test. OTUs of interest were mapped taxonomically using BLAST [53, 54] with a
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sequence identity score of> 97.8% being considered a good match. Significant results were

reported only for OTUs with an average relative abundance of� 1% across all samples that

were present in > 1 sample. For all tests, p-values < 0.05 were considered significant. Bonfer-

roni correction was applied to the significance level.

Results

Characteristics of the 29 mothers and their infants are included in Table 1. 13 OTUs made up

�1% relative abundance in these HM samples. The five most abundant OTUs mapped to

Staphylococcus epidermidis (mean relative abundance: 27.3%), Streptococcus parasanguinis
(14.0%), Streptococcus mitis (9.5%), Streptococcus gwangjuense (6.2%), and Haemophilus para-
influenzae (4.9%) (Fig 1a). At the genus level, Streptococcus spp. (52.3%) and Staphylococcus
spp. (34.7%) dominated the profiles (Fig 1b).

HM bacterial profiles are associated with maternal and infant factors

Differences in HM bacterial composition were observed relative to maternal BMI, mode of

delivery, breast pump use, and pacifier use. However, lactation stage, maternal allergy, parity,

Table 1. Participant characteristics (n = 29).

Variables Mean (range) or n (%)

Maternal age (years) 32.8 (24–40)

Maternal ethnicity:a

Caucasian 26 (89.6%)

Aboriginal Australian 1 (3.4%)

Maternal BMIb 25.1 (16.9–38.3)

Obesity class:

Normal 13 (44.8%)

Overweight 9 (31%)

Obesity class II 3 (10.3%)

Underweight 3 (10.3%)

Primiparous 15 (51.7%)

Maternal allergy 11 (37.9%)

Previous mastitisc 4 (13.7%)

Breast pump use 24 (82.7%)

Mode of delivery:b

Vaginal 19 (65.5%)

Emergency caesarean section 5 (17.2%)

Elective caesarean section 4 (13.7%)

Current maternal antibiotic intakea 1 (3.4%)

Infant age (weeks) 23.3 (3.4–83.3)

Gestational age at delivery (weeks) 39.2 (35–41)

Male infant 16 (55.1%)

Mode of feeding:

Exclusive breastfeeding 15 (51.7%)

Human milk and formula 4 (13.7)

Human milk and solids 10 (34.4%)

Pacifier use 15 (51.7%)

a missing variable value for two participants
b missing variable value for one participant
c none of the mothers presented with symptoms of mastitis at the time of milk sample collection

https://doi.org/10.1371/journal.pone.0280960.t001
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infant sex, mode of feeding, and solid food intake showed no significant relationship with the

HM bacterial profiles.

Maternal BMI. Milk of overweight mothers (n = 9) showed a significantly higher relative

abundance of an OTU which mapped to Streptococcus salivarius compared to underweight

mothers (n = 3) (mean relative abundance: 3.45% vs 1.09%, P = 0.03) and obese mothers

(n = 3) (3.45% vs 1.19%, P = 0.04) (Fig 2a). Additionally, milk from normal weight mothers

(n = 13) showed a significantly higher relative abundance of Streptococcus australis compared

with milk from underweight mothers (1.34% vs 0.33%, P = 0.02) (Fig 2b). No differences in

richness, beta diversity, or Shannon diversity were detected based on maternal BMI.

Mode of delivery. Milk from mothers who delivered vaginally (n = 19) had a significantly

higher relative abundance of an OTU which mapped to S. mitis (14.01% vs 1.95%, P = 0.05)

(Fig 3a) than that of mothers who delivered via emergency caesarean section (CS) (n = 5).

Although no significant differences were detected in Shannon or beta diversities based on

mode of delivery, HM from mothers who delivered via CS (n = 10) showed a trend toward a

higher bacterial richness compared to those who delivered vaginally (n = 19), however, this

did not reach statistical significance (P = 0.07) (Fig 3b).

Breast pump use. Milk of mothers who used a breast pump (n = 24) had a higher relative

abundance of OTUs which mapped to S. epidermidis (30.95% vs 9.51%, P = 0.000002), S. para-
sanguinis (15.52% vs 6.42%, P = 0.000002), S. mitis (11.50% vs 0%, P = 0.000002), S. salivarius
(2.47% vs 0.97%, P = 0.000002), and S. australis (1.59% vs 0.69%, P = 0.000002) compared to

Fig 1. The relative abundance of bacterial OTUs and genera in HM samples. (a) The relative abundance of OTUs

which made up�1% overall relative abundance. Species assigned to each OTU are noted in the legend. Where

multiple OTUs mapped to the same species, they are numbered. (b) The relative abundance of bacterial genera which

made up� 1% relative abundance across all samples. Genera which accounted for< 1% relative abundance are

grouped together as “others”.

https://doi.org/10.1371/journal.pone.0280960.g001
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milk of mothers who did not use a breast pump (n = 5) (Fig 4). Richness, beta diversity, and

Shannon diversity did not differ according to breast pump use.

Pacifier use. Milk of mothers whose infants used a pacifier (n = 15) had a significantly

higher relative abundance of OTUs which mapped to S. australis (4.19% vs 0.09%, P = 0.003)

and S. gwangjuense (10.10% vs 1.92%, P = 0.02) compared to that of mothers whose infants

had never used a pacifier (n = 14) (Fig 5). Richness, beta diversity, and Shannon diversity did

not differ by pacifier use.

Lactation stage. No significant differences in the relative abundance of the most abundant

bacterial species (relative abundance of� 1%) were detected based on samples collected < 6

months postpartum (n = 19) and those collected> 6 months postpartum (n = 10). Richness

(113.5 ± 82.1, 137.8 ± 75.5, P = 0.2), beta diversity (PERMANOVA, P = 0.5) (S1 Fig), and

Shannon diversity (1.7 ± 1.1, 2.3 ± 0.9, P = 0.1) did not differ significantly by lactation stage.

Discussion

In this pilot study, we identified maternal BMI, mode of delivery, breast pump use, and pacifier

use as factors that were associated with HM bacterial composition. While similar studies have

Fig 2. The relative abundance of Streptococcus spp. is associated with maternal BMI. The relative abundance of two

OTUs, mapping to (a) Streptococcus salivarius and (b) Streptococcus australis in milk from mothers of different BMI

classes (normal weight n = 13, overweight n = 9, obese n = 3, and underweight n = 3). The average value for each group

is indicated with a line. � indicate significant results.

https://doi.org/10.1371/journal.pone.0280960.g002
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been performed elsewhere in the world [27–31, 33, 34, 36–39, 55], this is the first study to

assess such associations in an Australian population. This is important given that the HM

microbiome has been shown to vary geographically (due to a combination of genetic, local

environment, and dietary factors) [3, 26, 30]. Further, by using full-length 16S rRNA gene

sequencing, we have been able to resolve these associations to the species level, whereas previ-

ous such studies have been limited to the genus or family level [27, 34, 42].

Several studies have reported an association between maternal BMI and the HM micro-

biome [27, 30, 35–38]. In the present cohort, milk from overweight mothers was associated

with a higher abundance of S. salivarius compared to milk from obese mothers (3.45% vs

1.19%) and underweight mothers (3.45% vs 1.09%). Additionally, we showed that milk from

normal weight mothers had a higher abundance of S. australis compared with milk from

underweight mothers (1.34% vs 0.33%) (Fig 2). These findings may be reflective of BMI-

related differences in the human microbiome [56–61] or differences in maternal diet [38, 62–

65]. However, with only three overweight and three underweight mothers in this study, the

Fig 3. The relative abundance of Streptococcus mitis and bacterial richness are associated with the mode of

delivery. (a) The relative abundance of Streptococcus mitis in milk from mothers who delivered vaginally (n = 19), via

emergency caesarean section (n = 5), or via elective caesarean section (n = 4). The average value for each group is

indicated with a line. (b) Richness of milk samples from mothers who delivered via caesarean section (n = 10) or

vaginally (n = 19). � indicate significant results.

https://doi.org/10.1371/journal.pone.0280960.g003
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results should be interpreted with caution. High maternal BMI has been associated with a

higher abundance of Staphylococcus spp. [35], Akkermansia spp. [27, 36], and Granulicatella
spp. [38], and a decreased abundance of Bifidobacterium spp. [27, 36], Lactobacillus spp., and

Streptococcus spp. [35] in HM. In addition, milk from mothers with a high BMI has been

reported to have a lower bacterial diversity and a higher total bacterial count [27]. We could

not identify such changes in the present study, potentially due to population and methodologic

differences. Nevertheless, these preliminary results suggest that maternal BMI is associated

with HM bacterial composition in an Australian cohort.

Mode of delivery has been repeatedly associated with the composition of the HM micro-

biome [27–35]. We found a higher abundance of the typical oral taxa S. mitis [66] (14.01% vs

1.95%) in milk from mothers who delivered vaginally compared to those who delivered via

emergency CS (Fig 3a). The frequency of breastfeeding may play a role in the increase of oral

bacteria in HM of women who delivered vaginally, as CS delivery is associated with more

breastfeeding difficulties [67]. Unfortunately, we do not have a complete data set on breast-

feeding difficulties in this cohort. Moreover, in Australia, intrapartum antibiotic prophylaxis is

administered during CS. Antibiotics can induce changes to the maternal gut microbiome [68,

69], which may affect HM bacteria via the enteromammary route [4, 5, 10, 11]. Antibiotics can

also have a direct effect on the HM microbiome [33]. Hermansson et al. provided evidence

that exposure to intrapartum antibiotics is associated with alterations to the HM microbiome,

regardless of delivery mode [33]. Therefore, the observed associations between HM bacterial

composition and CS delivery may be, at least in part, driven by intrapartum antibiotic

administration.

Fig 4. The relative abundance of Streptococcus spp. and Staphylococcus sp. is associated with breast pump use. The

relative abundance of various bacterial taxa in milk from mothers who did (n = 24) or did not (n = 5) use a breast

pump. The average value for each group is indicated with a line.

https://doi.org/10.1371/journal.pone.0280960.g004
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Milk from mothers who habitually used a breast pump (on a daily or almost daily basis)

was associated with a significantly higher relative abundance of typical oral taxa including S.

parasanguinis (15.52% vs 6.42%) [70], S. salivarius (2.47% vs 0.97%) [71], S. mitis (11.50% vs

0%) [66], and S. australis (1.59% vs 0.69%), as well as the typical skin taxon S. epidermidis
(30.95% vs 9.51%) compared to the milk of mothers who did not use a breast pump (Fig 4). It

is unclear why these taxa were at a higher relative abundance in milk from mothers who used a

breast pump; however, the high abundance of S. epidermidis, may be related to the disturbance

of skin bacteria during the application of vacuum during pumping, allowing easier entry

through the nipple to the mammary gland. Analysis of samples collected from nipples and are-

ola before sterilisation might provide some evidenc. More research is needed to confirm

whether bacteria enter the mammary gland through the nipple or whether milk inoculation

occurs as milk is expressed. In addition, cleaning practices of breast pump parts between each

pumping session could have contributed to the observed differences. Steam decontamination

of the breast pump kit has been reported to significantly decrease milk contamination with

Enterobacteriaceae and Candida spp. compared with milk samples collected with breast pump

accessories that were only washed and not decontaminated [72]. Further research should be

performed to investigate whether the observed differences in milk associated with use of a

Fig 5. The relative abundance of Streptococcus spp. is associated with pacifier use. The relative abundance of

bacterial taxa in milk from mothers whose infants did (n = 15) or did not (n = 14) use a pacifier. The average value for

each group is indicated with a line.

https://doi.org/10.1371/journal.pone.0280960.g005
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breast pump originate from pump cleaning practices. We are not the first to report that breast

pump use is associated with alterations to the HM microbiome. Fehr et al. reported that HM

of mothers who sometimes used a breast pump had a significantly lower relative abundance of

Veillonella dispar, Haemophilus parainfluenzae, Streptococcus spp., and Bifidobacterium spp.

compared with those who only directly breastfed their infants [39]. In contrast to our results,

Moosavi et al. reported that direct breastfeeding was associated with a higher abundance of

Actinobacteria and Veillonellaceae, while the use of a breast pump at least once during the last

two weeks was associated with the presence of potential opportunistic pathogens such as Steno-
trophomonas spp. and Pseudomonadaceae [34].

Infant pacifier use was associated with a significantly higher relative abundance of S. austra-
lis (4.19% vs 0.09%), a species first isolated from the oral cavities of Australian children in 2001

[66], and S. gwangjuense (10.10% vs 1.92%), a species first isolated from human pericoronitis,

an inflammation of the periodontal tissue surrounding unerupted teeth [73] (Fig 5). To our

knowledge, this is the first cohort in which S. gwangjuense has been identified in HM. Sharing

of bacterial taxa between the infant oral cavity and HM has been repeatedly demonstrated in

previous studies [9, 10, 41]. Retrograde flow occurs during breastfeeding, with HM from the

infant’s mouth flowing back through the milk ducts to the alveoli during the second half of

milk ejection as oxytocin is degraded and intraductal pressure reduces [74].

Pacifier use has been shown to be associated with differences in infant oral microbiome

composition. Two studies have reported a significant positive association between pacifier use

and the count of microbes such as lactobacilli and Candida spp. in the infant oral microbiome

[75, 76]. Other studies reported a significantly higher prevalence of Candida spp. colonisation

in the oral microbiota of infants who use a pacifier compared with those who did not [77, 78].

Pacifier use may influence oral sugar clearance in a manner similar to removable dentures,

which have been implicated in less effective clearance [79]. This would prolong low pH condi-

tions, making the oral cavity favourable to aciduric microorganisms [80, 81]. In this manner,

pacifier use may alter the composition of the oral microbiota and thereby influence microbes

contributing to the HM microbiome through retrograde flow. Thus, this study provides pre-

liminary evidence that pacifier use is associated with the HM bacterial profile; however, larger

studies are required to replicate these findings with the addition of information on frequency

of pacifier use and pacifier cleaning practices.

We did not identify significant associations between maternal allergy, parity, infant sex,

mode of feeding, and introduction of solids and the bacterial composition of HM. For parity

and infant sex, this is supported by previous findings from Williams et al. [38] and Urbaniak

et al. [24], respectively. In contrast, one large cohort study reported an association between

maternal atopy, parity, and infant sex and HM bacterial composition [34]. Multiparous moth-

ers and those with atopy had a higher Actinobacteria richness in their milk, while mothers with

male infants had a decreased bacterial richness [34]. However, milk samples were not collected

aseptically, which may have contributed to the observed differences in results. In a different

study, mothers with male infants had an increased relative abundance of Streptococcus spp. and

a lower relative abundance of Staphylococcus spp. in their milk [38]. Only one study has investi-

gated the association between exclusive breastfeeding and the HM microbiome, and this was in

an area of high HIV prevalence. Milk from mothers who fed their infants exclusively showed

an increased relative abundance of Streptococcus parasanguis than those who used mixed feed-

ing methods [40]. These contradictory results could be attributed to the use of short amplicon

sequencing, geographically different populations (genetic, local environment, and dietary fac-

tors), sample size, and use of non-sterile sample collection techniques by these studies.

A number of limitations in this pilot study need to be acknowledged. The major limitation

of this study is the small sample size, which limits the generalisability of these results and their
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relevance to infant health. Further study in larger cohorts may strengthen the conclusions

drawn from this pilot study. Future studies with larger sample sizes will also be able to employ

multivariable analyses. Milk samples were collected from participants over a large range of lac-

tation stages (mean: 23.4 weeks ± 18.9 weeks, range 3.4–83.3 weeks, median: 17.3 weeks)

among the 29 milk samples. The study is also limited by the lack of information on maternal

breast pump cleaning practices, intrapartum antibiotic administration, frequency of breast-

feeding, and breastfeeding difficulties.

Conclusions

The current study demonstrates that maternal BMI, mode of delivery, breast pump use, and

pacifier use are significantly associated with the bacterial composition of HM in a small cohort

of exclusively breastfeeding Western Australian women. The association of these factors with

HM bacterial profiles highlights the importance of both mother and infant as contributors to

the HM microbiome; however, these conclusions remain statistically insignificant. Therefore,

further research is needed to investigate and validate these relationships in a larger cohort and

determine if these relationships are related to infant health and development.

Supporting information
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precolostrum and its potential role as a source of bacteria to the infant mouth. Scientific reports. 2019;

9:8435. https://doi.org/10.1038/s41598-019-42514-1 PMID: 31182726

10. Kordy K, Gaufin T, Mwangi M, Li F, Cerini C, Lee DJ, et al. Contributions to human breast milk micro-

biome and enteromammary transfer of Bifidobacterium breve. PLoS One. 2020; 15:e0219633. https://

doi.org/10.1371/journal.pone.0219633 PMID: 31990909

11. Duranti S, Lugli GA, Mancabelli L, Armanini F, Turroni F, James K, et al. Maternal inheritance of bifido-

bacterial communities and bifidophages in infants through vertical transmission. Microbiome. 2017;

5:1–13.
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22. Jiménez E, de Andrés J, Manrique M, Pareja-Tobes P, Tobes R, Martı́nez-Blanch JF, et al. Metage-

nomic analysis of milk of healthy and mastitis-suffering women. Journal of Human Lactation. 2015;

31:406–15. https://doi.org/10.1177/0890334415585078 PMID: 25948578

PLOS ONE Characterisation of human milk bacterial DNA profiles in relation to infant and maternal factors

PLOS ONE | https://doi.org/10.1371/journal.pone.0280960 January 25, 2023 12 / 15

https://doi.org/10.3390/nu10111643
http://www.ncbi.nlm.nih.gov/pubmed/30400268
https://doi.org/10.1111/1462-2920.12238
https://doi.org/10.1111/1462-2920.12238
http://www.ncbi.nlm.nih.gov/pubmed/24033881
https://doi.org/10.1128/AEM.02037-15
http://www.ncbi.nlm.nih.gov/pubmed/26231653
https://doi.org/10.1128/mSystems.00164-16
http://www.ncbi.nlm.nih.gov/pubmed/28144631
https://doi.org/10.1186/s40168-017-0282-6
http://www.ncbi.nlm.nih.gov/pubmed/28651630
https://doi.org/10.1001/jamapediatrics.2017.0378
http://www.ncbi.nlm.nih.gov/pubmed/28492938
https://doi.org/10.1038/s41598-019-42514-1
http://www.ncbi.nlm.nih.gov/pubmed/31182726
https://doi.org/10.1371/journal.pone.0219633
https://doi.org/10.1371/journal.pone.0219633
http://www.ncbi.nlm.nih.gov/pubmed/31990909
https://doi.org/10.1136/fn.83.3.f186
https://doi.org/10.1136/fn.83.3.f186
http://www.ncbi.nlm.nih.gov/pubmed/11040166
https://doi.org/10.1097/MPG.0b013e31824fb899
http://www.ncbi.nlm.nih.gov/pubmed/22383026
https://doi.org/10.1038/ismej.2010.92
https://doi.org/10.1038/ismej.2010.92
http://www.ncbi.nlm.nih.gov/pubmed/20613793
https://doi.org/10.1126/scitranslmed.aab2271
http://www.ncbi.nlm.nih.gov/pubmed/26424567
https://doi.org/10.1093/ajcn/87.3.534
http://www.ncbi.nlm.nih.gov/pubmed/18326589
https://doi.org/10.1017/S2040174419000588
http://www.ncbi.nlm.nih.gov/pubmed/31601287
https://doi.org/10.1016/j.resmic.2006.11.004
http://www.ncbi.nlm.nih.gov/pubmed/17224259
https://doi.org/10.1371/journal.pone.0021313
https://doi.org/10.1371/journal.pone.0021313
http://www.ncbi.nlm.nih.gov/pubmed/21695057
https://doi.org/10.1017/S0007114513000597
http://www.ncbi.nlm.nih.gov/pubmed/23507238
https://doi.org/10.1186/1471-2180-13-116
http://www.ncbi.nlm.nih.gov/pubmed/23705844
https://doi.org/10.1177/0890334415585078
http://www.ncbi.nlm.nih.gov/pubmed/25948578
https://doi.org/10.1371/journal.pone.0280960


23. Sakwinska O, Moine D, Delley M, Combremont S, Rezzonico E, Descombes P, et al. Microbiota in

breast milk of Chinese lactating mothers. PLoS One. 2016;11. https://doi.org/10.1371/journal.pone.

0160856 PMID: 27529821

24. Urbaniak C, Angelini M, Gloor GB, Reid G. Human milk microbiota profiles in relation to birthing method,

gestation and infant gender. Microbiome. 2016; 4:1–9. https://doi.org/10.1186/s40168-015-0145-y

PMID: 26739322

25. Murphy K, Curley D, O’Callaghan T, O’Shea C-A, Dempsey E, O’Toole P, et al. The composition of

human milk and infant faecal microbiota over the first three months of life: a pilot study. Scientific

reports. 2017; 7:40597. https://doi.org/10.1038/srep40597 PMID: 28094284

26. Lackey KA, Williams JE, Meehan CL, Zachek JA, Benda ED, Price WJ, et al. What’s normal? micro-

biomes in human milk and infant feces are related to each other but vary geographically: the

INSPIRE study. Frontiers in Nutrition. 2019; 6:45. https://doi.org/10.3389/fnut.2019.00045 PMID:

31058158

27. Cabrera-Rubio R, Collado C, Laitinen K, Salminen S, Isolauri E, Mira A. The human milk microbiome

changes over lactation and is shaped by maternal weight and mode of delivery. The American Jour-

nal of Clinical Nutrition. 2012; 96:544–51. https://doi.org/10.3945/ajcn.112.037382 PMID:

22836031

28. Khodayar-Pardo P, Mira-Pascual L, Collado M, Martinez-Costa C. Impact of lactation stage, gestational

age and mode of delivery on breast milk microbiota. Journal of Perinatology. 2014; 34:599–605. https://

doi.org/10.1038/jp.2014.47 PMID: 24674981

29. Cabrera-Rubio R, Mira-Pascual L, Mira A, Collado M. Impact of mode of delivery on the milk microbiota

composition of healthy women. Journal of Developmental Origins of Health and Disease. 2016; 7:54–

60. https://doi.org/10.1017/S2040174415001397 PMID: 26286040

30. Kumar H, du Toit E, Kulkarni A, Aakko J, Linderborg KM, Zhang Y, et al. Distinct patterns in human milk

microbiota and fatty acid profiles across specific geographic locations. Frontiers in Microbiology. 2016;

7:1619. https://doi.org/10.3389/fmicb.2016.01619 PMID: 27790209

31. Toscano M, De Grandi R, Peroni DG, Grossi E, Facchin V, Comberiati P, et al. Impact of delivery mode

on the colostrum microbiota composition. BMC Microbiology. 2017; 17:205. https://doi.org/10.1186/

s12866-017-1109-0 PMID: 28946864

32. Li S-W, Watanabe K, Hsu C-C, Chao S-H, Yang Z-H, Lin Y-J, et al. Bacterial composition and diversity

in breast milk samples from mothers living in Taiwan and mainland China. Frontiers in microbiology.

2017; 8:965. https://doi.org/10.3389/fmicb.2017.00965 PMID: 28611760

33. Hermansson H, Kumar H, Collado MC, Salminen S, Isolauri E, Rautava S. Breast milk microbiota is

shaped by mode of delivery and intrapartum antibiotic exposure. Frontiers in nutrition. 2019; 6:4. https://

doi.org/10.3389/fnut.2019.00004 PMID: 30778389

34. Moossavi S, Sepehri S, Robertson B, Bode L, Goruk S, Field C, et al. Composition and variation of the

human milk microbiota are influenced by maternal and early-life factors. Cell Host & Microbe. 2019;

25:324–35. e4.

35. Ding M, Qi C, Yang Z, Jiang S, Bi Y, Lai J, et al. Geographical location specific composition of cultured

microbiota and Lactobacillus occurrence in human breast milk in China. Food & function. 2019; 10:554–

64. https://doi.org/10.1039/c8fo02182a PMID: 30681124

36. Collado MC, Laitinen K, Salminen S, Isolauri E. Maternal weight and excessive weight gain during preg-

nancy modify the immunomodulatory potential of breast milk. Pediatric Research. 2012; 72:77. https://

doi.org/10.1038/pr.2012.42 PMID: 22453296

37. Lundgren S, Madan J, Karagas M, Morrison H, Hoen A, Christensen B. Microbial communities in

human milk relate to measures of maternal weight. Frontiers in Microbiology. 2019; 10:2886. https://doi.

org/10.3389/fmicb.2019.02886 PMID: 31921063

38. Williams J, Carrothers J, Lackey K, Beatty N, York M, Brooker S, et al. Human milk microbial community

structure is relatively stable and related to variations in macronutrient and micronutrient intakes in

healthy lactating women. The Journal of Nutrition. 2017; 147:1739–48. https://doi.org/10.3945/jn.117.

248864 PMID: 28724659

39. Fehr K, Moossavi S, Sbihi H, Boutin RC, Bode L, Robertson B, et al. Breastmilk feeding practices are

associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the CHILD cohort

study. Cell Host & Microbe. 2020; 28:285–97. e4.
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66. Holgerson PL, Esberg A, Sjödin A, West CE, Johansson I. A longitudinal study of the development of

the saliva microbiome in infants 2 days to 5 years compared to the microbiome in adolescents. Scientific

Reports. 2020; 10:1–14.

67. Zhang F, Cheng J, Yan S, Wu H, Bai T. Early feeding behaviors and breastfeeding outcomes after

cesarean section. Breastfeeding Medicine. 2019; 14:325–33. https://doi.org/10.1089/bfm.2018.0150

PMID: 30864825

68. Rogers MA, Aronoff DM. The influence of non-steroidal anti-inflammatory drugs on the gut microbiome.

Clinical Microbiology and Infection. 2016; 22:178. e1–.e9. https://doi.org/10.1016/j.cmi.2015.10.003

PMID: 26482265

69. Antibiotics Francino M. and the human gut microbiome: dysbioses and accumulation of resistances.

Frontiers in microbiology. 2016; 6:1543.

70. Chen Q, Wu G, Chen H, Li H, Li S, Zhang C, et al. Quantification of Human Oral and Fecal Streptococ-

cus parasanguinis by Use of Quantitative Real-Time PCR Targeting the groEL Gene. Frontiers in micro-

biology. 2019; 10:2910. https://doi.org/10.3389/fmicb.2019.02910 PMID: 31921079

71. Burton J, Chilcott C, Moore C, Speiser G, Tagg J. A preliminary study of the effect of probiotic Strepto-

coccus salivarius K12 on oral malodour parameters. Journal of applied microbiology. 2006; 100:754–

64. https://doi.org/10.1111/j.1365-2672.2006.02837.x PMID: 16553730

72. Flores-Antón B, Martı́n-Cornejo J, Morante-Santana M, Garcı́a-Lara N, Sierra-Colomina G, De la Cruz-
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