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Abstract

Hepatobiliary neuroendocrine neoplasms are rare cancers in humans and dogs. To date, no

large-scale primary hepatobiliary neoplasm omics analyses exist in any species. This limits

the development of diagnostic biomarkers and targeted therapeutics. Neuroendocrine can-

cers are a heterogenous group of neoplasms categorized by their tissue-of-origin. Because

the anatomic niche of neuroendocrine neoplasms shapes tumor phenotype, we sought to

compare the proteomes of 3 canine hepatobiliary neoplasms to normal hepatobiliary tissue

and adrenal glands with the objective of identifying unique protein signatures. Protein was

extracted from formalin-fixed paraffin-embedded samples and submitted for tandem mass

spectroscopy. Thirty-two upregulated and 126 downregulated differentially expressed pro-

teins were identified. Remarkably, 6 (19%) of the upregulated proteins are correlated to

non-hepatobiliary neuroendocrine neoplasia and 16 (50%) are functionally annotated within

the exosome cellular compartment key to neuroendocrine signaling. Twenty-six (21%)

downregulated proteins are enriched in metabolic pathways consistent with alterations in

cancer. These results suggests that characteristic neoplastic protein signatures can be

gleaned from small data sets using a comparative proteomics approach.

Introduction

Neuroendocrine neoplasms (NEN), originally referred to as carcinoids, occur uncommonly in

humans and dogs. Data from the National Cancer Institute’s Surveillance, Epidemiology, and
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Results Program (SEER 18) found that the neuroendocrine tumor incidence was 6.98 per

100,000 cancer patients and that the prevalence of primary hepatobiliary NENs was less than

1% of all neuroendocrine cancers [1–3]. Histologically, differentiated neuroendocrine cells are

characterized by cytoplasmic neurosecretory granules, such as chromogranins or synaptophy-

sin [4]. The International Agency for Research on Cancer—World Health Organization

(IARC-WHO) has recently reclassified NENs to encompass both well-differentiated neuroen-

docrine tumors (NETs) and poorly differentiated neuroendocrine carcinomas (NECs) [5–7].

NETs and NECs are identified morphologically and graded using replicative indices (mitotic

count, Ki-67%) [8]. NETs are graded G1 to G3 and NECs are uniformly G3. Despite these

guidelines, global characterization of these tumors remains challenging. This is partly because

NENs are a heterogeneous group of tumors that arise from anatomically diverse regions

[5,9,10]. Neuroendocrine neoplasms maintain genotypic and phenotypic characteristics of

these niches. Yet, certain genetic mutations, such as MEN1, occur across NEN subtypes and

can correlate with survival outcomes [11,12]. Proteogenomic profiles will be central to NEN

characterization and will ultimately define therapeutic targets.

In dogs, reports of hepatobiliary NENs appear sporadically in the literature [4,13–17]. Two

descriptive case series encompassing 23 cases have illustrated the clinical features, immunohis-

tochemical markers, and ultrastructural traits of canine gallbladder and liver NENs [4,13].

Despite these summaries, the rarity of hepatobiliary NENs in dogs limits a complete character-

ization these tumors and their clinical progression. Reported outcomes are variable, but dogs

with gallbladder NEN have longer survival times than dogs with hepatic NEN. Additional

diagnostic biomarkers are needed to predict survival and generate informed treatment proto-

cols. To accomplish this objective, we utilized formalin-fixed paraffin embedded samples of 3

canine hepatobiliary neuroendocrine tumors to define the differential protein expression com-

pared to normal liver and adrenal glands from unrelated, adult dogs. The rationale for com-

parison of hepatobiliary NENs to normal tissue was that neoplastic transformation would

promote differential protein expression distinct from the hepatobiliary tissue of origin and

non-transformed neuroendocrine tissue.

Materials and methods

Ethics statement

We did not seek prospective approval because this study did not meet the requirements for

IACUC at our institution. This study was retroactively exempted by IACUC Committee with

Animal Welfare Assurance #A3612-01, License #72–3, and Multiple Assurance #M1128.

Patients and samples

Formalin-fixed, paraffin-embedded (FFPE) tissues from 2 canine gallbladder NENs and 1 pri-

mary hepatic NEN were collected. The patients with gallbladder NENs were a 5-year-old, male

neutered Boston terrier and a 7-year-old, male neutered Doberman pinscher who underwent

cholecystectomies for tumor removal. Liver biopsies were obtained from both patients. The

Boston terrier was asymptomatic with a normal complete blood count and serum biochemis-

try. The Doberman pinscher presented for hematemesis after dietary indiscretion and had a

mild elevation in GGT and cholesterol with moderate to marked elevations in ALP and ALT,

respectively. No extrahepatobiliary masses were identified on abdominal ultrasound or during

surgery. The patient with the liver NEN was a 12-year-old, male neutered Rat terrier with a his-

tory of lethargy, polyuria, polydipsia, and diarrhea. He had a normal complete blood count

and moderate elevations of ALP and ALT on serum biochemistry. The tissue from this tumor

was obtained by surgical biopsy. The diffuse nature of the mass precluded complete resection;
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however, gross extrahepatic metastases were not identified on abdominal CT nor at explor-

atory laparotomy. Liver tissue and adrenal glands from three normal adult canines were

obtained from the Louisiana Animal Disease Diagnostic Laboratory histology repository.

Hematoxylin and eosin (H&E) stains were performed on all tissues. Sections were reviewed by

3 anatomic pathologists (ES, DP, RB).

Immunohistochemistry and immunofluorescence

The NENs were additionally immunohistochemically stained with chromogranin A (Dako

A0430), synaptophysin (Abcam ab8049), neuron specific enolase (Dako M0873), Cytokeratin

7, and Ki-67. Four-micron thick sections of FFPE tissues were mounted on positively charged

Superfrost1 Plus slides (VWR, Radnor PA) and subjected to IHC using the automated

BOND-MAX and the Polymer Refine Detection kit (Leica Biosystems, Buffalo Grove, IL). Fol-

lowing automated deparaffinization, heat-induced epitope retrieval (HIER) was performed

using a ready-to-use citrate-based buffer (pH 6.0; Leica Biosystems) at 100˚C for 20 minutes

before incubation for all antibodies except synaptophysin. Sections were incubated with the

primary antibodies for 30 minutes at room temperature, followed by either a polymer-labeled

goat anti-rabbit or anti-mouse IgG coupled with horseradish peroxidase (Leica Biosystems)

for 20 min at room temperature. Three, 3’-diaminobenzidine tetrahydrochloride (DAB) was

used as the chromogen (10 minutes), and counterstaining was performed with hematoxylin.

Slides were mounted with a permanent mounting medium (Micromount1, Leica Biosys-

tems). Gastrin immunostaining was performed on the gallbladder NEN by the Animal Health

Diagnostic Center at Cornell University College of Veterinary Medicine. Immunofluorescent

labeling was performed using anti-galectin-1 antibody (Genetex 89349–128) and anti-transge-

lin (Genetex 113561). Five μm sections were mounted on charged slides. Samples were depar-

affinized in xylene and serially rehydrated using a descending gradient of ethanol-water

solutions. Slides were washed in phosphate buffered saline with 0.1 % Triton X-100. After cit-

rate buffered antigen retrieval, tissues were blocked with 5 % normal goat serum at room tem-

perature for one hour. Tissues were incubated with primary antibody in 1 % in normal goat

serum at room temperature for 2 hours, washed, and incubated with secondary antibody (Bio-

tium CF594 F(ab’) or Invitrogen A3271 Alexa Fluor Plus 488) for 1 hour at room temperature.

Hoechst 33,342 (H42) nuclear stain (1ug/mL, Thermo Scientific) was applied for 20 minutes at

room temperature. After dye incubation, slides were washed for 5 minutes with PBS. Slides

were cover slipped using the Biotium EverBrite Hardset Mounting Medium (Fremont, CA)

and allowed to dry for a minimum of 30 minutes prior to microscopic analysis. All slides were

reviewed by 3 veterinary anatomic pathologists (ES, DP, RB). Ki-67 proliferation index value

was determined by counting 500 cells in defined regional hot-spots.

Quantitative proteomics

A 5 micron scroll of each FFPE tissue was submitted to The IDeA National Resource for

Quantitative Proteomics (http://idearesourceproteomics.org/) for processing. Briefly, FFPE

tissue scrolls were deparaffinized by solubilization in xylene. Extracted proteins were then

reduced, alkylated, and digested using filter-aided sample preparation with sequencing grade

modified porcine trypsin (Promega) [18]. Tryptic peptides were labeled using tandem mass

tag isobaric labeling reagents (Thermo) following the manufacturer’s instructions and com-

bined into one 10-plex sample group. The labeled peptide multiplex was separated into 46 frac-

tions on a 100 x 1.0 mm Acquity BEH C18 column (Waters) using an UltiMate 3000 UHPLC

system (Thermo) with a 50 min gradient from 99:1 to 60:40 buffer A:B (Buffer A is 0.1% formic

acid, 0.5% acetonitrile and Buffer B is 0.1% formic acid, 99.9% acetonitrile) ratio under basic
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pH (pH 10) conditions, and then consolidated into 18 super-fractions. Each super-fraction

was then further separated by reverse phase XSelect CSH C18 2.5 um resin (Waters) on an in-

line 150 x 0.075 mm column using an UltiMate 3000 RSLCnano system (Thermo). Peptides

were eluted using a 60 min gradient from 98:2 to 60:40 buffer A:B ratio. Eluted peptides were

ionized by electrospray (2.2 kV) followed by mass spectrometric analysis on an Orbitrap

Eclipse Tribrid mass spectrometer (Thermo) using multi-notch MS3 parameters. MS data

were acquired using the FTMS analyzer in top-speed profile mode at a resolution of 120,000

over a range of 375 to 1500 m/z. Following CID activation with normalized collision energy of

35.0, MS/MS data were acquired using the ion trap analyzer in centroid mode and normal

mass range. Using synchronous precursor selection, up to 10 MS/MS precursors were selected

for HCD activation with normalized collision energy of 65.0, followed by acquisition of MS3

reporter ion data using the FTMS analyzer in profile mode at a resolution of 50,000 over a

range of 100–500 m/z. The mass spectrometry proteomics data have been deposited to the Pro-

teomeXchange Consortium via the PRIDE partner repository with the dataset identifier

PXD028822 and 10.6019/PXD028822 [19].

Data analysis

Tandem mass spectrometric data were searched with MaxQuant (Max Planc Institute; version

1.6.17.0) against the UniprotKB/SwissProt Canis familiaris protein database (March 2020) for

protein identification. Proteins were normalized using normalization in the ProteiNorm app

[20]. Proteins with significant abundance differences when comparing NEN versus normal

adrenal and NEN versus normal liver tissues were identified by performing an empirical Bayes

moderated t-test using the BioConductor package Limma v 3.36.2 and Benjamini–Hochberg

FDR correction [7]. Unless otherwise stated, an FDR cutoff of 0.05 was applied. To identify dif-

ferentially abundant tumor proteins compared to adrenal glands and liver tissue, we filtered

protein expression by fold change (> 2). Protein or peptide clustering was performed with

Cluster 3.0 (http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm) using hierarchical

clustering and Euclidian distance as the metric [8]. Functional enrichments of gene ontology

(GO) categories from Canis familiaris were performed using ShinyGO v.06 using a p-value

cutoff of 0.05 (http://bioinformatics.sdstate.edu/go/) [14,21]. The Database for Annotation,

Visualization, and Integrated Discovery v6.8 (DAVID, https://david.ncifcrf.gov/) was used to

identify the enriched biological processes, cellular component, molecular function, and KEGG

pathways [22,23]. Protein-protein interaction (PPI) networks were generated using the online

Search Tool for the Retrieval of Interacting Genes (STRING; https://string-db.org/) and Cytos-

cape StringApp (http://apps.cytoscape.org/apps/stringapp) [24]. Differentially expressed upre-

gulated proteins were evaluated for expression in neuroendocrine tumors including carcinoids

using the Human Protein Atlas (https://www.proteinatlas.org/) [25].

Results

Histology and immunohistochemistry

The 3 neuroendocrine neoplasms had a similar histologic appearance on H&E staining; neo-

plastic polygonal cells forming dense sheets, nests, and packets, on a fibrovascular stroma (Figs

1 and 2A). Both gallbladder NENs had evidence of vascular invasion on gallbladder histology,

but metastatic neoplasia was not identified in the liver on histology nor grossly in other organs.

Consistent with the diagnosis of neuroendocrine neoplasia, all NENs displayed immunoreac-

tivity to chromogranin A, neuron specific enolase, and synaptophysin (Fig 2B–2D). Addition-

ally, gallbladder NENs were not immunoreactive to the biliary epithelial marker cytokeratin 7

and, in contrast to previous studies, gallbladder NENs were not immunoreactive to gastrin
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(Fig 2E, not shown) [13]. In all NENs, the Ki67 index was less than 3% (gallbladder: 0.04%,

0.05%; liver: 0.23%; Fig 2F). Based on the human WHO classification system, all neuroendo-

crine neoplasms in this study met the criteria for NETs G1. Survival time of the dogs with gall-

bladder NENs exceeds 730 days. After cholecystectomy, the Doberman Pinscher underwent

no further therapy, and the Boston terrier was treated with 5 doses of carboplatin. The Rat ter-

rier with hepatic NEN died acutely 3 days after surgery. The cause of death was undetermined

but was suspected to be a vascular event. Although tumor grade has been correlated to out-

come in humans, in this small canine cohort meaningful correlation of Ki67 index to survival

provides limited information.

Proteomic profile in NENs versus normal tissue

In total, 4,533 proteins were quantified. We identified 158 differentially expressed proteins,

comprised of 32 upregulated proteins and 126 downregulated differentially expressed proteins

(Fig 3). Hierarchical clustering of significantly expressed proteins in the three NENs identified

Fig 1. Neuroendocrine neoplasm sections submitted for quantitative proteomics. H&E stained histologic sections

of the 2 gallbladder neuroendocrine neoplasms (left panel, middle panel) and the hepatic neuroendocrine neoplasm

(right panel). Scrolls of these sections were submitted for proteomic analysis.

https://doi.org/10.1371/journal.pone.0280928.g001

Fig 2. Neuroendocrine neoplasm H&E histology and immunohistochemical staining. H&E stained gallbladder

neuroendocrine neoplasm (A). Neoplastic cells exhibited positive immunoreactivity for chromogranin A (B), neuron

specific enolase (C), and synaptophysin (D); cytokeratin 7 staining was negative (E) and few neoplastic cells were Ki-67

positive (F). Scale Bar = 50μm.

https://doi.org/10.1371/journal.pone.0280928.g002
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a similar proteomic profile (Fig 4A). Principle component analysis (PCA) of the NEN, normal

liver and adrenal tissue proteomes demonstrates tissue specific clustering (Fig 4B).

Protein-protein interaction networks and pathway analyses of

differentially expressed proteins

STRING and the Cytoscape StringApp were employed to construct relationships among dif-

ferentially expressed proteins. Among the upregulated proteins, only 3 edges were identified

linking the upregulated hub proteins LYN, GNAI2, GNG10 (high confidence cutoff 0.7, Fig 5).

The Src-family tyrosine kinase, LYN, is a proto oncogene that interacts with proto oncogene

inhibitory guanine nucleotide (G) binding protein alpha 2 (GNAI2) involved in the hormonal

regulation of adenylate cyclase and G protein subunit gamma 10 required for GTPase activity

Fig 3. Venn diagram of overlapping upregulated and downregulated proteins. There were 32 upregulated (A) and

126 downregulated (B), overlapping differentially expressed proteins. when the NEN proteomes were compared to

normal adrenal (red text) and liver tissue (green text). Up/downregulated proteins were statistically significant if fold

change> 2, p-value< 0.05.

https://doi.org/10.1371/journal.pone.0280928.g003

Fig 4. Heat map of protein expression and principal component analysis. Heat map of protein abundance patterns

in differentially expressed proteins. Normal adrenal tissue is in the first row and column. Normal liver tissue is in the

third row and column. The neuroendocrine neoplasms (NENs) are in the middle row and column. The darker red

color indicates protein expression correlation (A). Up/downregulated by fold change>2 & FDR p-value<0.05.

Principal component analysis (PCA) of normalized gene counts segregated by tissue (B).

https://doi.org/10.1371/journal.pone.0280928.g004
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and amplified in melanoma (GNG10) [26–29]. The small number of upregulated proteins lim-

ited enrichment of significantly associated biological pathways in ShinyGO using the Canis
familiaris data set, but when all available gene sets were evaluated, the upregulated proteins

clustered with hemostasis, protein complex binding, neurogenic signaling pathways, and tro-

phoblast migration. In DAVID gene ontology cellular component analysis, 16 upregulated

proteins (VWA1, PFKP, DES, DOCK10, CD9, CAPN1, GNAI2, ARHGDIB, S100A4, MXRA5,

AK1, GNG10, SERPINB1, LYN, SERPINI1, CLU) were localized to exosomes, a critical neuro-

endocrine signaling mechanism (GO:0070062, P-value 6.5E-7). A search of The Human Pro-

tein Atlas, identified 20 upregulated differentially expressed proteins associated with cancer

Fig 5. All differentially expressed upregulated proteins with STRING network in canine hepatobiliary NEN. Log-

ratios of protein abundance between cancer and normal tissues were mapped using a white-purple gradient. STRING

network confidence cutoff is 0.7. Image generated in Cytoscape StringApp.

https://doi.org/10.1371/journal.pone.0280928.g005
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(AK1, CLU, CKB, CNN1, DES, FNDC1, GNAI2, GNG10, LGALS, LYN, P3H4, PTK7, RPM3,

S100A4, SYNM, SYNPO2, TAGLN, SERPIN1, SERPINB1, VWA1) and 6 that are specifically

upregulated in non-hepatobiliary NENs (CKB, CLU, LGALS1, LYN, SERPINB1, TAGLN)

[25,30–36]. Of these, transgelin (TAGLN) and galectin-1 (LGALS1) protein expression were

validated in canine NENs by immunohistochemistry (S1 and S2 Figs).

Fifty-six edges were identified connecting downregulated protein hubs and statistical analy-

sis suggested a biological connection (average node degree: 1.15, average local clustering coeffi-

cient: 0.247, PPI enrichment P-value <1.0E-16, Fig 6). Using ShinyGO, hierarchical clustering

of the functional GO biological processes of differentially expressed downregulated proteins

identified involvement in mitochondrial metabolic pathways (P-value cutoff 0.05, Canis famil-
iaris). Using DAVID, 26 downregulated (DHCR24, HMGCL, ALG2, ATP6, ATPf, COASY,

AK2, AK4, ALDH4A1, COX4I1, DBT, ECHS1, FH, HADHA, HADHB, HSD17B6, KYAT3,

LPIN3, MMAB, MECR, MAOB, NNT, SDSL, SDHB, SUCLG1, XDH) proteins were function-

ally annotated to metabolic pathway and 25 were localized to the mitochondrion (DECR1,

ATP6, ABHD11, ACAD9, ACSF2, DIABLO, ECHS1, FDX1L, FH, HADHB, HSDL2, KYAT3,

LACTB, LDHD, MMAB, MECR, PDF, SCO1 homolog, RMND1, SDSL, SUOX, TXN2,

TIMMDC1, TMEM126A, ZADH2) (KEGG_PATHWAY, P-value 2.8E-10; GO: 0005739, P-

value 2.3E-12). Eight downregulated hub proteins (ACAA2, DECR1, ECHS1, HADH,

HADHA, HSDL2, J9NZC6 (uncharacterized thiolase protein family member), ACSF2,

MECR) were enriched within the Mitochondrial Fatty Acid Beta-Oxidation reactome pathway

(STRING, CFA-8978868, strength 1.75, false discovery rate 6.95E-08).

Discussion

Hepatobiliary NENs are uncommonly diagnosed in dogs [4,13]. As advanced imaging modali-

ties are more widely used in veterinary patients, the relative incidence of neuroendocrine neo-

plasms is likely to increase as it has in humans [1]. The biological behavior of canine

hepatobiliary NENs is incompletely characterized. Variable survival outcomes have been

reported in previous case series may be dependent on morphology, mitotic rate, stage, hor-

mone secretory profile, tumor niche or yet undetermined factors [13]. Application of a stan-

dardized classification system based on histology, replicative indices, and molecular

expression profiles will standardize phenotyping of canine neuroendocrine neoplasms and

enable correlation to patient survival rates and target therapy. To better characterize these rare

tumors, we sought to compare differential protein expression between hepatobiliary neo-

plasms and tissue from normal canine liver and adrenal glands, with the latter representative

of a heterogeneous population of neuroendocrine cell types. Few primary neuroendocrine

cells exist in the hepatobiliary system [16]. NEN may result from neuroendocrine differentia-

tion due to chronic inflammatory disease or neoplasia, but the molecular mechanisms remain

unclear. Because NENs reportedly maintain protein expression patterns akin to their tissue of

origin, both a neuroendocrine organ, the adrenal gland, and the liver were selected as control

tissues.

The proteomic strategy resulted in identification 32 upregulated and 126 downregulated

differentially expressed proteins in the neuroendocrine neoplasms. Although the upregulated

protein pool was relatively small, protein species including AK1, CLU, CKB, CNN1, DES,

FNDC1, GNAI2, GNG10, LGALS, LYN, P3H4, PTK7, RPM3, S100A4, SYNM, SYNPO2,

TAGLN, SERPIN1, SERPINB1, and VWA1 have been previously associated with neoplastic

proteomes in humans [30,31,37–43]. Identification of 6 proteins that have previously been

identified in human NENs (CKB, CLU, LGALS1, LYN, SERPINB1, TAGLN) serves as a proof-

of-principle that the methodology was valid. Among these proteins, galectin-1 (LGALS1) may
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Fig 6. STRING network of differentially expressed downregulated proteins canine hepatobiliary NEN. Log-ratios

of protein abundance between cancer and normal tissues were mapped using a white-purple gradient. STRING

network confidence cutoff is 0.7. Nodes connected by pink edges have interactions that have been experimentally

validated. Image generated in Cytoscape StringApp.

https://doi.org/10.1371/journal.pone.0280928.g006
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presents a potential therapeutic target [31,44]. Anti-galectin pharmaceuticals have shown

promise against cervical cancer, prostate cancer, lung and pancreatic neuroendocrine neopla-

sia in human medicine [30,31,45,46]. Pharmacokinetic studies are warranted to determine

whether galectin-1 antagonists have appropriate safety profiles in canine patients.

Fifty percent of the differentially expressed upregulated proteins were localized to the exo-

somal cellular location. This is consistent with the transition to a neuroendocrine phenotype.

Neuroendocrine cells use secretory vesicles containing neurotransmitters and biogenic amines

for paracrine signaling [47]. However, these proteins were differentially expressed compared

to a normal neuroendocrine organ, the adrenal gland. Therefore, this upregulation in expres-

sion may be represent a shift towards intercellular tumor signaling [48].

Enrichment analysis of the differentially expressed downregulated proteins clustered almost

exclusively within metabolic pathways. The shift to glycolytic respiration in cancer is well char-

acterized, and is supported by the apparent reduction in protein expression related to fatty

acid beta oxidation in this data set. Malignant metabolic reprogramming has proven more

complex that originally believed; therefore, these results prompt a more in-depth preclinical

evaluation of the metabolic status of the hepatobiliary neuroendocrine tumor microenviron-

ment to determine whether this feature can be therapeutically exploited [49].

One weakness of this work is its small scale. Collaborative efforts to achieve higher patient

numbers are requisite. Yet, even this limited proteomic snapshot of 3 canine hepatobiliary

neuroendocrine tumors highlights how a comparative approach using unbiased quantitative

protein expression patterns can glean actionable data. The second major weakness of this

work is that the tissue samples, normal and neoplastic, are an amalgam of cell types. An addi-

tional limitation of this work is the use of FFPE samples for proteome analysis. While fresh fro-

zen samples are the gold standard for comparative proteomics, these are not routinely

collected from veterinary patients. The primary flaws associated with formalin fixation include

formaldehyde induced protein cross-linking and amino acid modifications, which leads to dif-

ficulties with protein profiling. However, recent improvements in mass spectrometry work-

flows have enabled FFPE proteome maps comparable to those derived from fresh frozen

tissue. This study demonstrates that archived FFPE canine tumor samples can be a rich

resource for biomarker discovery. Future work will focus on identifying the small, poorly char-

acterized pool of normal neuroendocrine cells within the hepatobiliary niche and overcoming

the technical challenges of single cell molecular characterization. Investigation of neoplastic

proteome expression is not novel, yet cross-species comparisons of rare cancers may provide

valuable insight into neoplastic homeostasis and hone molecular drug targets [50,51].

Conclusions

In summary, using a comparative proteomic strategy, we have identified 32 upregulated and

126 downregulated differentially expressed proteins in canine hepatobiliary NENs. These data

demonstrate that characteristic tumor protein signatures can be determined from the abun-

dant archive of FFPE tissues and that promising biomarker candidates can be derived from a

small number of samples.

Supporting information

S1 Fig. Transgelin immunofluorescent staining of canine gallbladder neuroendocrine neo-

plasm. Nuclei are labeled by Hoescht stain (blue, left panel). Gall bladder neuroendocrine neo-

plasm demonstrates cytoplasmic positive transgelin (green, middle panel and right panel)

immunofluorescence compared to negative control (normal canine liver), wherein only
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endothelium expresses transgelin. Scale bars: 200 micrometers.

(TIF)

S2 Fig. Galectin-1 immunofluorescent staining. Nuclei are labeled by Hoescht stain (blue,

left panels). Gall bladder neuroendocrine neoplasm demonstrates positive galectin-1 (red,

middle and right top panels) immunofluorescence compared to negative control (normal

canine kidney). Scale bars: 10 micrometers.

(TIF)
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