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Abstract

Over the course of mammalian evolution, the ability to store energy likely conferred a survival
advantage when food became scarce. A long-term increase in energy storage results from an
imbalance between energy intake and energy expenditure, two tightly regulated parameters that
generally balance out to maintain a fairly stable body weight. Understanding the molecular
determinants of this feat likely holds the key to new therapeutic development to manage obesity
and associated metabolic dysfunctions. Time-restricted feeding (TRF), a dietary intervention that
limits feeding to the active phase, can prevent and treat obesity and metabolic dysfunction in
rodents fed a high-fat diet - likely by exerting effects on energetic balance. Even when body
weight is lower in mice on active-phase TRF, food intake is generally isocaloric as compared

to ad libitum fed controls. This discrepancy between body weight and energy intake led to

the hypothesis that energy expenditure is increased during TRF. However, at present, there is
no consensus in the literature as to how TRF affects energy expenditure and energy balance

as a whole, and the mechanisms behind metabolic adaptation under TRF are unknown. This
review examines our current understanding of energy balance on TRF in rodents and provides a
framework for future studies to evaluate the energetics of TRF and its molecular determinants.
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This figure summarizes the current literature on energy balance under different feeding regimens
with each tile of the figure independently representing a unique feeding intervention. The “teeter-
totter” In each tile, represents the whole body energy balance; Energy Intake (EI) is represented on
the left as food pellets, and Energy Expenditure (EE) is represented on the right side of each scale
as a flame. Higher levels of El or EE are represented as being heavier and tilting the scale in their
respective direction. The ensuing effects on body weight are shown on the right side of each tile.
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1. Introduction

Body weight is determined by the long-term energetic balance between energy intake and
expenditure. Whole-body energy balance is tightly controlled by a host of neuroendocrine
signals [1-3]. While highly regulated, energy intake and expenditure are influenced by both
internal and external factors including size of adipose tissue depots, recent changes in weight
or activity, and dietary or environmental cues regarding the safety and palatability of the
food available [1, 2, 4]. The hypothalamus is the main regulator of feeding behavior and
energy balance and contains both the suprachiasmatic nucleus (SCN), the central pacemaker
of the circadian timing system, and multiple centers of feeding regulation [5]. The close
proximity of the SCN to neural circuits regulating behavior, coupled with the roughly
24-hour rhythmic patterns observed in feeding, activity patterns, and body temperature,
point to circadian regulation of energy balance [6].

Evidence from randomized controlled trials in humans suggests that eating out-of-sync
with endogenous circadian rhythms is associated with poor cardiometabolic health [7-9].
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In addition, studies in free-living humans show that caloric intake is often spread across

the day, extending eating time to fall within the rest phase [10, 11]. In the gold standard
rodent model of diet-induced obesity, mice are provided with ad /ibitum access to high-fat
diet (HFD) and have been found to consume a higher percentage of calories during the

light phase than mice fed a standard chow [12-14]. This increased proportion of caloric
consumption during the rest phase plays a role in the pathogenesis of weight gain and
metabolic disease as numerous studies in rodents show that restricting HFD feeding to

the dark/active phase - a paradigm called time-restricted feeding (TRF) - leads to reduced
body weight and better metabolic health when compared to animals with ad /ibitum access
to the same HFD (Table 1) [13, 15-22]. In addition to preventing weight gain, switching
from ad /ibitum HFD to dark-phase HFD TRF led to an initial weight loss and prevented
further weight gain on a HFD [16], suggesting overall that aligning timing of feeding to
circadian rhythms may protect against poor metabolic outcomes. However, the energetics
and molecular mechanisms underlying the effects of TRF are incompletely understood. In
this review, we aim to discuss the current literature on energy balance under TRF. Our
discussion is limited to rodent studies with a TRF duration of at least 4 hours. Human
literature on TRF/TRE (time-restricted eating) has been thoroughly reviewed elsewhere [23,
24]. The molecular connection between clock and metabolic regulators is also out of the
scope of this review and is discussed in other comprehensive reviews on the subject [25-28].

1.1 Weight defense and common weight loss treatments:

Obesity affects roughly one in three Americans and raises the risks for many chronic
diseases including multiple types of cancers, cardiovascular disease, and metabolic
syndrome, in turn, contributing greatly to the public health burden [2, 4, 29]. Despite its
prevalence, successful treatments for obesity and the often-associated metabolic dysfunction
are lacking. Thus, investigations into the mechanisms allowing weight gain to occur and the
development of new therapeutic strategies to prevent or reverse obesity are needed and stand
to benefit a large proportion of the population.

Dietary and behavioral interventions, such as calorie restriction and exercise programs,

are often the first line of treatment for obesity and metabolic syndrome. Yet, in addition

to weight regain following the period of caloric restriction, development of disordered
eating symptoms has been reported following unmonitored calorie restriction [30-32].
Pharmacotherapy has, in the past, relied on centrally acting appetite suppressants, that
induce modest weight loss of roughly 5% that is often reversed following cessation of
treatment [30, 33]. Newer anti-diabetic therapies, including glucagon like peptide 1 (GLP-1)
receptor agonists and sodium-glucose cotransporter-2 (SGLT2) inhibitors induce significant
weight loss [34-36], but gastrointestinal side effects and weight regain after stopping
treatment are major concerns with these therapies [34, 36—-39]. Roux-en-Y gastric bypass
(RYGB) is considered the gold standard for inducing sustained weight loss [40-45], but
this surgery is not without risk of mortality, surgical complications, and lifelong nutritional
deficiencies [45-48]. Strikingly, whether weight loss is achieved through behavioral,
pharmacologic, or even some surgical interventions, weight regain is the norm due in large
part to systemic physiologic mechanisms that oppose changes in weight [3, 49, 50].
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This opposition to changes in body weight is sometimes referred to as “defense of body
weight” or “body weight set-point” and has been observed in human and animal models.
Body weight is a manifestation of a multitude of complex processes, and its “set-point,”

or “settling-point,” is influenced by a host of internal and external factors including age,
genetics, and diet, so that the absolute numerical value of the set-point may change
throughout a lifetime [51-53]. Adjustments in food intake and appetite, energy expenditure,
or a combination of both that resist weight loss have long been observed in response

to changes in a previously stable body weight. These responses underlie the difficulty

often faced when trying to lose weight or maintain a reduced body weight. Over the past
century, seminal studies have expanded our understanding of energy balance and defense of
body weight. A key 1945 study conducted at the University of Minnesota investigated the
response to 50% caloric restriction in WW!II1 conscientious objectors. The subjects reported
feeling extremely cold and fatigued, mood swings, low libido, and preoccupation with food
suggesting reduced energy expenditure and increased drive to find food factors that which
encourage a return to the pre-starvation weight [54]. A subsequent phase of this study
allowed the men ad /ibitum food intake where they ate up to 11,000 kilocalories per day and
experienced extreme hyperphagia which persisted until the original body fat percentage was
reached [55]. Since then, a number of studies have shown that humans, regardless of obesity
status, resist weight loss through adaptations in energy intake and energy expenditure and
that alterations in energy expenditure persist long after initial weight loss efforts [56-59].

TRF has been shown to prevent weight gain, treat obesity, and curtail metabolic dysfunction
in rodent models [13, 14, 16, 60]. These beneficial effects have been seen even without
reductions in caloric intake, making it a promising intervention to overcome body weight
defense mechanisms [13, 60]. Yet, there is no consensus on how TRF affects energy balance
and expenditure- due in part to technical constraints as well as limitations of experimental
designs. This review aims to address the current literature on energy balance during TRF,
and to provide a framework for future studies to better quantify and evaluate energy balance
on TRF. Understanding the effects of TRF on energy balance and the mechanisms that
underlie its ability to attenuate metabolic dysfunction on a HFD will move us closer to
discovering new treatments and preventive therapies for obesity and metabolic dysfunction.

1.2 Circadian Rhythms

The earth’s rotation creates a roughly 24-hour light-dark cycle that influences most if not

all lifeforms on the surface of the planet. We humans and other diurnal animals, align

our work and school schedules (active times) to the time when the sun’s natural light is
present. Conversely, nocturnal animals, such as mice, are active at night and rest during the
light phase. In addition to influencing our behavior and sleep wake cycles, the light-dark
rhythms have been internalized to anticipate and coordinate the timing of a host of biological
processes.

Many biologic processes and pathways have rhythmic oscillations in their activity that occur
over a roughly 24 hour long period; these oscillations are known as circadian rhythms [25,
61]. The term circadian refers to a time period of roughly 24 hours- coming from the Latin
word “cfrca” meaning about, and “diem” meaning day [24, 62]. Circadian rhythmicity has

Obesity (Silver Spring). Author manuscript; available in PMC 2024 February 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Gallop et al.

Page 5

been observed in numerous physiologic functions including sleep-wake cycles, metabolism,
and hormonal release. This rhythmicity is governed by a core set of genes, known as “clock
genes” that act as transcriptional and translational activators and repressors [24, 25].

In mammals, clock genes are engaged in a circadian rhythms generating feedback loop
whereby Bmalland Clock are the activating arm and Per, Cry are part of the inhibitory
arm [25, 61, 62], Clock genes activity in the suprachiasmatic nucleus (SCN), a small,
hypothalamic region, acts as a pacemaker and master regulator of whole body circadian
rhythms. The SCN is entrained to light and dark cycles via retinal inputs thus aligning

the clock genes’ expression with the light-dark cycles. Interestingly, a clock mechanism is
present in most cells of an organisms allowing for circadian rhythms in the activity of most
biological processes [25].

Synchronizing and coordinating the activity of different processes has likely conferred

a benefit to the organism by preventing the overlap of antagonistic processes [25]. For
example, humans feed during the day and fast during their rest period suggesting that the
metabolic pathways that are active during the dark and light phases should be different-
with the day favoring storage of energy and the night favoring breakdown and use of energy
supplies. As the rhythms of feeding and fasting are likely predictable and occur following

a circadian rhythm the metabolic pathways allowing for storage versus fuel usage can be
upregulated and downregulated based on when the predicted feeding and fasting periods are
likely to occur and prevent activation of opposing pathways [25, 61].

1.3 What is time-restricted feeding?

Time-restricted feeding is an intervention that restricts food intake to certain periods of

the day. In animal/rodent models, TRF was initially used as a tool to study the underlying
circuitry of food anticipatory behavior— a bout of activity that precedes the scheduled
provision of food when animals are maintained on calorie restriction and fed during the
inactive phase (in most cases). The ability of food to function as an external cue for the
regulation of daily activity rhythms, referred to as a Zeitgeber (‘time giver’ in German),
sparked further investigations into food timing as a universal Zeitgeber for the biological
circadian clock. Thus, early studies of TRF in rodent models tested whether the diurnal
oscillatory pattern of expression of “clock genes” that regulate circadian rhythms, could be
altered by off-cycle feeding. Because rodents are nocturnal, out of phase feeding occurs
when mice are fed during the light-phase. In the early 2000s, key work showed that food
could, in fact, be used as a Zeitgeber to entrain peripheral expression of clock genes
especially in the liver [63—65] but not in the SCN, the hypothalamic pacemaker and master
regulator of whole body circadian rhythms [61, 63-65].

A molecular link between circadian regulation and metabolic function was uncovered
through untargeted transcriptomics studies in the liver that showed that the expression of
many genes involved in metabolism and energy utilization naturally oscillate throughout the
day [66]. This relationship between clock and metabolic homeostasis was further confirmed
by the metabolic disturbances observed in mouse models lacking master clock genes.
Specifically, Clock and Bmall KO and CryZ and Cry2double KO mice (cry2™'=; cryz")
were reported to have impaired gluconeogenesis [67] or glucose intolerance [68, 69]. In
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terms of energy balance, cryZ~; cry2”'~ mice do not exhibit the normal bimodal rhythms
in activity and respiratory exchange ratio (RER) that are typically observed in wild-type
mice [70]. However, these rhythms can be restored under TRF [70], suggesting that timed
feeding can be used to introduce a cyclic rhythm of whole body metabolic activity even in
the absence of a functional circadian oscillator [14, 70].

Evidence that oscillations of clock and metabolic genes in the periphery were affected

by TRF launched the investigations into the metabolic effects of TRF. Early studies in
rodents revealed that the timing of food intake affects weight gain trajectories. Restricting
high-fat diet access to the dark phase (active phase TRF), the time when mice normally

eat, prevented weight gain and accrual of fat mass as compared to ad /ibitum high-fat

fed controls (Table 1) [15, 71-73]. Disruption of normal circadian rhythms, either through
forced work or constant light, has also been observed to lead to weight gain and increased fat
mass in the absence of increased food intake, but can be prevented by active-phase TRF diet
[71, 73].

2. Energy balance under active phase TRF on HFD

2.1 Body weight, and food intake:

In rodents, dark phase TRF often leads to reduced body weight or attenuated weight gain
on a HFD in addition to a number of other metabolic benefits including reduced glucose
intolerance as well as lowered serum and liver lipid levels [23, 74]. The mechanisms
mediating resistance to weight gain on TRF are currently unclear. While caloric intake is a
major regulator of body weight, the majority of TRF studies in the dark phase do not report
reduced caloric intake as a concurrent finding to reduced body weight (Table 1) [13-15, 17,
19, 60, 75-80].

It is important to note that while the majority of studies report weight loss or prevention

of weight gain on HFD, Chaix et al., revealed that body weight effects may be sex specific
[60]. While both young and aged males weigh less on dark phase TRF than their ad /ib fed
counterparts, body weight divergence is not present in female mice. However, sex specific
effects on body weight, body composition, and metabolism between C57BL/6 male and
female mice on HFD are not unique to TRF interventions. Female versus male mice have
been shown to be more resistant to weight gain and insulin resistance development under
short-term HFD feeding likely due to protective effects of estrogen [81]. Future studies will
clarify whether BW differences and other metabolic benefits can be observed under longer
TRF interventions and their interplay with females’ reproductive age, estrogens, and insulin
levels. Additionally, a number of other studies do not find reduced body weight on dark
phase TRF [76, 82—84]. However, short length of intervention rats versus mice, and diet
composition could account for the differing results (Table 1) as diets of differing fat content
have been shown to affect food intake and body weight [85, 86].

Overall, male mice on HFD TRF interventions weigh less than their ad /ib fed counterparts
(Table 1). Although caloric intake is influenced by a host of factors including animal
behavior (grinding or playing with the food), seasonal variations in intake, investigator
techniques and biases, noises, odors, and social isolation, age, and diet ingredients (e.g. type
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of fat used for diet composition) [75, 87-91], the agreement of multiple studies outlined
above suggests that reduced caloric intake does not explain the reduced body weight seen in
dark phase TRF animals.

Another factor that could contribute to differences in body weight between TRF and ad
libitum fed animals in the absence of differences in food intake is a change in the balance
between nutrient absorption and excretion in the gut. Although at present there is not enough
evidence to draw definitive conclusions on how TRF affects those parameters, the idea that
these could be affected is strongly supported by several studies showing an effect of TRF
on the gut microbiome composition and dynamics and on fecal nutrient composition [22,
92, 93]. Untargeted metabolomics analysis of the feces from TRF versus ad /ibitum fed
mice on HFD showed relatively more byproducts of hemicellulose breakdown in feces from
TRF mice, suggesting that TRF mice were likely absorbing less calories from those [22].
TRF also alters the composition of the bile acid pool which could affect lipid absorption
and nutrient reabsorption itself [22, 93]. However, since these results were not normalized
to total fecal output and caloric load, whether this reflects a difference in caloric extraction
from specific nutrient source and/or translates to an overall difference in caloric absorption
or excretion remains to be determined. Studies of fecal energy and lipid content will be
crucial to understanding how TRF affects nutrient absorption and excretion.

2.2 Active phase HFD TRF and energy expenditure:

Since body weight is determined by both energy intake and expenditure, for body weight
to be reduced during active phase TRF, an increase in energy expenditure must be
present in the absence of deficit in caloric intake. As follows, a number of studies

show increased energy expenditure for animals on dark-phase TRF when compared to ad
libitum fed animals [13, 94] which could possibly explain the differences in body weight
and improvements in metabolic health. However, findings on energy expenditure are not
consistent across studies and many results show no differences in energy expenditure and
activity (Table 1) [16, 17, 21, 79].

Overall, the different findings on energy expenditure in TRF could be the result of multiple
factors including: the use of different TRF protocols (timing and length), and differences

in how or whether energy expenditure data are normalized - for example, to total body
weight or to lean mass. Moreover, measurement of energy expenditure in rodents is
extremely difficult due to their small size, inaccuracy of measurement systems, and a lack of
standardization in the way data are normalized and analyzed [95-97]. The small body size
of rodents makes measurements of heat production difficult to assess, so indirect calorimetry
systems, which measure the amount of oxygen consumed to carbon dioxide produced are
standard metabolic measures [95, 96]. This method is a proxy for direct calorimetry and
relies on mathematical and chemical equations of glucose metabolism to calculate metabolic
rate. Most studies use the Weir formula [98] (or a derivation) which relies on measures of
the amount of oxygen consumed to carbon dioxide produced. However, this formula does
not account for differences in substrate utilization.

Substrate utilization could be taken into account by using the respiratory exchange ratio
(RER), a measure of the ratio of carbon dioxide produced and oxygen consumed that

Obesity (Silver Spring). Author manuscript; available in PMC 2024 February 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Gallop et al.

Page 8

informs whether carbohydrate or fat is being primarily utilized. Additional consideration

of nitrogen excretion in the urine to determine protein usage aids in further calculation of
substrate utilization [95]. However, this approach would require very accurate measures of
food intake over time as well as accurate determination of dietary macronutrient content.

In theory, the differences in metabolism based on substrate utilization are small, and the
ability to measure energy expenditure from gas exchange should be very accurate. However,
respiratory gas measurements of metabolic rate are extremely variable suggesting that
indirect calorimetry may not always be an extremely accurate method of small animal
energy expenditure measures and may not capture the, likely very small, differences in
energy expenditure on TRF [95, 99]. Moreover, many metabolic cage systems require single
housing of the animals away from their home cages- a change that is likely to induce stress
in addition to removing socialization and a source of warmth for the animals, potentially
confounding measurements of energy expenditure.

Beyond technical difficulties, data processing and presentation is also a point of
inconsistency between studies. Some studies normalize energy expenditure to body weight
or body weight raised to the power of 0.75, others to lean mass, and some not at all [95,

99, 100]. Because lean mass and fat mass have different metabolic capacities, normalization
to body weight does not account for these tissue differences [95, 96, 100]. Moreover, lean
mass is a heterogeneous tissue. Thus, its metabolic rate is also not consistent [95, 100].
Further complicating matters, fat mass affects metabolism through secreted adipokines,
making normalization by lean mass inadequate for assessing tissue differences [95, 96, 100].
Finally, the regression of energy expenditure on total body mass or lean body mass has

a non-zero intercept making it an inaccurate method of normalization that comes up with
measures that are physiologically impossible [95, 96, 100]. In the past ten years, consensus
guidelines recommend that energy expenditure data be analyzed using analysis of covariance
(ANCOVA) with measures of body composition as cofactors [95, 99, 100]. As such, energy
expenditure from all papers discussed above would need to be re-analyzed in the same
manner to draw proper comparisons between the different studies.

Besides resting metabolic rate, activity also contributes to the overall energy expenditure.
While increased activity on TRF has been reported [13], a majority of studies do not report
that dark phase TRF alters total activity levels. Rather it has been shown that dark phase
TRF modulates circadian rhythms of activity as opposed to total levels [14, 17, 73, 77,

101, 102]. However, similar to aforementioned caveat to accurate measurements of energy
expenditure, measurements of activity may be confounded by the single housing and a new
environment in many studies. Furthermore, the use of beam breaks and passive infrared
sensors to measure activity does not allow activity during REM sleep versus awake behaving
activity to be distinguished. As the field moves forward, home cages assessment of both
sleep and activity will further our understanding as to how TRF affects total activity as well
as circadian patterns of activity.

2.3 Metabolic switching and active phase TRF

In addition to the effects on energy balance, TRF interventions consistently affect metabolic
switching as defined by the ability to vary oxidative substrate selection from glucose to
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fatty acids within the course of a day according to periods of feeding and fasting. Metabolic
switching may play a key role in overall metabolic health and longevity and is distinct

from metabolic flexibility which describes long-term metabolic shifts [103]. The Respiratory
Exchange Ratio (RER) can be used as a proxy to assess metabolic switching across a
24-hour period. The RER is the ratio of the volume of carbon dioxide expelled by the animal
to the volume of oxygen consumed as measured by respiratory gas exchange [95]. Although
the RER is largely affected by the composition of the diet, its value is a reflection of the
metabolic substrate being oxidized [104]. The RER generally falls between 0.7 and 1; with
0.7 and 1 reflecting oxidation of pure fatty acids and carbohydrate respectively, and an RER
between 0.7 and 1 reflecting mixed macronutrient substrate usage [104].

While ad libitum HFD fed animals maintain a RER around 0.8- suggesting a use of mixed
macronutrient substrates at all times of the day- HFD-fed animals on TRF display a small
yet noticeable fluctuation of their RER across the day. During fasting, mice on active phase
HFD TRF have increased relative fatty acid oxidation with a lower RER of approximately
0.7-0.8 while above 0.8 during times of food availability [13, 18, 21, 70, 72]. This increase
in relative fatty acid oxidation on TRF occurs regardless of diet, but is less pronounced

in rodents fed a HFD because the RER is already lower during fed periods [13, 21, 102].
During times of negative energy balance an RER of closer to 0.7 is observed reflecting
breakdown of endogenous lipid stores [14, 105]. However, after a meal is consumed, RER
increases due to replenished glucose supplies, and RER switches to reflect usage of a larger
proportion of glucose and amino acids in addition to the dietary fat [14, 77, 105]. The
oscillations in the RER are independent of body weight and also occur in mice lacking a
circadian clock machinery [14, 70, 76].

Although the mechanism is incompletely understood, metabolic switching may increase
mitochondrial biogenesis and neural plasticity as well as improve glycemic control and may
be at least partially responsible for the beneficial effects of dark-phase TRF on metabolic
health [105, 106]. While it has been suggested in the literature, no studies that we are aware
of draw conclusions on whether metabolic switching is the key to the benefits observed on
HFD TRF and future research is needed on this subject to come closer to understanding the
mechanisms of TRF.

Interestingly, a recent study aimed at testing the contribution of forced fasting to TRF
benefits may support a role for metabolic switching. In this study, mice had access to HFD
for six hours during the dark-phase with ad /ibitum access to chow diet during the rest of the
day [77]. The RER of these mice switched between roughly 0.9 (when HFD was available)
and 0.75 (no HFD available) with the higher RER suggestive of burning a diet-derived
mixed macronutrient substrate while HFD was available and the lower RER suggestive of
burning internal fat stores due to low food intake when HFD was not available [77]. Under
these conditions, mice were still protected against weight gain compared to mice fed an
isocaloric ad /ibitum HFD suggesting that TRF benefits can be seen even when forced
fasting is eliminated under conditions that allow metabolic switching. In studies where
fasting was enforced for various durations, it appeared that the longer the fasting period, the
greater the metabolic benefits [16]. Yet, whether this is due to the fasting per se or metabolic
switching will be a topic for future research. Studies that allow modulation of RER with and
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without periods of fasting or diet changes will be crucial to disentangling the tightly coupled
roles of fasting and metabolic switching in TRF. Answering those questions is particularly
relevant from a translational standpoint as an uninterrupted fast is relatively easy to enforce
in laboratory animals but likely less feasible in free-living humans. Whether fasting is the
key factor in attenuation of weight gain has been the matter of recent research endeavors
[107, 108], and future studies examining the role of metabolic switching may uncover a
mechanism as to the benefits of fasting and TRF.

3. Dark phase TRF on a chow diet

Time-restricted feeding studies on a chow diet are less common as mice on ad /ibitum

chow are generally considered healthy controls in most metabolism studies, so there is not

a large metabolic or circadian phenotype to “treat.” Nevertheless, a number of studies have
examined the effects of dark phase chow feeding on energy balance and metabolic health.
Studies have generally reported no differences in body weight between ad /ib and dark-phase
chow fed animals (Table 1) [20, 71, 73, 84, 108, 109]. However, TRF on chow may still have
beneficial effects even if weight effects are not present. A long-term TRF study on chow
interestingly showed that lean mass was increased over fat mass as the mice aged under

TRF [16]. There is also evidence that TRF improves healthspan and lifespan [76, 108] and
corrects circadian dysfunction when the normal circadian clock is disrupted [73, 110].

4. Energy balance under rest phase TRF

While there are few studies investigating the consequences of feeding during the natural rest
phase in rodents, results are relatively congruent and suggest that feeding during the typical
rest period results in adverse metabolic consequences. Specifically, light phase feeding
appears to result in increased weight gain [15, 101, 111] and increased fat mass [73] even
when food intake is matched between TRF and ad /ib fed rodents [15, 73]. However,
multiple studies have found reduced body weight in mice fed during the light phase when
compared to the ad libitum feeding (Table 1). Yet, these studies report the reduced weight to
be accompanied by a reduction in food intake— likely due to the short duration of the feeding
intervals (3—4 hours) making the results difficult to interpret [112, 113].

On the energy expenditure side, there are too few studies measuring energy expenditure
during rest-phase TRF to draw broad conclusions. Furthermore, results from these studies
are mixed. While most assessments of total daily activity find no differences based on daily
phase of eating [15, 21, 72, 73, 101, 108], others report higher or lower activity in day fed
mice versus ad /ib or night-fed animals [101, 113, 114]. Two studies that we are aware of
found reduced energy expenditure in light-phase fed animals as compared to ad /ib animals
using indirect calorimetry [80, 115]. Nonetheless, even when total activity remains the same,
changes in patterns of activity that could ultimately lead to shifts in energy balance have
been observed under daytime feeding [73, 109, 116]. These shifts include ratio of activity
during the light-dark phases [73, 114], sleep-wake architecture [117], and food anticipatory
behavior [108, 117]. Thus, more studies of energy expenditure in rest-phase TRF along with
measures of circadian patterns sleep and activity are needed.
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Collectively, although some evidence suggests that eating during the typical rest phase
might have adverse consequences when compared to isocaloric intake during the active
phase, the underlying mechanisms and whether it involves changes in whole-body energetic
balance still needs to be fully determined. In addition, whether diet composition can further
exacerbate metabolic imbalance under rest-phase eating remains to be tested. New study
designs involving paired feeding between light and dark phase, various diet compositions,
as well as close monitoring of food intake and various parameters of energy expenditure are
needed to expand our understanding of the impacts of daily phase of eating. The molecular
understanding gained from these studies will help with the development of new strategies to
mitigate the effect of out-of-sync feeding that exists in a large fraction of the population and
is inherent to the rotating shift workforce in our industrialized world.

5. The effects of TRF on neuronal and hormonal regulators of food intake.

Not much is known about how TRF affects the central control and peripheral regulators of
caloric intake. Studies in humans have suggested that TRF may reduce feelings of hunger
[118] pointing to potential effects of TRF on the control of feeding. A recent study in

mice shows increased plasma concentrations of the appetite suppressing hormone glucagon
like peptide-1 (GLP-1) during the dark cycle in HFD fed animals on TRF versus their ad
libitum fed counterparts [93], which could potentially explain reductions in appetite or food
intake during TRF. Nevertheless, more studies are needed to fully elucidate the effects of
TRF on peripheral and central regulators of appetite and feeding and will be important for
understanding TRF effect on energy intake.

Ghrelin is currently the only known orexigenic hormone and is mainly secreted by
enteroendocrine cells in the stomach. As circulating ghrelin levels are highest just before
feeding and increase in response to fasting [119], any measurements of ghrelin will be
affected by the timing of the measurements and the fasted or fed status of the mouse making
it difficult to interpret findings when mice are entrained to consuming food at certain times.
Nevertheless, it has been shown that dark-phase fed animals have higher ghrelin levels
than ad /ib fed ones [18, 120], but that rest-phase fed animals have lower ghrelin levels
than ad /ib controls [113]. Finally, in a 12 day light-phase TRF study, pre-proghrelin KO
mice were observed to respond to TRF with weight loss mirroring the WT control mice
[116] suggesting that the effects of TRF may be independent of ghrelin levels. Overall,
there is inconclusive evidence on how TRF affects ghrelin signaling since differences in
food intake and body weight make it difficult to interpret the comparisons between feeding
interventions.

In addition to ghrelin, leptin levels have also been explored as a proxy to assess TRF effects
on feeding. However, the role of leptin in maintaining body weight is not entirely clear.

For a long time, it was believed that leptin, which is secreted in proportion to fat mass,
serves as a long-term signal to prevent weight gain and reduce food intake [121]. However,
evidence of the ability of leptin treatment to reduce body weight is lacking causing some to
hypothesize that leptin is actually a signal to prevent weight loss [122, 123]. Nevertheless,
a number of studies have investigated leptin levels in TRF animals to gain a better idea

of how food intake regulation is altered in TRF interventions. These studies have found
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that hyperleptinemia was prevented in HFD dark-phase TRF groups as compared to their
ad libitum fed counterparts [13, 16, 113]. In HFD TRF fed mice, circulating leptin levels
matched that of chow fed controls but were significantly lower than HFD ALF fed animals
[18]. Other work in clock mutant mice found that leptin levels were lower in TRF fed WT
and clock mutant mice (liver Bmall KO, liver Reverb alpha/beta, and Cry double knockout)
versus WT ad /ib animals [60]. As leptin levels correlate closely with the size of adipose
tissue stores, alterations in leptin concentration may be secondary to the reduced fat mass
often seen in mice on dark phase TRF rather than a result of TRF itself.

A couple of studies have tried to understand how TRF affects central control of energy
balance. Multiple studies have found that melanocortin-4-receptor knockout (MC4R KO)
mice still respond to dark phase TRF with a reduced body weight but have conflicting
findings on food intake [79, 120]. In sum, there is no clear understanding of how TRF
affects central regulation of food intake. It is also difficult to distinguish whether alterations
in hormone levels are a cause or result of metabolic adaptations to TRF. Further, body
weight differences between ad /ibitum fed and TRF fed animals make it difficult to compare
the effects on food intake and appetite between groups. Tools to turn on or off feeding
neurons, such as designer receptors exclusively activated by designer drugs (DREADDS),
optogenetics, and inducible models will be helpful in determining the role of the brain in
mediating the effects TRF. However, in the absence of methods to control food intake and
body weight, it will be difficult to ascertain whether alterations in hormones are causative or
secondary to changes in food intake and body weight.

6. Conclusion:

In rodents, active phase TRF ameliorates many of the negative metabolic consequences of
HFD intake (Table 1). This does not seem to be the case in rest phase TRF as results

vary across studies but point towards less favorable metabolic outcomes (Table 1). The
conflicting results in the rest phase TRF studies may be explained by reduced caloric
intake. Conversely, reduced intake does not appear to be driving the reduced body weight

in animals on active phase TRF, thereby suggesting that increase in energy expenditure may
be occurring when feeding is aligned with circadian sleep-wake rhythms. At present, there
is not a consensus on how energy expenditure and activity are affected by TRF. Future
studies with large samples sizes and using ANCOVA to normalize energy expenditure to
body composition will be important to answer this question. Furthermore, investigations into
nutrient absorption and fecal energy excretion will also be crucial to our understanding of
how TRF affects whole-body energy balance.

In mammals, a compensatory increase in caloric intake and a reduction in energy
expenditure are often present following periods of caloric restriction. This makes treating
obesity and metabolic dysfunction with caloric restriction in humans likely to fail due to the
physiologic propensity towards weight regain. On its own, TRF is a promising intervention
for preventing and treating obesity and metabolic dysfunction. However, understanding the
molecular mechanisms behind the energetics of active phase TRF may be a fruitful avenue
for revealing how to induce weight loss without metabolic compensation or a rebound effect.
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Because mice on active phase TRF have a reduced body weight in the absence of a reduction
in caloric intake, this is suggestive of an alteration in total body energy balance allowing the
mice to “burn” more fuel than their ad /ib counterparts. Of exceeding importance is the fact
that mice have ad /ibitum access to food, albeit during specified feeding windows, meaning
that the degree to which the mice consume food is of autonomous volition rather than a
researcher imposed caloric restriction. HFD hyperphagia has been suggested to be due to
increased intake during the light phase rather than increases in consumption during the dark
phase [12, 84]. Even when mice have access to chow or a low-fat diet during the light phase
and HFD access is restricted to the dark phase, increased caloric intake does not occur [12,
72, 77]. 1t follows then that body weight set point on a TRF is lower than the body weight
set point of mice on ad /ib HFD as evidenced by 1) a lack of increased intake in response to
a HFD and 2) a lower, stable body weight. What is the mechanism controlling this set point,
and how does TRF create a lower body weight set-point than ad /ibitum feeding when all
other factors are equal? Investigations into the intricacies of energy balance during TRF will
position us to determine how diet and circadian timing of feeding affect whole-body energy
expenditure and body weight set-point. As TRF seems to override HFD driven increases in
body weight set-point, examination of the molecular underpinnings of its effects on energy
intake and expenditure serve to move us towards findings therapies to prevent and treat
obesity and metabolic dysfunction.
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Study Importance

. In rodents restricting high fat diet intake to the active phase prevents or
reverses weight gain and metabolic dysfunction

. Reductions in body weight on active phase TRF do not appear to be driven
by reduced caloric intake but may instead be resulting from increased energy
expenditure

. This review supports and details a new line of investigation and
investigational strategies of energy balance on TRF which may lead to new
treatments for obesity and metabolic dysfunction in humans
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