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Abstract

In recent years, numerous prognostic models have been developed to predict VO2max.

Nevertheless, their accuracy in endurance athletes (EA) stays mostly unvalidated. This

study aimed to compare predicted VO2max (pVO2max) with directly measured VO2max by

assessing the transferability of the currently available prediction models based on their R2,

calibration-in-the-large, and calibration slope. 5,260 healthy adult EA underwent a maximal

exertion cardiopulmonary exercise test (CPET) (84.76% male; age 34.6±9.5 yrs.; VO2max

52.97±7.39 mL�min-1�kg-1, BMI 23.59±2.73 kg�m-2). 13 models have been selected to estab-

lish pVO2max. Participants were classified into four endurance subgroups (high-, recrea-

tional-, low- trained, and “transition”) and four age subgroups (18–30, 31–45, 46–60, and

�61 yrs.). Validation was performed according to TRIPOD guidelines. pVO2max was low-

to-moderately associated with direct CPET measurements (p>0.05). Models with the high-

est accuracy were for males on a cycle ergometer (CE) (Kokkinos R2 = 0.64), females on

CE (Kokkinos R2 = 0.65), males on a treadmill (TE) (Wasserman R2 = 0.26), females on TE

(Wasserman R2 = 0.30). However, selected models underestimated pVO2max for younger

and higher trained EA and overestimated for older and lower trained EA. All equations dem-

onstrated merely moderate accuracy and should only be used as a supplemental method

for physicians to estimate CRF in EA. It is necessary to derive new models on EA popula-

tions to include routinely in clinical practice and sports diagnostic.
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Introduction

The concept of maximal oxygen uptake (VO2max) was first suggested by Hill et al. in the 1920s

[1]. VO2max is the highest attained oxygen uptake during an incremental exercise test with

large muscle groups (e.g., treadmill or cycling). VO2max is an important parameter to objec-

tively assess cardiorespiratory fitness (CRF) both in healthy people and those suffering from

cardiovascular diseases (CVD) [2,3]. The American Heart Association (AHA) recognized that

CRF, described mainly as a VO2max, should be used as an essential factor in the comprehensive

diagnostic process [3]. Moreover, a lower level of CRF is strongly related to a higher risk of

CVDs, death from numerous cancer types, and all-cause mortality [4]. This represents a switch

from risk factors widely discussed in recent decades, such as smoking, hypertension, or hyper-

lipidemia [2,3,5].

VO2max in sports & performance diagnostics

VO2max is an important variable in endurance sports, such as running, cycling, swimming, tri-

athlon, or team sports [6]. VO2max strongly correlates with athlete’s aerobic performance,

could be applied to prescribe training properly, and is useful to assess adaptation to exercise

[7–9]. Furthermore, the VO2max could help in the prediction of a race time [10,11]. Elite ath-

letes achieve varied VO2max values, dependent on their discipline and training experience

[12,13]. Males typically have higher VO2max than females [14], and VO2max values decrease

with age [15]. Body weight and height are related as well as the testing mode. Higher VO2max

values are observed on a treadmill compared to the cycle ergometer [16]. Briefly, Kaminky

et al. indicate the level of training, the method of testing (cycle ergometry, treadmill, rowing

machine, etc.), co-existing CVDs, and respiratory exchange ratio (RER) as factors influencing

VO2 [17]. Other contributors perhaps include the psychological attitude of the athlete to the

effort (i.e. that the CPET conducting until refuse may potentially last longer), race, and ethnic-

ity [18,19]. Due to its numerous practical implications and variability, it is important to pre-

cisely assess VO2max in different athletic disciplines and populations [20].

VO2max in clinical practice

Measuring VO2max is also especially important under clinical conditions during the examina-

tion of the cardiovascular system [3,21]. It could be regarded as the integrated function of

(amongst others) lungs, heart, blood vessels, and muscles [9,22]. Recommendations for

VO2max-testing include the presence of ambiguous pathologic exertional symptoms, cardiovas-

cular risk estimation, and monitoring response to applied treatment [21]. Moreover, under-

standing the exercise limitation is crucial information for healthcare professionals to monitor

cardiac status and could be used to prescribe treatment properly for those suffering from CVDs

[2,23]. Therefore, VO2max is a practically relevant parameter for a new, growing population of

patients in cardiologic ambulatory care- endurance athletes (EA) [21]. Both highly trained

endurance athletes (HTEA), recreational endurance athletes (REA) and low-trained endurance

athletes (LTEA) with suspected CVD and those undergoing cardiopulmonary exercise testing

(CPET) for periodic training evaluation are potential candidates for VO2max assessment [21].

Epidemiology of CVDs among EA

In light of current literature, there is growing importance in preventing and treating CVDs in

athletes. As the number of people practicing endurance sports increases, new patient popula-

tions arose, professional and former EAs [3]. For example, in recent times, due to the SARS--

CoV-2 infection, some athletes have had cardiac involvement. CPET and VO2max assessment
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are important elements of a comprehensive diagnostic approach [24]. To deepen the epidemi-

ological data, it is worth mentioning that arterial hypertension is the most common CVD

among physically active people. The risk of CVD is found especially in the group of people

after 35 years old (thus former and retired EA). Although sport is recognized as a preventive

factor for CVD, Medical Practitioners should be aware of the prevalence of risk factors among

EA [25]. What is more, as claimed by Petek et al. among the wide cohort of collegiate athletes

prevalence of persistent or exertional symptoms on return to exercise occurs only in 44/3529

(1.2%). This has been achieved, among others, by a properly conducted diagnostic and screen-

ing process consisting of CPET and VO2 assessment [21].

Again, as observed by Petek et al. the comparison of VO2max with cardiac morphology and

echocardiography may facilitate the correct planning of the therapy [24]. Moreover, Moulson

et al. recently found that CPET is a valuable component of the Return to Play Program and car-

diac screening in young competitive EAs following SARS-CoV-2 infection [26]. To summarize,

directly measured VO2max can be used as a valuable predictive cardiometabolic risk factor.

CPET protocol and applicability of prediction formulae

The gold standard to measure VO2max is performing a CPET [27]. VO2max is reached when the

subject meets the physiological limit and maintains it for some time (usually 15-s, 30-s, or

60-s) [28]. Due to practical reasons, such as high costs of the procedure or a lack of testing

devices as well as health contraindications, this form of measuring is often not possible to

apply in a sports setting [27].

Parameters such as age, sex, and heart rate (HR) could be used to predict VO2max through

various models [27,29]. The reliability of this potentially non-sophisticated and valuable

method is complicated and doubtful because of low accuracy, especially in women, extremely

small or tall subjects, and in individuals with high BMI values [30,31]. In the 2013 statement,

AHA pointed out that there is a need for a universal and transferable prediction standard [32].

Prediction formulae undoubtedly have numerous advantages, however, those currently

used were created on different populations and with the incorporation of heterogeneous test-

ing modes [33]. Indeed, proper external validation should be a mandatory stage before the

new model will be widely used [34,35]. Moreover, the risk of using only predicted values is a

certain inaccuracy and error in the particular equations [36]. On the other hand, the benefit is

that there is no need to undergo full CPET, which may be expensive, or when there is limited

availability of specialized clinics, equipment, etc (eg. in a field settings) [37,38].

Validation studies are performed to evaluate a given model in varied conditions and on dif-

ferentiated populations to assess its possible measurement bias and the ability to extrapolate its

results [39]. This study aimed to externally evaluate prediction formulae on EA tested under

the same conditions from one tertiary care sports diagnostic center. EAs were selected for a

study population as VO2max is an important parameter in the evaluation of the overall fitness

level and the selected equations are often derived from the athletic population [22]. The sec-

ondary aim was to assess the impact of age and CRF on the risk of error and bias in tested

models. We hypothesize that their validity may not be sufficient to make them an equivalent

method for directly measured VO2max.

Material and methods

We applied TRIPOD guidelines for the development and validation of prediction models (for

detailed protocol see Supplementary information. TRIPOD Checklist for Prediction Model

Validation) [39]. Results from CPETs collected between 2013–2021 were retrospectively ana-

lyzed. Maximal-effort examinations consisted of the treadmill (TE) or the cycle ergometry
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(CE) tests, paired with body composition (BC) analysis took place in the medical clinic (www.

sportslab.pl, Warsaw, Poland). Tests were performed on an individual request as a part of reg-

ular endurance assessment or training monitoring.

Cardiopulmonary exercise testing protocol

Cardiopulmonary exercise tests (CPET) were preceded by body mass (BM) and fat mass (FM)

analysis with 5 kHz/50 kHz/250 kHz electrical bioimpedance method on the body composition

(BC) monitor (Tanita, MC 718, Japan. Conditions during BC and CPET were: 40 m2 indoor,

air-conditioned area, 40–60% humidity, temperature 20–22˚C, altitude 100 m MSL. Endurance

athletes (EA) were instructed via e-mail on how to prepare: avoid any demanding exercises 24

hours before CPET, consume a high carbohydrate meal and hydrate with isotonic beverages

2–3 hours earlier, and exclude any stimulants or caffeine on the day of the procedure.

Cycle ergometry (CE) examination was performed on a cycle ergometry Cyclus-2 (RBM

elektronik-automation GmbH, Leipzig, Germany) and treadmill (TE) examination was con-

ducted on a mechanical treadmill (h/p/Cosmos quasar, Germany). CPET scores were mea-

sured using a Hans Rudolph V2 Mask (Hans Rudolph, Inc, Shawnee, KS, USA), a gas

exchange analyzer Cosmed Quark CPET (Rome, Italy), and dedicated manufacturer’s software

(from PFT Suite to Omnia 10.0E.). Data collection was performed with a breath-by-breath

acquisition system and a 15-s filter was used for data analysis. Each breath was considered as a

separate point and all points were included in the calculation of the average VO2max value.HR

was measured via ANT and a torso strap as a part of the Cosmed Quark set (product accuracy

comparable to ECG; ± 1 bpm.). The CPET device was calibrated with reference gas (16% O2;

5% CO2) and turbine flow for each person separately, according to manufacturer recommen-

dations. Equipment software was regularly actualized between 2013–2021. Three gas analyzing

devices were utilized and each one has been changed after 36–48 months. Every part of CPET

equipment was periodically verified by manufacturer employees to keep their mechanical cer-

tificates valid. Blood lactate (LA) was assessed with the usage of Super GL2 analyzer (Müller

Gerätebau GmbH, Freital, Germany). The instrument was also individually prepared before

each round of analysis and calibrated with reference solution before each sample set.

Exercises begin with a 5-min. warm-up (walking or pedaling with minimal resistance). Par-

ticipants’ endurance capacities were used to assess starting load. The initial power for CE was

60-150W and was increased in 2 min. intervals by 20-30W. The initial speed for TE was 7–12

km�h-1 (described by a person as a “conversation pace”) at 1% inclination. The pace was raised

by 1 km�h-1 every 2 min. Observer verbally encouraged athletes to keep effort as long as possi-

ble due to assess their endurance most exactly. Achievement of oxygen uptake (VO2) or heart

rate (HR) plateau, or volitional inability to maintain intensity were reasons for test termina-

tion. LA was measured by taking a 20 μL blood sample from a fingertip: directly prior to exer-

cises, after any resistance or pace modification, and 3 min. after termination. Samples were

obtained without an interruption in CE and TE tests. Before a proper sample was obtained, the

first drops were gathered in a swab. HR (not averaged) was recorded at the highest point dur-

ing intervals and used in further analysis [40]. Maximal oxygen uptake (VO2max) was defined

as an averaged maximum oxygen uptake during the 15-s period at the end of the CPET.

Derivation cohort

The rigorous inclusion/exclusion process was applied to narrow the validation group to only

those EAs who achieved maximum exertion during CPET and were free of any possible

VO2max alleviating factors (see Fig 1. Flowchart of the inclusion-exclusion and further groups

classification process).
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6,439 EAs underwent CPET. Participants were eligible for preliminary inclusion if they

had: (1) experience in regular running or cycling training�3 months, (2) age�18 years, (3)

�±3 standard deviations (SD) from mean for all of the testing variables (extreme outliers were

excluded), (4) lack of any acute or chronic medical condition (also musculoskeletal injuries, or

addictions), (5) not taking any medications, (6) not being an active smoker.

Maximum exertion in CPET was defined as fulfilment�6 criteria: (1) RER�1.10, (2) pres-

ent VO2 plateau (growth <100 mL�min-1 in VO2 with more increased running or cycling

intensity), (3) respiratory frequency (fR)�45 breaths�min-1, (4) declared exertion during

CPET�18 in the Borg scale [31], (5) lactate concentration (LA)�8 mmol�L-1, (6) growth in

speed/power�10% of RCP after exceeding the respiratory compensation point (RCP), (7)

peak heart rate (HRpeak)�15 bpm below predicted maximal heart rate (HRmax) [40].

Finally, 5,260 EA met all inclusion criteria. The population was divided between males and

females into four age groups: 18–30; 31–45; 46–60,�61 years, and 4 endurance groups:

HTEA, REA, LTEA, and “transition”. Endurance classification was conducted based on the

speed (km�h-1) or power (W�kg-1) at the RCP calculated independently for each sex. Speed/

power at RCP was a variable-of-choice because it is currently described as a parameter most

closely corresponding to the critical endurance capacity [41,42]. Moreover, the selection of a

variable different from VO2max to the classification of participants in terms of their endurance

capacity, enabled to make group assignments independent of the factor directly validated in

the study. Participants with>+1.5 SD were classified as HTEA (n = 309), <+0.5SD/>–0.5SD

as REA (n = 2,033), <–1.5 SD as LTEA (n = 339). To precisely distinguish endurance sub-

groups, those placed between�+0.5SD/�+1.5SD and between�–0.5SD/�–1.5SD were classi-

fied as “transition” (n = 2.579). Models’ validation was conducted on each of the age and

endurance cohorts independently (except the „transition” group) both for TEVO2max and

CEVO2max.

Selected prediction models

Candidate models were found from previous systematic reviews for CPET testing (up to Feb-

ruary 2019) [43,44] and additional literature search in PubMed, MEDLINE, EMBASE, Scopus,

and Web of Science databases (for a period between March 2019- December 2021 and meta-

analyses) for keywords: Cardiopulmonary exercise testing, Cardiorespiratory fitness, Exercise

testing, VO2max, VO2peak.

Exclusion criteria were: (1) not reporting VO2max parameters, (2) usage of other ergometers

than CE or TE during CPET, (3) consideration of parameters not possible to verify in our sam-

ple (declared physical activity level, time to exhaustion), (4) generating unviable results multi-

ple times (<0 or >100 mL�min-1�kg-1 VO2peak), (5) being derived from pediatric (the oldest

participant <18 years old) or geriatric population (the youngest participant�61 yrs.), (6)

being derived before 01.01.2000, (7) not reporting R2 from internal/external validation, (8)

being derived from group <1000 participants (for the general population) or <200

Fig 1. Flowchart of the inclusion-exclusion and further groups classification process. Age classification is presented

in years. Endurance classification has been performed based on speed/power at respiratory compensation point (RCP)

which is currently described as a variable most closely corresponding to the critical power. Moreover, the selection of a

variable different from VO2max to the classification of participants in terms of their endurance capacity, enable to make

group assignments independent of the factor directly validated in the study. Abbreviations: EA, endurance athlete;

CPET, cardiopulmonary exercise testing; SD, standard deviation; RER, respiratory exchange ratio; VO2, oxygen uptake

(mL�min-1�kg-1); LA, lactate concentration (mmol�L-1); fR, breathing frequency (breaths�min-1); RCP, respiratory

compensation point; HRpeak, peak heart rate during CPET (bpm); HRmax, maximal heart rate during CPET (bpm); F,

female; M, male; HTEA, high-trained endurance athletes; REA, recreational endurance athletes, LTEA, low-trained

endurance athletes.

https://doi.org/10.1371/journal.pone.0280897.g001
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participants (specifically for EA population), (9) methodological quality <7 points according

to ATS/ACCP guidelines [37], (10) usage of other testing technique than breath by breath, (11)

CPET protocol not carried out following the recommended clinical ATS/ACCP guidelines

[45].

Moreover, the Wasserman et al. [22] model was validated in the study due to its well-estab-

lished reputation. Equations from 2 meta-analyses [46,47] were also considered because of

their wide range of applications for EA.

During studies selection, we did not define the criteria for the VO2max measurement pro-

tocol due to the high variability of the currently described methods. Nevertheless, according to

the current literature, different testing protocols were applied for runners and cyclists [48–51].

Similar values of VO2max were observed, which suggests that it is possible to provide an exact

comparison between them.

13 equations from 8 different publications were included in the analysis. Their detailed

characteristics are presented in the supplementary material (S2 File).

Statistical analysis

Baseline statistics were exported into the Excel file (Microsoft Corporation, Washington, USA)

and are presented as mean (±SD and 95% CI) or frequency (percentage) for categorical vari-

ables, and median for continuous variables. Differences between subgroups (all continuous

variables) were analyzed using the ANOVA test-of-variance and post-hoc HSD Tukey test.

There was not any missing data in the whole population. Thus, an entire cohort has been

validated.

External validation was conducted by following the recommendations for the validation

and interpretation of diagnostic prediction models [34]. In summary, we assessed equations

accuracy by comparisons between the originally established formulas and data obtained

directly from CPETs and BC examinations (e.g., VO2max, BMI). Linear model regressing mea-

sured VO2max on pVO2max was generated for each equation. Performance considered as the

proximity of the observed and expected CRF, was evaluated with the usage of the R2, root

mean square error (RMSE). Cutoffs for R2 were: (1) R2<0.3 for none or very weak effect size;

(2) 0.3<R2<0.5 for weak or low effect size; (3) 0.5<R2<0.7 for moderate effect size; (4)

R2>0.7 for high effect size [52]. Additionally, calibration slope (the slope of a linear regression

model that includes the model’s linear predictor as the only covariate parameter estimate

where 1 being ideal; C1), and calibration-in-the-large (mean observed compared to mean pre-

dicted value where 0 being ideal; C2) were calculated.

Ggplot 2 package in RStudio (R Core Team, Vienna, Austria; version 3.6.4), originally writ-

ten Python script (Python Software Foundation, Delaware, USA; version 3.10.1), and STATA

software (StataCorp, College Station, Texas, USA; version 15.1) were used in statistical analy-

sis. The significance borderline was at a two-sided p-value <0.05.

Ethical approval

All parts of the study were approved by the Bioethical Committee-IRB of the Medical Univer-

sity of Warsaw (AKBE/32/2021) and were conducted in line with the Declaration of Helsinki.

Moreover, each EA has to provide their written consent in a separate document.

Results

From a total of 6,439 endurance athletes (EA) who underwent CPET at a tertiary care sports

diagnostic center in Poland, 5,260 EA met the inclusion criteria. Participants’ basic anthropo-

metric characteristics are shown in Table 1. The average age of was 35.04±9.58 yrs. in the male
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population (n = 4,459; 84.76%) and 32.25±8.99 yrs. in the female population (n = 801;

15.24%).

CPET data are shown in the supplementary material (S3 File). For male EA, observed

VO2max was significantly higher for TE (n = 3,330) than for CE (n = 1,129) (54.10±6.93 vs

51.92±8.05 mL�min-1�kg-1; p<0.05). In female athletes, VO2max was similar for TE (n = 671)

and for CE (n = 130) (48.79±6.67 vs 49.05±6.64 mL�min-1�kg-1; (p>0.05). HTEA had signifi-

cantly higher (p<0.05) levels of VO2max, the speed at RCP (SRCP), and the power at RCP

(PRCP). Observed VO2max was significantly lower (p<0.05) in the LTEA subgroup.

Briefly, VO2max differed significantly between the selected equations. The performance of

prediction models is presented in Tables 2 and 3 along with R2, root mean square error

(RMSE), calibration-in-the-large (C1), and calibration slope (C2). Figs 2–5 shows the regres-

sion analysis of observed vs predicted VO2max stratified by age for the whole population,

HTEA, REA, and LTEA, respectively. Subgroups that did not meet the TRIPOD guidelines

[30] to consider their validation results as reliable (i.e., n�100) were additionally marked in

tables and graphs.

Performance calculations for the whole population and each subgroup, with comparison

(mean and SD) between observed and predicted VO2max are presented in the supplementary

material (Table 3a–3d in S4 File). For TE, the lowest non-significant differences (mean and

CI) were for Petek’s equation both in males (mean = –0.11; CI, –0.42, 0.20) and females (mean

= –0.52; CI,–1.20, 0.16). For CE, the lowest non-significant differences (mean and CI) were for

Petek’s equation in the male population (mean = –0.08; CI, –0.68, 0.52). Similarly, for the

female population, the lowest but significant differences were also for Petek’s equation

Table 1. Participants’ basic anthropometric characteristics.

Variable Male

[n = 4459; 84.76%]

Female

[n = 801; 15.24%]

Baseline characteristic

Age (years) 35.04 (9.58)� 32.25 (8.99)

Height (cm) 179.42 (6.60)� 167.19 (6.88)

Weight (kg) 77.23 (10.32)� 60.60 (8.73)

BMI (kg�m-2) 23.95 (2.63)� 21.64 (2.38)

BF (%) 15.68 (4.55)� 22.04 (5.46)

FFM (kg) 64.87 (7.17)� 47.08 (6.36)

Endurance groups characteristic

HTEA (n = 316; 6.08%) 257 (4.89) 59 (1.12)

REA (n = 2009; 38.19%) 1711 (32.52) 298 (5.67)

LTEA (n = 345; 6.56%) 290 (5.51) 55 (1.05)

„transition” (n = 2590; 49.24%) 2201 (41.84) 389 (7.40)

Age groups characteristic

Age 18–30 (n = 1380; 26.24%) 1099 (20.89) 281 (20.89)

Age 31–45 (n = 3310; 62.92%) 2842 (54.03) 458 (8.71)

Age 46–60 (n = 538; 10.23%) 487 (9.26) 51 (0.97)

Age >61 (n = 32; 0.61%) 31 (0.59) 1 (0.02)

Abbreviations: CE, cycle ergometry; TE, treadmill; BMI, body mass index; BF, body fat; FFM, fat-free mass; HTEA,

high-trained endurance athletes; REA, recreational endurance athletes; LTEA, low-trained endurance athletes.

Continuous value is presented as mean (SD), while categorical was showed as numbers (%) when appropriate.

Comparisons between subgroups (p value) were obtained by one-way ANOVA, Student’s t-test, and post-hoc HSD

Tukey test. Significant differences (p<0.05) were marked with [�].

https://doi.org/10.1371/journal.pone.0280897.t001
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Fig 2. Regression analysis (RA) of predicted and observed VO2max for whole population (both males and females

with included „transition” group) stratified by age. 95% confidence intervals are presented with grey color.

Subgroups that did not meet the TRIPOD guidelines to consider their validation results as reliable (i.e n�100) were

marked with [‡]. Abbreviations: VO2max, maximal oxygen uptake. [A] RA for males and females for CE models; [B]

RA for males and females for TE models; [C] RA for males for TE or CE models (Wilson et al. and Kokkinos et al.[1]);

[D] RA for females for TE or CE models (Fitzgerald et al. and Kokkinos et al.[2]); [E] RA for males for TE or CE model

(Kokkinos et al.[3]); [F] RA for females for TE or CE model (Kokkinos et al.[3]).

https://doi.org/10.1371/journal.pone.0280897.g002
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(mean = 2.65; CI, 1.15, 4.15,). For TE, other models significantly overestimated VO2max (Wil-

son’s for males and Fitzgerald’s for females) or underestimated (Wasserman’s, Myers’s, Nevill’s

both allometric (1) and additive (2) formulae for males and Wasserman’s, Myers’s, Nevill’s (1)

and (2) for females). For CE, significant overestimation was observed in Wilson’s and Fitzger-

ald’s models respectively for males and females, and underestimation in Wasserman’s,

Mylius’s, and Kokkinos’s formulae for both males, females, and the whole population.

For HTEA a group size� 100 was only for male runners (n = 188). For TE, significant dif-

ferences between the observed and predicted VO2max were both in males and females for the

HTEA subgroup. The lowest obtained differences on TE were for the Wilson’s for males

(mean = 2.52; CI, 1.50, 3.54) and for the Fitzgerald’s for females (mean = 4.1; CI, 1.92, 6.28).

For CE, there were no significant differences for Wilson’s model (mean = 1.82; CI, –0.32, 3.96)

and Fitzgerald’s model formula (mean = 2.57; CI, –1.38, 6.52), respectively for male and female

EA.

The equation based on the general population explained varied performance, from none or

very weak effect size, up to moderate. For TE, R2 ranged from 0.28 for Nevill’s (1) equation up

to 0.54 for Petek’s equation. In CE, R2 ranged from 0.38 for Petek’s equation up to 0.64 in Kok-

kinos’s equations. In the HTEA cohort (only one with n�100), for males TE, R2 ranged from

0.15 in Wilson’s equation up to 0.44 in Wasserman’s equation. Although, they were poorly cal-

ibrated (for Wasserman’s C1 = 1461.98 mL�min-1).

Discussion

The aim of the current study was to assess the accuracy of common VO2max prediction equa-

tions in a large sample of healthy EA tested under standardized conditions. We hypothesized

that their accuracy may not be adequate to make them a comparable approach for CPET.

The main novelty of this study is a comprehensive comparison of the accuracy of various

formulas and their usefulness for determining VO2max in the athletic population (including

different subpopulations depending on participants’ training level). The analysis of the accu-

racy of prediction equations suggests that more precise models are required to better establish

the VO2max level, which may be crucial for the clinical assessment of EAs.

The main findings are that: (1) the currently available equations show limited accuracy, (2)

it is most recommended to use models derived from populations with the possibly most simi-

lar characteristics to the target group, (3) models derived from active athletic populations

works the most accurately and showed the highest transferability, and (4) a steeper decline in

predicted VO2max for older participants was noted.

Current limitations in model’s transferability

Until now, most frequently underestimation of results of what in younger EA and overestima-

tion in older ones have been observed [21,29]. Malek et al. found that 16 of 18 commonly used

prediction equations were inaccurate when used in an athlete population [29]. Moreover,

there was a lack of equations to predict VO2max developed in large samples of trained partici-

pants, especially elite athletes [21]. In one recent study, Petek et. al. validated previous and

Fig 3. Regression analysis (RA) of predicted and observed VO2max for HTEA stratified by age. 95% confidence intervals are presented

with grey color. Subgroups that did not meet the TRIPOD guidelines to consider their validation results as reliable (i.e n�100) were

marked with [‡]. Abbreviations: VO2max, maximal oxygen uptake. [A] RA for males‡ and females‡ for CE models; [B] RA for males and

females‡ for TE models; [C] RA for males for TE or CE‡ models (Wilson et al. and Kokkinos et al.[1]); [D] RA for females for TE‡ or CE‡

models (Fitzgerald et al. and Kokkinos et al.[2]); [E] RA for males for TE or CE‡ model (Kokkinos et al.[3]); [F] RA for females for TE‡ or

CE‡ model (Kokkinos et al.[3]).

https://doi.org/10.1371/journal.pone.0280897.g003
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developed new VO2max equations for EA, although the sample size was relatively small [21].

Their main finding was that the previously established models, both on general cohorts and

EA, perform poorly when used for EA undergoing CPET for clinical reasons.

Valid VO2max prediction equations are important as they can lead to false-negative or false-

positive results and inadequate recommendations regarding a safe level of physical activity or

the level of advancement of the training plan [8,21]. Furthermore, the normality of the VO2max

values is often a very important step to determine the cause of the exercise limitation [53].

Practical application of the most accurately derived predictive equations is a better distinc-

tion of physiological vs impaired endurance. Moreover, it undoubtedly improves the clinical

usage of VO2max assessment for EA examined with the suspected or confirmed CVD or to pre-

cisely prepare individualized training plans.

One of the reasons for obtaining very heterogeneous predicted results is the discrepancy in

the methodology [21,30]. Potential complications were mainly related to CPET- usage of car-

diology-specific protocols for TE (e.g., Bruce protocol [54]) which are not commonly used in

sports-performance diagnostics [55]. Individual running economy, general fatigue, or nonspe-

cific stress during testing rise the probability of bias [20]. The error could be even up to 40% of

the actual value [28]. Our study population is larger and contains EA from the individual- or

team-sports disciplines. The testing protocol was strictly standardized, and measurements

included advanced parameters influencing performance- LA and BM [55].

Repercussions of using predictive equations with low to moderate accuracy

Consequences of applying prediction models with limited accuracy could be seen in sports

and performance diagnostics, clinical practice, the applicability of particular equations, train-

ing prescription, and follow-up. In sports diagnostics, this can lead to prescribing incorrect,

ineffective training [56]. In sports medicine and cardiology obtaining accurate VO2max values

is especially important for patients with CVDs, given the growing data suggesting the role of

CRF in stratifying the risk in such groups [3,57]. Moreover, there are currently more inaccura-

cies in the estimation of VO2max among patients suffering from CVDs than in healthy individ-

uals. Overestimation is especially noticeable among patients with impaired cardiac output

during exercise. Relying on inaccurate VO2max values may result in a missed diagnosis and

incorrectly prescribed therapy, which does not bring the expected results and poses a health

risk. Among other conditions, of particular importance is heart failure as referred to by Kokki-

nos et al [57]. Furtherly, for such equations, their applicability is limited to narrow populations

with characteristics as close as possible to the group from which they were originally created

(i.e. derivation cohorts) [21].

Specificity of particular subgroups

Outcome of the present study was that the examined prediction equations of VO2max had

limited prediction value in the locomotion (running versus cycling), age, and performance

subgroups of participants. An explanation of this limited prediction value might be due to the

selection of specific predictors (sex, age, and weight) that were not measures of CRF. Among

Fig 4. Regression analysis (RA) of predicted and observed VO2max for REA stratified by age. 95% confidence intervals are presented

with grey color. Subgroups that did not meet the TRIPOD guidelines to consider their validation results as reliable (i.e n�100) were

marked with [‡]. Abbreviations: VO2max, maximal oxygen uptake. [A] RA for males and females‡ for CE models; [B] RA for males and

females‡ for TE models; [C] RA for males for TE or CE models (Wilson et al. and Kokkinos et al.[1]); [D] RA for females for TE‡ or CE‡

models (Fitzgerald et al. and Kokkinos et al.[1]); [E] RA for males for TE or CE model (Kokkinos et al.[3]); [F] RA for females for TE‡ or

CE‡ model (Kokkinos et al.[3]).

https://doi.org/10.1371/journal.pone.0280897.g004
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the selected predictors, the only mechanical workload was a measure of CRF. CRF in EA con-

sisted not only of a health-related but also a sport-related physical fitness parameter; thus, it

would be of great practical importance that predicted VO2max could reflect changes in sports

performance. Furthermore, performance subgroups of participants might differ for body com-

position (i.e. lower body fat percentage in HTEA than in LTEA), which in turn might consist a

bias in the assessment of CRF [58]. Ceaser and Hunter point out that endurance capacity may

also depend on participant ethnicity, so this factor should be considered when deriving new

models [18,58]. It is worth noting that models derived from wide populations or EA groups

showed the highest performance. This is in line with the results observed so far by Petek et al.

and Malek et al. [21,29]. The sex-specific equations (i.e. those provided by Kokkinos et al for

CE) did not show noticeable higher accuracy. The underlying mechanism remains further

investigation as females are presented physiologically with lower VO2max than males [59]. A

steeper decline in predicted values for older EA in VO2max may be justified by maintaining a

higher VO2 with age through regular physical activity. Similar results have already been con-

firmed by Kaminsky et al [59]. EAs observe a lower decline in VO2 with age than their corre-

sponding reference group [59]. The highest inaccuracies have been noted for HTEA and

younger participants. Perhaps, due to their physically higher VO2max which is also supported

by additional endurance training. Thus, those EA placed above normal reference values [59].

As we underlined, there is a need for more advanced prediction models which will consider

additional parameters (like age and physical activity) and fits demanding of HTEA and young

individuals.

Source of errors measured & differences between protocols

The observed R2 ranged from 0.02 (Fitzgerald et al. equation for TE) to 0.65 (Kokkinos et al.

equation for CE). Large discrepancies between particular equations were observed. Briefly,

RMSE support the equation provided by Petek et al. The one for TE represented the lowest

RMSE from all validated formulae (RMSE = 0.48). We stipulate that this finding could result

from similar characteristics of the primary cohort to our validation cohort. As different CPET

results are achieved on CE and TE, the Petek et al. models adjusted for both modalities and

athletic group showed the best performance. It is worth mentioning, that the tested formulae

represented generally lower validity for women. It is well established that female athletes

achieve lower CPET scores compared to male athletes. Although, the underlying mechanism

for the reduced VO2 prediction rate in this sex remains unclear. Moreover, the results between

the models differed significantly (p<0.05), despite validating them on our one population. It is

suggested to consider the most outlying results. More research is needed to refine the effects

and recalibration of the currently available equations. The models derived from broader

cohorts (provided from FRIENDS by Kokkinos et al.) or sports cohorts (provided by Petek

et al.) showed less inaccuracy in both direct comparison of measured and predicted VO2 and

statistical indices (R2, RMSE and calibrations). Thus, we recommended them for estimating

_VO2max in male and female EAs. We would like to note that the equations derived from meta-

analyses, i.e. Figerald and Wilson represented the smallest inaccuracy between directly mea-

sured VO2max and predicted. The salient feature of the meta-analysis equations is that they

Fig 5. Regression analysis (RA) of predicted and observed VO2max for LTEA stratified by age. 95% confidence intervals are presented

with grey color. Subgroups that did not meet the TRIPOD guidelines to consider their validation results as reliable (i.e n�100) were

marked with [‡]. Abbreviations: VO2max, maximal oxygen uptake. [A] RA for males‡ and females‡ for CE models; [B] RA for males and

females‡ for TE models; [C] RA for males for TE or CE‡ models (Wilson et al. and Kokkinos et al.[1]); [D] RA for females for TE‡ or CE‡

models (Fitzgerald et al. and Kokkinos et al.[2]); [E] RA for males for TE or CE‡ model (Kokkinos et al.[3]); [F] RA for females for TE‡ or

CE‡ model (Kokkinos et al.[3]).

https://doi.org/10.1371/journal.pone.0280897.g005
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utilize attainable demographic information for the widest cohorts. This advantage is not feasi-

ble for equations derived from original papers due to practical limitations in recruiting such a

numerous amount of participants. To summarize, models represent wide differences, and

innacuracies were lower when applied to cohorts with comparable profiles.

Directions of future research

We recommend that the formulas used to estimate VO2max should be applied to groups with a

similar profile to the one from which they were originally derived, especially in narrow popula-

tions like LTEA, REA, or HTEA [45]. At the same time, we emphasize that there is a significant

need to create new, more advanced models under unified guidelines and with the incorpo-

ration of PROBAST-AI [60] and TRIPOD checklist [35]. It will facilitate the further selection

of the appropriate equation to apply in EA depending on their level of CRF. In addition, the

need of selecting other predictors, such as oxygen uptake at submaximal exercise intensity, eth-

nicity, or a daily number of steps, should be considered in future studies.

Conclusions

To conclude, we have accomplished an independent external validation of prognostic models

for the prediction of the CRF level, defined as a VO2max. Each included prognostic model

showed only moderate discriminatory ability, but acceptable performance at derivation popu-

lation. Direct VO2max determination by CPET cannot be replaced or interchangeable with pre-

dictive equations for EA based only on their own results. An updated and unified prognostic

formula for clinical and experimental use in EA populations is necessary. Despite no formula

being completely exact, the best performance was noted for males on the CE in Kokkinos

model (R2 = 0.64) and males on the TE in the Wasserman model (R2 = 0.26), whereas for

females on the CE in Kokkinos (R2 = 0.65) and female on the TE in Wasserman (R2 = 0.30)

equations. Those models seem to better predict VO2max in our EA population and may provide

utility as a method-of-choice in assessment tool during sports diagnostics or clinical practice.

The overall lowest model accuracy has been observed for HTEA and EA 18–30 yr. A potential

limitation of the study was the ethnic homogeneity of our group, as the subjects were mainly

Caucasian.
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