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Iterated cross validation method 
for prediction of survival in diffuse 
large B‑cell lymphoma for small 
size dataset
Chin‑Chuan Chang 1,2,3, Chien‑Hua Chen 1,4, Jer‑Guang Hsieh 1 & Jyh‑Horng Jeng 5*

Efforts have been made to improve the risk stratification model for patients with diffuse large B-cell 
lymphoma (DLBCL). This study aimed to evaluate the disease prognosis using machine learning 
models with iterated cross validation (CV) method. A total of 122 patients with pathologically 
confirmed DLBCL and receiving rituximab-containing chemotherapy were enrolled. Contributions 
of clinical, laboratory, and metabolic imaging parameters from fluorine-18 fluorodeoxyglucose 
(FDG) positron emission tomography/computed tomography (PET/CT) scans to the prognosis were 
evaluated using five regression models, namely logistic regression, random forest, support vector 
classifier (SVC), deep neural network (DNN), and fuzzy neural network models. Binary classification 
predictions for 3-year progression free survival (PFS) and 3-year overall survival (OS) were conducted. 
The 10-iterated fivefold CV with shuffling process was conducted to predict the capability of learning 
machines. The median PFS and OS were 41.0 and 43.6 months, respectively. Two indicators were 
found to be independent predictors for prognosis: international prognostic index and total metabolic 
tumor volume (MTVsum) from FDG PET/CT. For PFS, SVC and DNN (both with accuracy 71%) have 
the best predictive results, of which outperformed other algorithms. For OS, the DNN has the 
best predictive result (accuracy 76%). Using clinical and metabolic parameters as input variables, 
the machine learning methods with iterated CV method add the predictive values for PFS and OS 
evaluation in DLBCL patients.

Diffuse large B-cell lymphoma (DLBCL) is the most common type of lymphoma and accounts for approximately 
one-third of non-Hodgkin’s lymphoma1. The age-standardized rate (per 100,000) for male and female in Taiwan 
was only 3.44 and 2.54, respectively1. The causes of DLBCL are not well understood. The DLBCL can arise in 
any part of the body and is often an aggressive type of malignancy. Although it usually arises from the normal B 
lymphocytes, it can also represent a malignant transformation from other types of B-cell lymphoma. Typically, 
the first sign of this disease is the rapidly growing tissue or mass sometimes associated with the B symptoms 
(e.g., fever, weight loss, and night sweats). The diagnosis of DLBCL is made pathologically of the biopsied tissue. 
There are several subtypes of DLBCL identified which differ in their clinical presentations, symptoms, aggres-
siveness, morphology, immunophenotypes, gene expression, and the prognosis2. Because of its aggressiveness 
with complex outcomes due to the heterogeneous entity, complete pretreatment evaluation including prognostic 
classification is important for the disease management.

In the past 20 years, the international prognostic index (IPI) has been one of the most useful tools to evaluate 
the prognosis in patients with aggressive NHL including DLBCL. In the evaluation of IPI, one point is assigned 
for each of the following risk factors: (1) age over 60 years, (2) Stage III or IV disease, (3) elevated level of serum 
lactate dehydrogenase (LDH), (4) Eastern Cooperative Oncology Group (ECOG) performance status of 2–4, 
and (5) more than 1 extra-nodal site involvement of disease (i.e., site other than lymph nodes, spleen, thymus, 
and the pharyngeal lymphatic ring). The 5-year overall survival (OS) for low risk (IPI: 0–1), low-intermediate 
risk (IPI: 2), high-intermediate risk (IPI: 3), and high risk (IPI: 4–5) is 73%, 51%, 43%, and 26%, respectively3.
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Since the addition of rituximab (an immunoglobulin G1 monoclonal antibody against B-lymphocyte antigen 
CD20) into the first-line chemotherapy (i.e., cyclophosphamide, doxorubicine, vincristine and prednisone) 
(R-CHOP), the 5-year survival rate of DLBCL has been improved4. However, patients with the same IPI score may 
still suffer from different outcomes either due to early relapse or refractory disease. Great efforts have been made 
to improve the evaluation models for risk stratification5–8, and more reliable prognostic predictors are pressingly 
needed to differentiate patients who are more likely to have poorer outcome9. Further information gained from 
different imaging modalities to build a more reliable prediction model for clinical practice is helpful and valuable.

As stated above, pretreatment staging is crucial. The fluorine-18 fluorodeoxyglucose (FDG), a glucose analog, 
can be used to measure the degree of glucose utilization. The uptake degree of FDG detected by positron emis-
sion tomography/computed tomography (PET/CT) represents the tissue metabolism on the whole-body and 
functional images. The FDG PET/CT has been widely used in pretreatment staging of disease and assessment 
of treatment response for patients diagnosed with DLBCL10–12. It has been reported in the literature that there 
are a variety of quantitative parameters deriving from image which have potential utility to predict prognosis 
or treatment outcome. The standardized uptake value (SUV) is the most commonly used parameter in FDG 
PET/CT and has been proved to be a significant prognostic predictor in DLBCL13,14. The percentage change in 
maximal SUV (SUVmax) between initial and delayed phase images is defined as the retention index (RI) which 
is found to have significant prognostic potential to predict overall survival (OS) in patient with DLBCL15. Beyond 
SUV and RI, the total metabolic tumor volume (MTVsum) has also been shown to be a predictor for survival 
outcome in many previous studies16–19. It was also reported that an elevated MTVsum, independent from IPI, is 
a predictor for shorter progression-free survival (PFS) and OS in patients with DLBCL20.

Learning is the process of behavior improvement over time via discovering new information. If the referred 
process is achieved by machine rather than human brain, it is called machine learning. The experience acquir-
ing from the existing examples helps to find the optimal solution for coming problems in the machine learning 
process. Due to rapid accumulation of larger and larger raw data, the traditional methods cannot handle well 
and the big data concept emergences over time with the development of information technologies. Machine 
learning in which algorithms were used by the computers with a certain order when performing operations is a 
subset of artificial intelligence. Based on the training data, machine learning algorithms can search for optimal 
connection weights of a prespecified neural network model in order to make decisions and predictions. Some 
machine learning models, in which sophisticated mechanism such as high-order and non-linear interactions 
between predictors and the responses were used, have shown ability to improve overall clinical prediction in 
various conditions21–23.

Nonetheless, due to the heterogenous entity of DLBCL, the prognostic parameters of DLBCL, the total effects 
of these parameters, and individual weight of each parameter remain to be an issue deserving further research. 
Previous studies have reported that machine learning algorithms, using either molecular profiling data or com-
bined clinical and genetic data, helped to do disease classification, diagnosis, and prognosis prediction24–29. 
However, there are few reports, in which using modern machine learning models and incorporating FDG PET/
CT metabolic imaging parameters, to perform the outcome prediction in DLBCL.

Therefore, this study aims to develop the logistic and neural network models to predict DLBCL clinical 
outcome based on PFS and OS. Both clinical and metabolic parameters from FDG PET/CT scans were used as 
predictors. The performance of the models is also compared.

Materials and methods
Patient population.  This is a retrospective study in which medical records of malignant lymphoma 
patients diagnosed at the Kaohsiung Medical University Hospital were reviewed. The Institutional Review Board 
of Kaohsiung Medical University Hospital approved the reviewing process of the clinical data (KMUHIRB-
E(I)-20180275). Patient consent was waived because all the clinical data were retrospectively collected via the 
medical chart reviewing, and the waiver for subject informed consent was also approved by the Institutional 
Review Board of Kaohsiung Medical University Hospital. The inclusion criteria were recent diagnosis and his-
tologically proven DLBCL. The patients had to be 18 years old or older without known previous or concurrent 
malignant disease. All patients underwent a complete pre-treatment work-up, including whole-body FDG PET/
CT scan, bone marrow biopsy, clinical history, physical examination, and standard laboratory tests. All methods 
were carried out in accordance with relevant guidelines and regulations. The definite diagnosis was made by 
experienced pathologists based on the World Health Organization classification of lymphoid neoplasms in 2016. 
Only the “diffuse large B-cell lymphoma, NOS” type were enrolled. Patients’ clinical stage patient was deter-
mined with the Ann Arbor staging system and was achieved by the multi-disciplinary consensus by experts in 
various professional fields including radiology, nuclear medicine, pathology, and hematology.

Treatment and clinical course.  All patients received 4–6 cycles of rituximab-containing chemotherapy, 
that is, rituximab combined with cyclophosphamide, doxorubicin, vincristine, and prednisolone (R-CHOP), 
as an initial therapy. Involved field radiation therapy was administered for patients with initial clinical bulky 
disease or residual tumor presentation after completion of the chemotherapy. Patients experiencing refractory 
or relapsed disease were treated with salvage chemotherapy or received autologous stem cell transplantation 
(ASCT) with high-dose chemotherapy if clinically indicated. The therapeutic regimens and plans followed the 
National Comprehensive Cancer Network (NCCN) guidelines for B-cell lymphoma according to the year when 
patient was diagnosed, and the detail was decided with consensus in the multi-disciplinarily combined confer-
ence of lymphoma in accordance with the patient’s clinical condition. The PFS was defined as the time from 
diagnosis to disease relapse, progression or death related to lymphoma. The OS was defined as the time from 
diagnosis to death from any cause.
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Dataset.  We collected available information (including clinical, laboratory, and metabolic imaging param-
eters from FDG PET/CT scans) during the pre-treatment workup as the input variables for the machine learn-
ing models. The output is a binary label regarding patient clinical outcome at the 3-year timepoint. That is, the 
output for PFS indicates whether the patient relapse or progresses after 3 years from the date of diagnosis; and 
for OS, whether the patient remained alive after 3 years from the date of diagnosis. This is a binary classification 
problem.

Machine learning methodology.  In this study, we used the following machine learning techniques to 
create prediction models: (1) logistic regression (LR), (2) random forest (RF), (3) support vector classifier (SVC), 
(4) deep neural network (DNN), and (5) fuzzy neural network (FNN).

First, we fitted an LR model using scikit-learn package (version 0.23.2) for Python (3.7.9). After processing, 
the prediction outcomes as well as the confusion matrix were computed. Second, the RF model, which is an 
ensemble of decision trees with bootstrapped training samples for tree induction, was adopted. In this study, 
the parameter setting for number of trees was 100. Third, SVC is a part of the support vector machine (SVM), 
which is one of the most robust prediction models. The SVC algorithm formally creates a hyperplane in which 
the data can be separated into two classes with the maximal soft margin. The SVC has been used in a broad 
range of classification and pattern recognition problems ranging from speech, text recognition, protein function 
prediction, and handwriting analysis30. So far, however, it has been rarely used in the field of cancer prediction 
and prognosis. Here, scikit-learn package (0.23.2) was carried to conduct the random forest model and the SVC 
with regularization parameter C = 1.0 and radial basis function kernel. Fourth, DNN model is a learning machine 
composed of multiple processing layers including many intermediate hidden layers. Each hidden unit in the 
hidden layer composes of the non-linear activation functions that are transformed from linear combination of 
predictors31. In the current study, four-layer feedforward model with adaptive moment estimation optimizer, 
rectified linear unit (Relu) activation function for hidden layers, and sigmoid activation function for output layer 
conducting with Keras package (2.3.1) was used. The model of DNN with architecture of 2-6-4-1 was structured 
and a total of 51 parameters were developed. Lastly, an FNN is intrinsically a fuzzy system represented as a neural 
network. Suppose the fuzzy rules in the rule base are given in the form as shown below, where x is the input, y 
is the output, and A, B are fuzzy sets:

If x1 is A1j and x2 is A2j and … and xn is Anj,
Then y1 is Bj1 and y2 is Bj2 and … and yp is Bjp.

In this fuzzy system, we specifically use the singleton fuzzifier, product inference engine, center-average 
defuzzifier, and Gaussian membership functions for the fuzzy sets. Then the fuzzy system can be configured as a 
neural network, called an FNN. We implemented the FNN using Tensorflow (1.15.4) as a neural network layer 
with a total of 64 parameters. The source code for defining the FNN layer is provided in the supplementary file.

For better and reliable estimation of the predicting capability of various learning machines, we used 10-iter-
ated fivefold cross validation (CV) with shuffling process. Fivefold CV was conducted and the whole process 
was then repeated 10 times, resulting in 50 testing results. Then the mean and standard deviation on the 50 
testing errors was calculated to evaluate the predicting power of each model. According to the 50 testing results, 
the confusion matrix results were subsequently computed. The F1 values were also calculated to compare the 
prediction ability.

Statistical analysis.  MedCalc Statistical Software version 20.014 (MedCalc Software Ltd, Ostend, Belgium; 
https://​www.​medca​lc.​org; 2021) was used to perform Kaplan–Meier survival analysis, Cox proportional hazard 
model, and area under the curve (AUC) index for receiver operator characteristic (ROC). A p < 0.05 was consid-
ered statistically significant.

Results
A total of 122 patients, 57 (33.3%) female and 65 (66.6%) males, were included in the study, with the mean age 
61.3 ± 17.0 years (Table 1). Fifty-three (43.4%) patients presented as extranodal involvement at diagnosis, and 
23 (18.9%) patients presented with pathologically confirmed bone marrow involvement of tumor cell. Accord-
ing to the Ann Arbor staging system, 16 (13.1%) cases were at stage I, 32 (26.2%) at stage II, 29 (23.8%) at stage 
III, and 45 (36.9%) at stage IV. As to IPI scores, patients with low risk (score 0–1), low-intermediate risk (score 
2), high-intermediate risk (score 3), and high risk (score 4–5) were 39 (32.0%), 38 (31.1%), 22 (18.0%), and 23 
(18.9%), respectively.

Pre-treatment laboratory data were collected, including hemogram [white blood cell count (WBC), hemo-
globin (Hb), and platelet count], liver function test [glutamate pyruvate transaminase (GPT), glutamate oxaloac-
etate transaminase (GOT)], albumin, creatinine, β2-microglobulin, and LDH. The metabolic parameters from 
FDG PET/CT imaging were also obtained. The mean value of maximal SUV of tumor (SUVt) and maximal SUV 
of biopsied site (SUVb) was 16.12 ± 8.25 and 14.36 ± 8.77 respectively. The mean values of MTVsum and total 
lesion glycolysis (TLG) were 664.48 ± 968.67 cm3 and 4428.79 ± 7024.62 cm3 respectively.

The survival analysis revealed the clinical outcome shows in Fig. 1. The mean PFS was 41.0 months, with the 
1-year PFS 62.7%, 2-year PFS 57.2%, and 3-year PFS 51.0%, respectively. The mean OS was 43.6 months, with 
1-year OS 72.1%, 3-year OS 58.4%, and 5-year OS 50.0%, respectively.

https://www.medcalc.org
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Evaluation of PFS.  For PFS using univariate analysis, 4 variables (i.e., disease stage, IPI, LDH level, and 
MTVsum) revealed to be significantly correlated with the patients’ PFS. The multivariate analysis further dis-
closed that IPI and MTVsum were independent prognostic factors for PFS (Table 2). The cutoff values for LDH 
were dichotomized using normal reference. Using ROC analysis to make the dichotomization of MTVsum, the 
optimal cutoff value for PFS was 165.40 cm3 (AUC 0.78, Youden index 0.3670, p < 0.0001). The Kaplan–Meier 
survival analysis revealed patient with MTVsum ≥ 165.40 had a significantly poor PFS (log-rank p < 0.0001, 
Fig. 2A).

For subsequent machine learning applications, we used IPI and MTVsum as the input predictors. The IPI is 
the international prognostic index clinically used for lymphoma, which is an integer from 0 to 5. The MTVsum 
is the total metabolic tumor volumes of whole-body lesions, which is the summation of whole-body tumor vol-
umes when they showed abnormal FDG uptake. The MTVsum is a positive real number. The output is a binary 
label regarding patient clinical outcome (progress or not for PFS, alive or not for OS) at the 3-year timepoint.

The dataset is partitioned into training set and testing set. We use the training set to train the model. Then, 
we use the testing set to evaluate the performance of the model. The evaluation is based on commonly used 
statistical indicators given below:

Table 1.   Baseline characteristics at diagnosis of the 122 patients with diffuse large B-cell lymphoma. SD 
standard deviation, IPI international prognostic index, Hb hemoglobin, WBC white blood cell, GOT glutamate 
oxaloacetate transaminase, GPT glutamate pyruvate transaminase, LDH lactate dehydrogenase, SUVt 
standardized uptake value of tumor, SUVb maximal SUV of biopsied site, MTV metabolic tumor volume, TLG 
total lesion glycolysis.

Variable Value (%)

Age (y)

 Mean ± SD 61.3 ± 17.0

 Range 18–94

Sex

 Male 65 (53.3)

 Female 57 (46.7)

Primary lesions

 Lymph nodes 69 (56.6)

 Extranodal lesions 53 (43.4)

Bone marrow involvement

 Yes 23 (18.9)

 No 99 (81.1)

Ann Arbor stage

 I 16 (13.1)

 II 32 (26.2)

 III 29 (23.8)

 IV 45 (36.9)

IPI

 0–1 39 (32.0)

 2 38 (31.1)

 3 22 (18.0)

 4–5 23 (18.9)

Hemoglobin (g/dL) 11.68 ± 1.92

WBC (× 103 µL) 6.94 ± 3.10

Platelet (× 103 µL) 231.7 ± 105.2

Albumin (g/dL) 3.56 ± 0.59

Creatinine (mg/dL) 0.93 ± 0.71

GOT (IU/L) 34.67 ± 24.24

GPT (IU/L) 26.39 ± 17.28

LDH (IU/L) 381.75 ± 528.10

β2-microglobulin (μg/dL) 316.80 ± 280.20

Maximal SUVt 16.12 ± 8.25

SUVb 14.36 ± 8.77

MTV (cm3) 664.48 ± 968.67

TLG (cm3) 4428.79 ± 7024.62
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Figure 1.   The Kaplan—Meier survival curve for the evaluation of PFS and OS in 122 patients with DLBCL. The 
mean PFS was 41.0 months, with the 1-year PFS 62.7%, 2-year PFS 57.2%, and 3-year PFS 51.0%, respectively. 
The mean OS was 43.6 months, with 1-year OS 72.1%, 3-year OS 58.4%, and 5-year OS 50.0%, respectively. The 
number at risk at each time point was also listed.

Table 2.   Analysis of Cox proportional hazards models for potential prognostic factors affecting PFS. HR 
hazard ratio, CI confidence interval, IPI international prognostic index, LDH lactate dehydrogenase, MTV 
metabolic tumor volume. *Statistically significant.

Univariate analysis Multivariate analysis

HR (95% CI) p HR (95% CI) p

Stage 0.0002*

 I 1

 II 1.59 (0.43–5.91) 0.4818

 III 4.08 (1.19–14.04) 0.0255*

 IV 5.53 (1.69–18.11) 0.0048*

IPI 0.0001* 1.41 (1.10–1.83) 0.0089*

 Low (0–1) 1

 Low-intermediate (2) 1.43 (0.67–3.06) 0.3553

 High-intermediate (3) 3.01 (1.39–6.53) 0.0053*

 High (4–5) 5.12 (2.45–10.72) < 0.0001*

LDH (≥ vs. < 192 IU/L)) 2.84 (1.59–5.06) 0.0002*

MTVsum (≥ vs. < 165.40 cm3) 3.54 (1.90–6.56) < 0.0001* 2.00 (1.02–3.91) 0.0435*
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where PPV: positive predictive value; NPV: negative predictive value, where TP (true positive), FP (false positive), 
FN (false negative), and TN (true negative) are the 4 entries of confusion matrix of the testing results.

For fivefold CV, the whole dataset is randomly divided into 5 disjoint sets. In each iteration of the fivefold 
CV, one set is specified as the testing data and the rest are training set. After the training process using training 
data, the pre-specified metric or performance index (e.g., accuracy) is computed on the testing data. This train-
ing/testing process is performed for 5 times producing 5 testing results. The whole process is repeated 10 times 
constituting the so called 10-iterated fivefold CV and 50 testing results of the statistical indicators are obtained. 
Finally, we calculate the means and standard deviations of the 50 testing results serving as the performance of 
the model.

Using IPI and MTVsum as input predictors, the machine learning algorithms used namely LR, RF, SVC, 
DNN and FNN, had an accuracy of 0.66 ± 0.10, 0.69 ± 0.14, 0.71 ± 0.14, 0.71 ± 0.10, and 0.67 ± 0.08 respectively. 
The specificity was 0.74 ± 0.04, 0.76 ± 0.12, 0.84 ± 0.12, 0.77 ± 0.11, and 0.79 ± 0.14 respectively. The AUC index 
for ROC of these predictive models were 0.66 ± 0.10, 0.70 ± 0.13, 0.71 ± 0.13, 0.69 ± 0.09, 0.66 ± 0.10, respectively. 
Among these five models, SVC (0.71 ± 0.14) and DNN (0.71 ± 0.1) had the highest prediction accuracy and are 
statistically significant in comparison with the LR (SVC vs. LR, p = 0.0425; DNN vs. LR, p = 0.0140) and FNN 
(DNN vs. FNN, p = 0.0295) models. No statistical significance toward RF was noted (p = 0.4131). The results of 
the algorithms used are summarized in Table 3.

Evaluation of OS.  When it comes to the OS, the univariate analysis revealed 5 variables (i.e., disease stage, 
IPI, LDH, albumin level, and MTVsum) were significantly correlated with the patients’ OS. Further multivariate 
analysis disclosed that IPI and MTVsum were independent prognostic factors for OS (Table 4). The cutoff values 
for albumin and LDH were dichotomized using normal reference. Using ROC analysis to make the dichotomiza-
tion of MTVsum, the optimal cutoff value for OS was 190.19 cm3 (AUC 0.73, Youden index 0.4027, p < 0.0001). 
The Kaplan–Meier survival analysis revealed patient with MTVsum ≥ 190.19 had a significantly poor OS (log-
rank p < 0.0001, Fig. 2B).

Figure 2.   The Kaplan–Meier survival curve of the patients with DLBCL according to the MTVsum. (A) for the 
evaluation of PFS, patients with optimal cutoff value (MTVsum ≥ 165.40 cm3) had a poorer PFS (p < 0.0001); 
(B) for the evaluation of OS, patients with optimal cutoff value (MTVsum ≥ 190.19 cm3) had a poorer OS 
(p < 0.0001). The number at risk at each time point was also listed.
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Using IPI and MTVsum as input predictors for the machine learning algorithms, the predictive accuracy 
showed 0.73 ± 0.05 for LR, 0.72 ± 0.12 for RF, 0.75 ± 0.13 for SVC, 0.76 ± 0.10 for DNN, and 0.75 ± 0.09 for FNN 
respectively (Table 5). The specificity was 0.83 ± 0.10, 0.83 ± 0.14, 0.86 ± 0.11, 0.84 ± 0.10, and 0.84 ± 0.11 respec-
tively. The AUC index for ROC of these predictive models were 0.72 ± 0.04, 0.70 ± 0.11, 0.72 ± 0.14, 0.72 ± 0.09, 
0.71 ± 0.10, respectively. The DNN model has the highest accuracy (0.76 ± 0.10) for the prediction of patient OS; 
however, no statistical significance was noted when compared with the other 4 models.

Discussion
Clinically, the PET/CT scan using FDG as functional tracer has been broadly used in the management of onco-
logic patients for several years. It has been reported that FDG PET/CT plays clinical roles in diagnosis making, 
disease staging, therapeutic monitoring, and outcome prediction in patients with lymphoma10,32–34. Although the 

Table 3.   Prediction performances of PFS in different learning machines. LR logistic regression, RF random 
forest, SVC support vector classifier, DNN deep neural network, FNN fuzzy neural network, PPV positive 
predictive value, NPV negative predictive, AUC​ area under curve.

LR RF SVC DNN FNN

Accuracy 0.66 ± 0.10 0.69 ± 0.14 0.71 ± 0.14 0.71 ± 0.10 0.67 ± 0.08

Sensitivity 0.58 ± 0.22 0.65 ± 0.19 0.58 ± 0.24 0.60 ± 0.18 0.55 ± 0.16

Specificity 0.74 ± 0.04 0.76 ± 0.12 0.84 ± 0.12 0.77 ± 0.11 0.79 ± 0.14

PPV 0.63 ± 0.13 0.69 ± 0.15 0.75 ± 0.20 0.70 ± 0.13 0.66 ± 0.13

NPV 0.69 ± 0.12 0.71 ± 0.19 0.71 ± 0.14 0.70 ± 0.13 0.67 ± 0.12

F1 score 0.59 ± 0.18 0.65 ± 0.14 0.62 ± 0.22 0.62 ± 0.15 0.58 ± 0.12

AUC​ 0.66 ± 0.10 0.70 ± 0.13 0.71 ± 0.13 0.69 ± 0.09 0.66 ± 0.10

Table 4.   Analysis of Cox proportional hazards models for potential prognostic factors affecting OS. HR 
hazard ratio, CI confidence interval, IPI international prognostic index, LDH lactate dehydrogenase, MTV 
metabolic tumor volume. *Statistically significant.

Univariate analysis Multivariate analysis

HR (95% CI) p HR (95% CI) p

Stage 0.0002*

 I 1

 II 1.17 (0.30–4.54) 0.8165

 III 3.79 (1.10–13.02) 0.0343*

 IV 4.97 (1.50–16.45) 0.0086*

IPI < 0.0001* 2.01 (1.51–2.68) < 0.0001*

 Low (0–1) 1

 Low-intermediate (2) 3.21 (1.16–8.94) 0.0253*

 High-intermediate (3) 6.59 (2.34–18.54) 0.0004*

 High (4–5) 14.3 (5.32–38.36) < 0.0001*

LDH (≥ vs. < 192 IU/L)) 3.37 (1.76–6.46) 0.0001*

Albumin (< vs. ≥ 3.5 g/dL) 2.66 (1.54–4.61) 0.0005*

MTVsum (≥ vs. < 190.19 cm3) 4.14 (2.12–8.07) < 0.0001* 2.17 (1.06–4.43) 0.0335*

Table 5.   Prediction performances of OS in different learning machines. LR logistic regression, RF random 
forest, SVC support vector classifier, DNN deep neural network, FNN fuzzy neural network, PPV positive 
predictive value, NPV negative predictive, AUC​ area under curve.

LR RF SVC DNN FNN

Accuracy 0.73 ± 0.05 0.72 ± 0.12 0.75 ± 0.13 0.76 ± 0.10 0.75 ± 0.09

Sensitivity 0.60 ± 0.06 0.58 ± 0.14 0.57 ± 0.19 0.59 ± 0.19 0.58 ± 0.18

Specificity 0.83 ± 0.10 0.83 ± 0.14 0.86 ± 0.11 0.84 ± 0.10 0.84 ± 0.11

PPV 0.71 ± 0.16 0.72 ± 0.22 0.72 ± 0.18 0.75 ± 0.12 0.71 ± 0.20

NPV 0.75 ± 0.09 0.74 ± 0.12 0.75 ± 0.15 0.75 ± 0.12 0.75 ± 0.09

F1 score 0.64 ± 0.04 0.62 ± 0.14 0.63 ± 0.18 0.66 ± 0.14 0.63 ± 0.19

AUC​ 0.72 ± 0.04 0.70 ± 0.11 0.72 ± 0.14 0.72 ± 0.09 0.71 ± 0.10
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maximal SUV of the primary tumor has been widely demonstrated to be of prognostic values13,14, maximal SUV 
barely represents the degree of FDG uptake without presenting the volumetric concept. The volumetric analysis 
of MTV, which provides clinicians more information than maximal SUV, has brought increasing evidence of 
clinical value, especially in predicting the patient survival in several types of lymphoma35–38.

In DLBCL, there were also several reports mentioned the prognostic value of MTV. In stage II–III DLBCL 
patients39 and in patients with bone marrow involvement40, Song et al.41 concluded MTV was superior to Ann 
Arbor stage in predicting patient survival. Similar results by Sasanelli et al. disclosed that pre-treatment MTV-
sum is an independent predictor for clinical outcome in patients with all staging. Song et al.42 also reported that 
the MTV level is a factor to predict survival in primary gastrointestinal tract DLBCL independently. The MTV 
also helped to select patients with increased therapy response43, define a poor prognosis group and improve the 
predictive ability18 when it combined molecular characteristics or early PET/CT response.

The IPI has been used to predict prognosis in DLBCL treated with doxorubicin-containing regimens over 
the last 2–3 decades. This score has been validated in the rituximab era as revised IPI (R-IPI)44. In the current 
study, we also collected R-IPI as the clinical predictive parameter. When using the ROC analysis, however, the 
R-IPI had an AUC value inferior to that calculated by IPI, both in PFS and OS analysis. So, it was IPI rather than 
R-IPI used for further prediction in the machine learning models. More recently, classifications based on cells of 
origin and molecular characteristics allow the identifications of poor prognosis in different subtypes of patients.

As a subspecialty of artificial intelligence, machine learning denotes the development of algorithms obtaining 
parameters and models optimally representing the available data. There are two parts in the learning process, 
(1) estimating the unknown parameters from a known data set in a system, and (2) predicting new outputs of 
the system using the weights of these parameters. Nowadays, the amount of information to be interpreted and 
examined when predicting the malignant disease prognosis has been increasing rapidly. The evidence-based 
medicine is based on randomized controlled trials in which large patient populations and clinical data is handled. 
In the future, the clinical trials can be better conducted with machine learning approaches, and thus new find-
ings can be obtained using the available data more easily. The machine learning-based clinical decision support 
systems, in recent years, have been emerging in dealing with certain clinical situations21,22,45,46. It is believed 
that machine learning methods become an alternative means for handling complex and large data sets and for 
model generation47.

The literature review disclosed some studies evaluating patient survival in DLBCL using machine learning 
models. Shipp et al. reported the successful prediction of patient OS via supervised machine learning algorithms 
dealing with oligonucleotide microarray gene-expression data29. Another paper used the hybrid machine learn-
ing approach, more specifically, both clinical and genomic date to create a single classifier to predict patient 
outcomes in DLBCL27. Ando et al.25 conducted the FNN model and 4 genes transcriptional profiling data to 
predict lymphoma survival, yielding an accuracy of 73.4% in comparison with the 68.5% accuracy using the Cox 
model and 17 genes. Another article by Ando et al.26 reported the FNN model as a powerful tool for extracting 
significant biological markers affecting prognosis in DLBCL. Biccler et al.48 collected patients from the Swed-
ish and Danish cohorts and developed a new prognostic model based on machine learning approaches which 
outperformed known prognostic predictors for patients with DLBCL.

In the similar study published in 2021, Pan et al.49 established a tumor microenvironment (TME) related 
prognostic signature for DLBCL patients. When combining with IPI components, it is a promising prognostic 
model not only to help clarifying immune responses in the DLBCL microenvironment but also to indicate new 
clinical applications for immune therapy and individualized therapy in patients with DLBCL. In the current 
study, we incorporated both clinical (i.e., IPI) and the metabolic image parameter from FDG PET/CT scans (i.e., 
MTVsum) as the prognostic predictors. Additionally, both 3-year PFS and OS evaluations for 122 patients with 
DLBCL were performed using 5 different learning machines. For PFS, SVC and DNN had the highest survival 
estimation with a prediction accuracy of 71%. For OS, the DNN model has the highest accuracy for the predic-
tion estimation (76%), and the FNN and SVC models have accuracy of 75%. The results are similar with that 
reported by Ando et al.25.

Although the current study was dealing with a relatively small patient population, we tried to develop 5 
machine learning models with iterated CV method to predict clinical outcomes in patients with DLBCL. The 
machine learning methods may add the values for the survival prediction. It allowed clinicians to pay more 
attention to the follow-up and therapeutic strategies if high-risk patients were early identified. In the future, we 
hope that the modern predictive modeling approaches can be applied rather than barely using clinically avail-
able dichotomized variables or risk scores to predict patient survival. Further studies dealing with prospective 
design, larger patient population, and more specific histological subtypes based on different molecular or genetic 
presentations, may be conducted. Moreover, the prognostic modeling can be grounded on a combination of 
clinical, pathological, molecular, and metabolic imaging information.

Conclusion
In the current study using machine learning algorithms with iterated CV method in patients with DLBCL, the 
best results for PFS were obtained with SVC and DNN techniques which outperform LR, RF, and FNN methods. 
For OS evaluation, the best results were obtained with DNN technique outperforming FNN, SVC, LR, and RF 
methods.

Data availability
The datasets generated and/or analyzed during the current study are not publicly available due to further studies 
are ongoing, but are available from the corresponding author on reasonable request.
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